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§1. Bayesian modeling of perception 

 In recent decades, Bayesian modeling has achieved extraordinary success within 

perceptual psychology (Knill and Richards, 1996; Rescorla, 2015; Rescorla, 2020a; Rescorla, 

2021). Bayesian models posit that the perceptual system assigns subjective probabilities (or 

credences) to hypotheses regarding distal conditions (e.g. hypotheses regarding possible shapes, 

sizes, colors, or speeds of perceived objects). The perceptual system deploys its subjective 

probabilities to estimate distal conditions based upon proximal sensory input (e.g. retinal 

stimulations). It does so through computations that are fast, automatic, subpersonal, and 

inaccessible to conscious introspection. 

More formally, the perceptual system maintains a prior probability p(h), where each h is 

a different hypothesis about distal conditions. The perceptual system also maintains a prior 

likelihood p(e | h) that assigns a probability to sensory input e conditional on h (e.g. the 

probability of receiving retinal input e given that a perceived object has a certain size and is 

located a certain distance away). Upon receiving input e, the perceptual system computes the 

posterior probability p(h | e). Bayes’s Theorem expresses the posterior in terms of the prior 

probability and the prior likelihood: 

 p(h | e) = k p(h)p(e | h), 

where k is a normalizing constant to ensure that probabilities sum to 1. The posterior assigns a 

probability to h conditional on sensory input e. Based on the posterior, the perceptual system 
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selects a privileged estimate h* that goes into the final percept. In many Bayesian models, 

though not all, the privileged estimate h* is the maximum a posteriori (MAP) hypothesis: 

h* = argmaxh p(h | e). 

The privileged estimate h* is usually accessible to conscious introspection. In contrast, the priors 

and the posterior are not typically consciously accessible. Neither are the computations that 

convert the priors into the posterior or that select h*. 

Bayesian models supply satisfying explanations for numerous perceptual phenomena. A 

good example is the motion estimation model given by Weiss, Simoncelli, and Adelson (2002). 

The model posits a “slow motion” prior, i.e. a prior that favors slow speeds. Citing Bayesian 

inference based on this prior, the model explains a host of motion illusions that had previously 

resisted unified explanation. Thanks to such explanatory achievements, the Bayesian framework 

now enjoys orthodox status within perceptual psychology. 

A natural question raised by Bayesian perceptual psychology is how the brain 

implements Bayesian inference. How do neural states physically realize the priors and the 

posterior? Which neural operations effectuate the transition from priors to posterior? These 

questions have been intensively studied in computational neuroscience, and there are now 

several proposed neural implementation mechanisms. One proposal, well known to philosophers 

through the work of Clark (2015) and Hohwy (2014), highlights a computational strategy known 

as predictive coding. Other proposals, less known to philosophers, do not feature predictive 

coding. 

This paper canvasses several proposed implementation mechanisms, including both 

predictive coding and alternatives. I will not try to provide anything like an adequate survey. Nor 

will I defend one approach over another. Instead, I aim to promote an enhanced appreciation 
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within the philosophical community for the diverse neural implementation mechanisms currently 

under active investigation. Reflection on diverse candidate neural implementation mechanisms 

offers several benefits. First, and most obviously, we gain a more comprehensive vista on current 

computational neuroscience. Second, we elucidate what it means to attribute subjective 

probabilities to the perceptual system. Third, we clarify the sense in which the perceptual system 

may be said to execute Bayesian inferences. 

§2 presents background material on Bayesian inference in physical systems. §§3-4 

reviews various proposals for neural implementation of Bayesian inference. §5 compares the 

proposed implementation schemes with neural networks that simulate Bayesian inference. §6 

explores the methodological implications of my discussion. 

 

§2. Credal states and transitions 

 A Bayesian model posits credal states: assignments of credences to hypotheses. It also 

posits credal transitions: transitions among credal states. The simplest models posit a single 

credal transition from the prior probability and the prior likelihood to the posterior. More 

complex models posit iterated credal transitions in response to sequential new sensory input. For 

example, the object-tracking model in (Kwon, Tadin, and Knill, 2015) posits iterated credal 

updates regarding the position and velocity of a moving stimulus. 

Elsewhere, I have defended a realist view of Bayesian perceptual psychology (Rescorla, 

2020b). Realism holds that, when a Bayesian perceptual model is empirically successful, we 

have reason to believe that the model is approximately true. More specifically: when a Bayesian 

perceptual model is empirically successful, we have reason to believe that there are credal states 

and transitions resembling those posited by the model. For example, the empirical success of the 
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motion estimation model provides reason to hold that human motion estimation deploys a “slow 

motion” prior similar to that posited by the model. The model’s theoretical apparatus 

corresponds at least roughly to psychological reality. 

Block (2018), Colombo and Seriès (2012), Orlandi (2014), and others espouse an 

opposing instrumentalist perspective. According to instrumentalists, empirical success of a 

Bayesian perceptual model provides no reason to believe that the perceptual system executes 

anything resembling the computations posited by the model. We may only conclude that the 

perceptual system operates as if it executes those computations. More specifically, we have no 

reason to posit that perception involves credal states or transitions. A Bayesian model is just a 

useful predictive device that helps us summarize input-output mappings. For example, the 

motion estimation model specifies a mapping from retinal inputs to motion estimates. According 

to instrumentalists, the model tells us nothing about the mental processes that mediate between 

inputs and outputs, save that the processes generate the specified input-output mapping. 

 To clarify the debate between realism and instrumentalism, I elucidate credal states in 

§2.1 and credal transitions in §2.2. In §3, I build upon those elucidations to address how the 

brain might implement credal states and transitions. 

 

§2.1 Implicit encoding of credences 

 How might a physical system encode an assignment of credences to hypotheses? 

The most straightforward encoding scheme is explicit enumeration: the system explicitly 

lists the credence assigned to each hypothesis. Unfortunately, enumeration is not feasible when 

the hypothesis space is infinite, as it is in most serious scientific applications. 
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An alternative scheme is parametric encoding: the system encodes a probability 

distribution through a few parameters. Many examples of parametric encoding involve a 

probability density function (pdf): a nonnegative function p(x) over  whose integral is 1. We 

derive a probability distribution from a pdf through integration: the probability assigned to 

interval [a, b] is the integral of the pdf over the interval [a, b]. See Figure 1. Often, although not 

always, one can encode a pdf through a few parameters. A familiar example is the family of 

Gaussian distributions. Each Gaussian has a pdf of the form: 
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See Figure 2. Here  is the mean of the distribution and 2  is the variance. We can encode a 

Gaussian through the parameters (, 2 ). 

 

INSERT FIGURES 1 AND 2 ABOUT HERE 

  

 When a probability distribution is not finitely parametrizable, another encoding scheme is 

needed. One widely used encoding scheme involves sampling. Consider a system that draws 

samples from the hypothesis space. We can delineate an objective chance function c(h) that 

governs the system’s sampling behavior. In the simplest case, c(h) is the objective chance that 

the system draws sample h. In more complicated cases, c(h) may instead be a density that 

determines objective chances through integration. Either way, c(h) specifies the system’s 

sampling propensities over the hypothesis space. As several researchers have proposed (Fiser, et 

al., 2010; Icard, 2016; Sanborn and Chater, 2016), sampling propensities can serve as subjective 

probabilities. We may delineate a subjective probability assignment via the equation 
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 p(h) = c(h), 

where the right-hand side specifies an objective probability (or probability density) and the left-

hand side specifies the encoded subjective probability (or probability density). Sampling 

encoding is widely used in statistics (Gelman et al. 2014) and machine learning (Murphy, 2012). 

 Crucially, parametric and sampling encoding are implicit rather than explicit. When a 

system encodes a Gaussian through the parameters (, 2 ), the system does not explicitly 

enumerate any credences. Instead, credences are implicit in the specification of  and 2  (on the 

understanding that the encoded distribution is a Gaussian). Similarly for sampling encoding: 

credences are implicit in the system’s sampling propensities. 

Implicit encoding of probabilities is crucial for understanding the debate between realism 

and instrumentalism. The credal states posited by Bayesian perceptual psychology are typically 

defined over an infinite (indeed, uncountably infinite) hypothesis space. For example, the set of 

possible speeds is uncountable, so the motion estimation model is defined over an uncountable 

hypothesis space. When the hypothesis space is infinite, explicit enumeration of credences is not 

an option. Any plausible realist position must acknowledge that the perceptual system typically 

encodes credences implicitly rather than explicitly. Credences may be encoded through a 

parametric scheme, a sampling scheme, or some other scheme. 

Given that credences can be encoded in such diverse ways, we naturally ask why a 

physical state counts as encoding credences. What do all possible encoding schemes have in 

common such that they count as encodings of credences? A truly satisfying answer would give 

non-circular necessary and sufficient conditions for a physical system to assign a credence to a 

hypothesis. Beginning with Ramsey (1931), there have been several attempts to supply the 

desired necessary and sufficient conditions. Unfortunately, these attempts are now widely 
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regarded as problematic (Erikkson and Hájek, 2007). As a result, we cannot say what it is for a 

physical state to realize a credal state. Nevertheless, we can assert with great confidence that 

credences are physically encoded in diverse ways. After all, parametric and sampling encodings 

are used on a daily basis in practical applications of the Bayesian framework. 

 

§2.2 Computational intractability of Bayesian inference 

 Sometimes, it is easy to compute the posterior from the prior probability and the prior 

likelihood. To illustrate, suppose that the prior is a Gaussian of the form (1) and that the prior 

likelihood has the Gaussian form: 
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An idealized Bayesian agent who starts with these priors will respond to sensory input y by 

forming new credences given by the posterior p(x | y). One can show that the posterior p(x | y) is 

a Gaussian with mean η and variance ρ2 given by 
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See (Gelman et al., 2014, pp. 39-41) for details. The posterior mean η is a weighted average of 

the prior probability mean µ and the fixed value y, with weights inversely proportional to the 

respective variances. Intuitively, then, η is a compromise between the prior probability and the 

sensory input y. 
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 To obtain a helpful visualization of (3), we can hold y fixed and note that (2) then yields a 

one-place function of x: 

 L(x) = p(y | x). 

L(x) is called a likelihood function. The posterior 

p(x | y) = k p(x)p(y | x) = k p(x)L(x) 

is found by multiplying the prior p(x) with the likelihood L(x) and normalizing. See Figure 3.  

 

INSERT FIGURE 3 ABOUT HERE 

  

Computing the posterior is not usually as easy as in (3). A neat self-contained description 

of the posterior may not exist. Even when a self-contained description exists, finding it may 

require computational resources beyond those available to a realistic agent (Kwisthout, 

Wareham, and van Rooij, 2011). Specifically, calculating the normalizing constant k in Bayes’s 

theorem may be a computationally intractable task.1 In general, then, a physical system with 

limited time and memory may not be able to compute the posterior from the priors. 

 The standard solution within Bayesian decision theory is to settle for approximate 

Bayesian inference. Even when Bayesian inference is computationally intractable, there may be a 

tractable algorithm that comes close. There are two main approximation strategies: 

• Variational algorithms approximate the posterior using a probability distribution 

drawn from a nicely behaved family (e.g. Gaussian distributions). The basic idea is to 

pick the distribution from this family that is “closest” to the actual posterior. 

                                                 
1 Roughly speaking, a computation is tractable when it can be executed by a physical system with limited time and 

memory at its disposal. A computation is intractable when it is not tractable. For discussion of computational 

tractability in relation to cognitive science, see (van Rooij et al., 2019). 
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• Sampling algorithms approximate the posterior by drawing samples from the 

hypothesis space. In response to input e, the system alters its sampling propensities 

regarding each hypothesis h. 

In both cases, the physical system instantiates credal states and transitions. It begins with a prior 

probability p(h) and a prior likelihood p(e | h). In response to input e, it transitions to a new 

credal state pnew(h) that approximates the posterior p(h | e). The relevant credal assignments may 

be implicit rather than explicit. For example, the posterior may be encoded by sampling 

propensities. See (Murphy, 2012) for detailed discussion of variational and sampling 

approximation algorithms.2 

 Bayesian perceptual models commonly posit priors that support tractable Bayesian 

inference. However, the human perceptual system need not instantiate such mathematically 

convenient priors. For example, numerous perceptual models posit Gaussian priors, but we know 

that the human perceptual system sometimes uses priors that with heavier tails than Gaussians 

(Stocker and Simoncelli, 2006). As Bayesian perceptual psychology develops, it will doubtless 

assign greater prominence to approximate rather than exact Bayesian inference. An example is 

the model of binocular rivalry given by Gershman, Vul, and Tenenbaum (2012), which posits a 

sampling approximation to an intractable Bayesian inference. The model explains a range of 

perceptual phenomena that arise during binocular rivalry, such as the distribution of switching 

times among percepts. 

                                                 
2 For some sampling algorithms, it is natural to view credences as encoded by the distribution of samples rather than 

by sampling propensities. Suppose that the algorithm draws n samples v1, v2, …, vn. For in, let 
iv

 be the Dirac 

measure centered at vi (i.e. the measure that allocates all probability mass at vi). We may regard the samples as 

encoding a probability distribution q via the equation 
1
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=  . This encoding scheme figures in the particle 

filter, which approximates iterated Bayesian inference given sequential inputs (Crisan and Doucet, 2002; Murphy 

2012, pp. 825-837). At each time, the particle filter responds to new input by drawing a new set of n samples; the 

new samples encode a new probability distribution q. As the number of samples goes to infinity, the distribution q 

encoded at each time converges to the true posterior at that time. 
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 My realist viewpoint extends straightforwardly to perceptual models that postulate 

approximate Bayesian inference. Realism holds that, when an approximately Bayesian model is 

empirically successful, we have reason to hold that the model is approximately true. We have 

reason to hold that the perceptual system instantiates credal states and transitions resembling 

those postulated by the model. 

 Block (2018) suggests that the intractability of Bayesian inference poses a problem for 

realism about Bayesian perceptual psychology. Once realists concede that the perceptual system 

executes approximate Bayesian inference rather than exact Bayesian inference, how does their 

position ultimately differ from instrumentalism? As Block (2018, p. 8) puts, “[W]hat is the 

difference between approximate implementation of Bayesian inference and behaving roughly as 

if Bayesian inference is being implemented…? Until this question is answered, the jury is out on 

the dispute between realist and anti-realist views.” 

 My reply: there is a huge difference between physical systems that approximately execute 

Bayesian inference and physical systems that merely behave as if they approximately execute 

Bayesian inference. A system that approximately executes Bayesian inference instantiates credal 

states and transitions: 

• The system begins with a prior probability and a prior likelihood. 

• In response to sensory input e, the system transitions to a new credal state that 

approximates the posterior. 

• The system can then deploy the approximate posterior in further computation, such as 

selection of a privileged estimate h*. 

See Figure 4. In contrast, a system that merely behaves as if it approximately executes Bayesian 

inference need not instantiate any credal states. For example, a system might simulate Bayesian 
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estimation through a (very large!) look-up table. In response to input e, the look-up table system 

selects an output h* close to the output that a Bayesian estimator or approximately Bayesian 

estimator would select. The look-up table system does not instantiate any credal states, let alone 

credal transitions. A physical system that approximately executes Bayesian inference has a 

different internal causal structure than a system that merely simulates approximate Bayesian 

inference (Rescorla, 2020b). 

 

INSERT FIGURE 4 ABOUT HERE 

 

 The difference in causal structure has important methodological implications. Realists 

posit credal states embedded in the causal structure depicted by Figure 4. Since mental states and 

processes are physically realized in the brain, it becomes a pressing task to investigate how 

credal states and transitions are neurally realized. We must illuminate how neural activity 

implements the causal structure depicted by Figure 4. From a realist perspective, the search for 

neural implementation mechanisms of (approximate) Bayesian inference looks like a vital 

research endeavor (Ma, 2019). From an instrumentalist perspective, we have no reason to suspect 

that the brain implements a causal structure remotely like Figure 4, so we have no reason to take 

Figure 4 as a guide to neural mechanisms. If there are no credal states and no credal transitions, 

then it is a waste of time to investigate how credal states and transitions are neurally realized. 

Evidently, the dispute between realism and instrumentalism is not just an abstract 

“philosophical” debate about how to interpret a fixed scientific theory. The dispute has major 

implications for which research avenues in neuroscience look promising and which do not. My 

goal for the rest of the paper is to gain insight into these methodological implications and, 
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thereby, into the dispute between realism and instrumentalism. In §3, I examine some neural 

network models that implement approximate Bayesian inference. The models vary in biological 

plausibility, but some of them are under active consideration by computational neuroscientists. In 

§4, I examine neural network models that merely simulate approximate Bayesian inference. By 

comparing the models from §3 with the models from §4, I hope to clarify the diverging 

theoretical and methodological commitments of realism and instrumentalism. 

 

§3. Some proposed neural implementation schemes 

 There are several elements we should expect from any complete theory of how the brain 

implements approximate Bayesian inference. 

 To begin, our theory will identify a neural variable U that encodes the prior probability 

p(h). Each value u of U corresponds to a possible neural state (e.g. a profile of firing rates across 

a neural population). U’s value determines the prior, assuming appropriate background 

conditions. So U satisfies counterfactuals of the form: 

(4) If neural variable U were to have value u in background conditions B, then the perceptual 

system would assign credence p(h) to h. 

In principle, different values of u may encode the same prior. In practice, different values of u 

usually encode different priors. 

The qualifier regarding background conditions B is crucial because neural state taken on 

its own does not usually determine credal state. A credal state assigns subjective probabilities to 

hypotheses. In the case of perception, the hypotheses concern distal properties, such as shape, 

size, color, location, speed, and so on. The brain represents distal properties only due to causal 

relations that it bears to the distal environment (Burge, 2007; Burge 2010), perhaps lying within 
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the organism’s developmental history or its evolutionary past. The requisite causal relations do 

not supervene upon internal neurophysiology. In principle, an organism with identical 

neurophysiological properties could be embedded differently in the physical world, bearing such 

different causal relations to the distal environment that it represents different distal properties 

(Burge, 2007; Burge, 2010; Egan, 2010). Different represented properties entail a different credal 

state --- an assignment of credences to different hypotheses regarding different distal properties. 

Since credal state does not supervene upon internal neurophysiology, it would be futile to seek a 

neural variable that determines credal state on its own. The best we can do is find a neural 

variable that determines credal state assuming certain background conditions, including certain 

causal relations to the distal environment. 

 Ultimately, we would like to illuminate the assumed background conditions. What 

background conditions must obtain for neural state u to guarantee that a given credence is 

assigned to h? Answering that question would require progress towards necessary and sufficient 

conditions for physical realization of credal states. It would also require progress on the problem 

of intentionality, i.e. the problem of what it is for mental states to have representational 

properties (Loewer, 1997). Fortunately, scientific theorizing about neural implementation 

mechanisms need not await progress on these deep questions. Lots of research in computational 

neuroscience addresses neural implementation while tacitly assuming whatever background 

conditions are needed to ensure suitable counterfactuals (4). 

 Formally speaking, we may summarize the connection between priors and neural states 

through an equation of the form: 

(5) p(h) = Φ(u), 
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where p(h) is either a probability distribution or a pdf; u is a possible value of neural variable U; 

and Φ is a function that carries each u to p(h).3 Φ is sometimes called a decoder: it shows how to 

“decode” the probabilistic import of a neural state. 

 A complete implementation theory will also address how prior likelihoods are encoded. It 

will identify a neural variable V that satisfies counterfactuals of the form: 

(6) If neural variable V were to have value v in background conditions B, then the perceptual 

system would assign credence p(e | h) to e conditional on h. 

In parallel to (5), we may formalize the encoding through an equation of the form: 

(7) p(e | h) = Ψ(v). 

In practice, different values of V usually encode different prior likelihoods. 

A complete implementation theory will additionally specify how the brain responds to 

input e. Here we must distinguish between deterministic versus stochastic transitions. In the 

deterministic case, we want a function f of the form 

w = f(u, v, e), 

where w is a possible value of some neural variable W. In the stochastic case, we want the chance 

distribution governing the transition from u, v, and e to w. Whether deterministic or stochastic, 

our model will describe operations that transform u, v, and e into w. The operations must be 

biologically plausible, i.e. real neural populations must be able to execute them. 

 Since our goal is to model credal transitions, each value w of W will encode the new 

credal state induced by sensory input e. So W will satisfy counterfactuals of the form: 

                                                 
3 I intend the left-hand side of (5) to denote a function that assigns a probability (or a probability density) to each 

possible h. To be more careful, I should use lambda notation and write (5) as h.p(h) = Φ(u). Similarly for equations 

(7) and (9) below. However, lambda notation seems to me needlessly fussy for present purposes. Throughout the 

text, I sloppily use the expression “p(h)” sometimes to denote a function and sometimes to denote a specific real 

number assigned to a specific h. Context should make clear which denotation I have in mind. 
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(8) If neural variable W were to have value w in background conditions B, then the 

perceptual system would assign credence pnew(h) to h. 

In parallel with (5) and (7), we can formalize the encoding through an equation of the form: 

(9) pnew(h) = Γ(w). 

The decoder Γ specifies the new credal state corresponding to each w. When the system executes 

exact Bayesian inference, we have 

 pnew(h) = p(h | e), 

i.e. the new credal state is the true posterior. In general, the system may only approximate the 

posterior, in which case we have 

 pnew(h)  p(h | e). 

In practice, different choices of e usually induce different values of W, and different values of W 

usually encode different credal states pnew(h). 

 Figure 5 visualizes how the various components of a complete implementation theory fit 

together. A major goal of contemporary computational neuroscience is to identify decoders and 

neural operations satisfying something like Figure 5. Researchers pursue that goal by 

constructing neural networks: simplified models of how idealized neural populations evolve. The 

neural networks vary greatly in their biological realism, but at least some of them are fairly 

realistic. A suitable neural network, coupled with suitable decoders Φ, Ψ, and Γ, models how the 

brain might implement approximate Bayesian inference.4 

 

                                                 
4 Some readers may worry that Figure 5 suggests a problematic “causal overdetermination,” whereby credal 

assignment p(h) and neural state u overdetermine privileged estimate h*. I want to resist any such interpretation of 

Figure 5. There is really just one channel of causal influence described twice over: at the psychological level (by 

citing the credal assignment) and at the neural level (by citing neural state u). The neural level realizes the 

psychological level, so there is no causal overdetermination. The literature offers several avenues for developing this 

intuitive diagnosis in more rigorous terms. See (Bennett, 2007; Rescorla, 2014; Woodward, 2008; Woodward, 2015) 

for discussion of the complex interrelations between mental causation and neural realization. 
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INSERT FIGURE 5 ABOUT HERE 

 

I will now examine some specific neuroscientific models along these lines. My aims are 

conceptual rather than empirical: I want to highlight the diverse ways in which credal states and 

transitions might in principle be neurally realized. For that reason, I will not address evidence for 

or against the neuroscientific models I discuss. 

 

§3.1 Probabilistic population codes 

 Certain neurons preferentially respond to specific values of a perceived stimulus (Dayan 

and Abbott, 2005, pp. 14-16), such as the orientation of a bar. We may associate each such 

neuron with a tuning curve fi(x), which summarizes the average response of neuron i to stimulus 

value x. A common posit that fits many neurons fairly well is that fi(x) is an unnormalized 

Gaussian. See Figure 6, which depicts Gaussian tuning curves for a population of neurons tuned 

to a one-dimensional distal variable. Each tuning curve peaks at a preferred value of the variable. 

 

INSERT FIGURE 6 ABOUT HERE 

 

 The core idea behind probabilistic population codes (PPCs) is that, when a neural 

population is tuned to distal variable X, the firing profile over the population can encode a 

probability distribution over X (Knill and Pouget, 2004; Pouget, Dayan, and Zemel, 2003). 

Figure 7 illustrates. The horizontal axis groups neurons according to preferred values of X. The 

vertical axis gives each neuron’s firing rate on some occasion in response to some fixed stimulus. 

Let the neural population contain n neurons. ri is the firing rate for the neuron with preferred 
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value xi. r = <r1, r2, …, rn> is the profile of firing rates over the population. A particularly 

straightforward decoder is 

(10) 
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so that probabilities are concentrated at the preferred values xi in proportion to the corresponding 

firing rates and are 0 elsewhere. (The denominator is a normalization constant.) It is often 

desirable to smooth out the credal assignments so as to avoid concentration of credal mass at 

preferred values xi. This can be done through a more sophisticated decoder of the form 
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where ϕj is a pdf associated with neuron j (Zemel, Dayan, and Pouget, 1998). Intuitively, neuron 

j votes for its preferred pdf ϕj with weight proportional to its firing rate. Collectively, the firing 

rates encode the pdf p(x) defined by (11). Decoders (10) and (11) can be used for likelihood 

functions or approximate posteriors, with L(x) or pnew(x) replacing p(x). 

 

INSERT FIGURE 7 ABOUT HERE 

 

 To see (10) in action, consider a neural network with three neural populations N1, N2, and 

N3. Neural population N1 responds to sensory input y with firing rate profile r. These responses 

encode likelihood function L(x) via the decoder: 
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Neural population N2 has firing rate profile s, to which we apply the decoder: 
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The neural network multiplies firing rates in N1 and N2 to determine firing rates in N3. The firing 

rate profile t over N3 is 

 t = < r1s1, r2s2, …, rnsn>. 

If we use the decoder, 
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So the network implements (normalized) multiplication of a prior with a likelihood function. See 

Figure 8, and see (Gershman and Beck, 2017; Knill and Pouget, 2004) for discussion. This 

analysis can be extended to decoder (11), though the needed neural operations are more 

complicated than multiplication of firing rates (Barber et al., 2003; Pouget et al., 2003; Zemel 

and Dayan, 1997). 

 

INSERT FIGURE 8 ABOUT HERE 

 

 One element missing from Figure 8 is encoding of the prior likelihood. In Figure 8, N1 

encodes a likelihood function L(x). Encoding a likelihood function L(x) is not the same as 

encoding a prior likelihood p(y | x): L(x) is a function of x, while p(y | x) is a function of x and y. 
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Nothing I have said addresses realization of the two-place function p(y | x). Consequently, I am 

not inclined to say that Figure 8 depicts genuine Bayesian inference (a transition from the prior 

probability, the prior likelihood, and sensory input to the posterior), although it certainly depicts 

Bayesian computation (computing the normalized product of a prior and a likelihood function). 

 In a notable contribution, Ma et al. (2006) exploit the stochastic nature of neural 

responses to analyze how prior likelihoods are encoded. Neural response to a stimulus is 

governed by an objective chance distribution. More formally, there is a conditional distribution 

 c(r | x), 

where r is firing activity over a neural population and x is the stimulus. Although c(r | x) is an 

objective chance distribution, we may regard it as encoding a subjective probability distribution. 

The decoder for the prior likelihood then has the form: 

(12) p(r | x) = c(r | x). 

On this approach, stochastic firing propensities of the neural population encode conditional 

credences (Echeveste and Lengyel, 2018). 

 A widely used posit, which fits the neurophysiological data fairly well, is that neuron i 

samples from a Poisson distribution with mean determined by tuning curve fi and stimulus x: 
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where ri is the spike count of neuron i during a fixed time interval. Assuming the Poisson 

distributions independent of one another, we may write 

(13) 
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where r is the profile of spike counts over the population. Other choices for c(r | x) are possible. 

Assuming (13), a neural population governed by decoder (12) encodes the prior likelihood: 
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Different choices for c(r | x) will yield different encoded prior likelihoods. 

(14) has an important virtue: it can support genuine Bayesian inference (Ma et al., 2006). 

Suppose that the prior likelihood is encoded by neural population N1 via the decoder (14), and 

assume that all tuning curves are Gaussians with variance 2

tc . Holding r fixed, one can show 

under mild assumptions that the likelihood p(r | x) is a (possibly unnormalized) Gaussian with 

mean y and variance 2 given by 
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y is a weighted average of the preferred values xi, with weights given by the spike counts ri. 2 is 

inversely proportional to aggregate activity in N1: more spike counts entail lower variance. We 

may encode the prior probability in the spike count profile for a separate neural population N2 

and the posterior in the spike count profile for a third neural population N3. Let s be the spike 

count profile for N2. Consider a decoder that maps s to a Gaussian prior p(x) with mean µ and 

variance 2 given by 
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Applying (3) to (15) and (16), one can easily show that the posterior p(x | r) is a Gaussian with 

mean  and variance 2 given by 
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Thus, the neural network can compute the posterior by adding together spike counts in N1 and N2 

to determine spike counts in N3. The spike count profile t over N3 is 

(17) t = < r1+s1, r2+s2, …, rn+sn>, 

and the encoded Gaussian has parameters given by 
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See Figure 9. This analysis can be extended beyond Gaussians to a more general family of 

parametrized distributions (Beck et al., 2007; Ma et al., 2006; Sokoloski, 2017). In the general 

case, the posterior’s parameters are given by linear combination of spike counts rather than by 

mere addition. 

 



22 

 

INSERT FIGURE 9 ABOUT HERE 

 

As Ma et al. (2006, p. 1435) note, one potential disadvantage of their model is that the 

encoded prior p(x) varies across trials due to the stochastic nature of neural firing. The decoder 

(16) is not well-suited to situations where a stable prior persists across many trials. 

An alternative decoder proposed by Ganguli and Simoncelli (2014) avoids this problem 

and also dispenses with a separate neural population for the prior. We still consider a population 

N whose neural responses conform to (13). The prior likelihood is still encoded via (14). Rather 

than posit a separate population that encodes the prior, Ganguli and Simoncelli posit that 

relatively stable properties of N itself encode the prior. 

The core intuition underlying their model is that more neural resources should be 

associated with more probable stimulus values. An optimally efficient allocation of neural 

resources will not feature tuning curves spread homogenously across all possible stimulus values 

(as they are in Figure 6). Rather, tuning curves will be arranged so that preferred values xi are 

clustered more densely around probable values of the stimulus. This promotes accurate encoding 

of more probable stimulus values while downgrading accurate encoding of less probable 

stimulus values. Ganguli and Simoncelli formalize these intuitions with a tuning curve density 

function d(x), which governs the allocation of tuning curves across the neural population: higher 

density around x entails more neurons whose preferred stimulus value is near x. Under mild 

assumptions, each tuning curve fi can be written as: 

(19) ( ) ( ( ) )if x k f D x i= − , 

where k is a constant that modulates maximum average firing rate; f is a fixed function, such as 

an unnormalized Gaussian, that peaks at 0; and D(x) comes from integrating d(x). f serves as a 
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tuning curve template. d(x) warps the template as described by (19), yielding a tuning curve fi 

with preferred value D-1(i). Ganguli and Simoncelli show that, according to a natural criterion of 

optimality, the optimal density function satisfies the equation 

(20) 
( )

( )
d x

p x
n

= , 

where n is the total number of neurons in neural population N; and p(x) is the prior over stimulus 

values. Accordingly, they propose a model on which the prior is encoded by the density function 

via (20). In the model, there is no need for a separate population that encodes the prior. Instead, 

the prior is encoded by the allocation of resources across the population N whose stochastic 

behavior encodes the prior likelihood. See Figure 10. Note that the proposed decoder (20) is 

nonparametric: it maps the density function d(x) to a unique prior p(x), without any restriction as 

to parametric form. 

 

INSERT FIGURE 10 ABOUT HERE 

 

 Ganguli and Simoncelli (2014, pp. 2117-2118) show that their decoder supports 

approximate computation of the posterior. The posterior is approximated by a discrete 

distribution: 
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By (19), f(i – j) is proportional to neuron j’s average response to neuron i’s preferred stimulus 

value. (21) uses logarithms of these average responses to form a weighted sum of spike counts, 
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then exponentiates and normalizes. A neural network that executes the mandated operations can 

instantiate firing rate profile t over a separate neural population, where 
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Firing rate profile t encodes pnew via the decoder 

(23) pnew(xi) = ti. 

Thus, a neural network that employs the density-based encoding scheme (20) can approximate 

the posterior. 

 Computational neuroscientists have proposed several other PPC implementation 

mechanisms (Beck, Heller, and Pouget, 2012; Orhan and Ma, 2017; Pouget et al., 2013). No 

doubt further PPC models will emerge in the near future. 

 

§3.2 Sampling 

 I now discuss an alternative neural implementation strategy centered on sampling. 

 An early example is the Boltzmann machine (Ackley, Hinton, and Sejnowski, 1985). A 

Boltzmann machine consists of the following elements: a collection of n neuron-like units that 

can turn on and off (zi = 1 means that unit i is on, zi = 0 means that it is off); weights wij, 

codifying the connection strength between units i and j, such that wij = wji and wii = 0; and bias 

terms bi, codifying the propensity of unit i to take value 1. We may construe zi as the neural 

network’s current vote regarding the true value of some binary random variable Xi (e.g. whether 

a perceived object is concave or convex). The weights and bias terms encode a discrete 

probability distribution over the random variables X1,…, Xn via the decoder 
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(24) 1( ,..., )
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np x x e= , 

where 
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and η is a normalization constant. 

 Suppose that the variables X1,…, Xn fall into two categories: observable (X1,…, Xk) and 

unobservable (Xk+1,…, Xn). We wish to form a new credence over the unobservable variables 

given observed values x1,…, xk of the observable variables. The posterior is 

(25) p(xk+1,…, xn | x1,…, xk). 

In principle, (25) can be computed directly from (24) using the ratio formula for conditional 

probabilities: 
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However, the computation is not typically tractable. We may instead approximate the posterior 

as follows. First, “clamp” units 1 through k to the values 

 z1 = x1, z2 = x2, …, zk = xk. 

Second, assign arbitrary values to the remaining units. Third, sample a new value zi from unit i > 

k according to the conditional chance distribution 

(26) \
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where \iz  is the profile of values currently assigned to all the units besides unit i. Cycle through 

all the remaining units in the same way, holding fixed the clamped units. Continue in this way 

for some time, sampling values for the non-clamped units according to (26). At each stage, there 

is an objective chance c(zk+1,…, zn) of sampling values zk+1,…, zn from units k + 1 through n. 
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c(zk+1,…, zn) will change as we continue to draw samples. One can show that c(zk+1,…, zn) 

converges to the posterior p(xk+1,…, xn | x1,…, xk). If we run the sampling procedure for a 

sufficient “burn in” period and subsequently set 

(27) pnew(xk+1,…, xn) = c(zk+1,…, zn), 

then pnew(xk+1,…, xn) approximates the posterior p(xk+1,…, xn | x1,…, xk). This is an example of a 

sampling procedure known as Gibbs sampling, which itself is a special case of a more general 

sampling strategy known as Metropolis-Hastings (Murphy, 2012, pp. 839-876). See (Icard, 

2016) for extended discussion of the Boltzmann machine and sampling propensities. 

 The Boltzmann machine is not very realistic from a neurophysiological perspective. It 

does not even model the basic fact that neurons emit spikes. Still, it nicely illustrates how neural 

networks can implement approximate Bayesian inference through sampling. Similar sampling 

implementations are achievable by far more biologically realistic neural networks. 

An example is the neural network given by Buesing et al. (2011), which models in a 

biologically plausible way the stochastic interactions within a collection of n spiking neurons. zi 

= 1 at time t signifies that neuron i has fired in a small time interval ending at t. zi = 0 signifies 

that neuron i has not fired in that time interval. The weights and bias terms encode a probability 

distribution over n binary random variables X1,…, Xn through the decoder (24).5 Neuron i has 

membrane potential ui, which is related to spiking activity by the equation: 

 i i ij j

j i

u b w z


= +  , 

where the bias term bi codifies neuron i’s excitability; wij is the connection strength between 

neurons i and j; and zi reflects the current spiking behavior (or lack thereof) of neuron i. To 

approximate the posterior 

                                                 
5 The model can be generalized to handle other decoders (Buesing et al., 2011, p. 4). See also (Pecevski et al., 2011) 

for further generalizations.  
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 p(xk+1,…, xn | x1,…, xk), 

the network proceeds in roughly the same fashion as the Boltzmann machine: it clamps the 

values of z1 = x1, z2 = x2, …, zk = xk, then serially samples values zi of the remaining neurons. 

Samples are drawn stochastically, in a way that depends upon membrane potentials along with 

other neurophysiological details. Buesing et al. (2011) prove that their stochastic sampling 

procedure converges to the posterior p(xk+1,…, xn | x1,…, xk). Just as with the Boltzmann 

machine, we may run the sampling procedure for a “burn in” period and then set 

 pnew(xk+1,…, xn) = c(zk+1,…, zn). 

The new credal state pnew approximates the true posterior. 

 One disadvantage shared by the Boltzmann machine and the (Buesing et al., 2011) model 

is that they only encode probability distributions over binary random variables. A model given 

by Nessler et al. (2013) uses sampling to compute the posterior over a discrete random variable X 

that takes k possible values x1, …, xk. The neural network contains n input neurons, whose 

spiking behavior is modeled by n binary random variables Y1, …, Yn. These neurons can code 

values of non-binary discrete sensory variables as long as n is large enough (where each input 

neuron corresponds to a distinct value of some sensory variable). Sample values of X are 

encoded by a population of k output neurons: a spike by output neuron i codes a sample xi. 

Output neuron i’s spiking propensity is determined by its membrane potential ui. Membrane 

potential in turn depends upon input neuron spikes as follows: 
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where the bias term bi codifies output neuron i’s excitability; wij is the connection strength 

between output neuron i and input neuron j; and I is an inhibition signal. The prior p(xi) is 

encoded by the neuron excitability profile via the decoder: 
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(28) ( ) ib
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The prior likelihood is encoded by the weights wij via the decoder 

(29) 1( | )

n

ij j

j

w y

ip x e =


=y , 

where y = <y1, y2, …, yn>. Here we must assume that the bias terms and weights meet 

normalization conditions, so that (28) and (29) yield normalized probabilities. Nessler et al. 

(2013) show that, under some additional assumptions, spiking propensities among the output 

neurons match the posterior p(xi | y). If pnew(xi) is encoded by the chances governing output 

neuron spikes, then pnew(xi) is simply the posterior p(xi | y).6 

 Most variables encountered in perception are continuous (e.g. shape, size, color, location) 

rather than discrete. The literature offers several neural network models that sample from the 

(approximate) posterior for a continuous random variable (e.g. Aitchison and Lengyel, 2016; 

Hennequin et al., 2014; Moreno-Bote et al., 2011; Savin and Denève, 2014). The basic idea is 

usually that samples are encoded by values of a continuous neural variable, such as a neuron’s 

membrane potential (Orbán et al., 2016). The objective chance function governing this neural 

variable encodes the (approximate) posterior. For example, the decoder might take the form: 

(30) pnew(x) = c(f(x)), 

where f(x) is the membrane potential that encodes stimulus value x and c is an objective chance 

function governing membrane potentials. Sampling neural networks are under active 

investigation, so we may expect the coming years to bring forth additional models.7 

  

                                                 
6 See also the sampling-based neural network given by Huang and Rao (2016), which models iterated approximate 

Bayesian inference for arbitrary probability distributions over a finite space. 
7 Some particle filter neural implementation models feature an encoding scheme along the lines of note 2. A good 

example is the model given by Kutschireiter et al. (2017), which implements iterated approximate Bayesian 

inference for finitely many continuous random variables. 
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§3.3 Predictive coding 

 Recent philosophical literature places great emphasis on predictive coding (Clark, 2015; 

Hohwy, 2014). The basic idea is that the neural network generates a prediction  about sensory 

input. Upon receipt of actual sensory input y, the network computes a prediction error term. 

Typically (e.g. Rao and Ballard, 1999), prediction error  is the difference 

  = y – . 

Alternatively (e.g. Spratling, 2016), prediction error may be the quotient 

  = y/. 

Either way, prediction error figures prominently in subsequent computation. For example, it may 

influence future predictions. Many predictive coding models have hierarchical structure: higher 

levels of the network pass predictions down to lower levels, and lower levels pass prediction 

errors back to higher levels.8 

There is nothing inherently Bayesian about predictive coding (Aitchison and Lengyel, 

2017). However, if one sets up the neural network in the right way, then predictive coding can 

implement approximate Bayesian inference. Consider the hierarchical neural network given by 

Spratling (2016). Each level of the hierarchy contains three neural populations: the first 

computes a vector  of sensory input predictions; the second combines  with sensory input y to 

compute prediction error ; the third uses  to update the estimate x of the underlying distal 

variable. The update of x, which depends upon a matrix W of feedforward weights, is used to 

update sensory prediction . The prior probability is encoded as a scaling factor that modulates 

the feedforward weight matrix W. The prior likelihood is encoded by a population of input 

neurons with independent Poisson variability. The posterior is encoded by firing rates in the 

                                                 
8 See (Cao, 2020) for critical discussion of talk about “prediction” and “prediction error” in this context. 
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prediction neurons, where each prediction neuron has a preferred stimulus value. Under this 

decoding scheme, Spratling shows that the network can compute an approximate posterior for 

Gaussian priors and some non-Gaussian priors. 

The literature offers various alternative predictive coding implementations of 

approximate Bayesian inference. For example, Lee and Mumford (2003) offer a sampling-based 

predictive coding implementation of iterated approximate Bayesian inference, while Friston 

(2005, 2010) develops a predictive coding implementation that computes a variational 

approximation to the posterior. See (Spratling, 2017) for an overview. 

 

§4. Morals 

 The previous section canvassed several theories of how the brain implements 

approximate Bayesian inference. I will not consider neurophysiological evidence for or against 

the theories. Instead, I want to advance five morals that we can draw quite apart from which 

theory (if any) turns out to be correct. 

 First moral: There are diverse biologically plausible candidate neural realizers for 

credal states. A neural realizer for the prior probability is a neural variable U that, at a bare 

minimum, satisfies appropriate counterfactuals of the form (4). A neural realizer for the prior 

likelihood is a neural variable V that, at a bare minimum, satisfies appropriate counterfactuals of 

the form (6).9 A neural realizer for the approximate posterior is a neural variable W that, at a bare 

minimum, satisfies appropriate counterfactuals of the form (8). §3 canvassed several candidate 

neural realizers: 

                                                 
9 In some models, such as (Ma et al., 2006) and (Ganguli and Simoncelli, 2014), the neural network executes an 

approximate Bayesian inference based on spike count profile r over a neural population. r is caused by proximal 

sensory input e. However, e does not enter directly into the inference. Accordingly, the neural network realizes a 

prior likelihood p(r | x) defined over spike count r rather than proximal sensory input e. The rationale here is that 

neural computation has direct access to r rather than e. 
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• firing rate profile over a neural population: equations (10), (11), and (23) 

• spike count profile over a neural population: equations (16) and (18) 

• chance distribution governing neural response to a stimulus: equation (14) 

• tuning curve density function: equation (20) 

• sampling propensities: equations (27) and (30) 

• neuron excitability profile: equation (28) 

• weights in a neural network: equations (24) and (29) 

These candidates are all under scientific active investigation, as are other candidates. The 

candidates range from the relatively concrete (e.g. spike count profile) to the highly abstract (e.g. 

tuning curve density function). 

 Second moral: Credal assignments may be implicit. None of the models we have 

considered feature explicit enumeration of prior probabilities. The closest is equation (10), where 

ri may be construed as encoding the probability assigned to xi. But even (10) does not feature 

true explicit enumeration: first, firing rates are normalized to yield probabilities; second, the 

encoding scheme implicitly specifies that stimulus values other than preferred values xi receive 

probability 0. In the other encoding schemes, credal assignment are even more implicit. An 

extreme example of implicit encoding is the tuning curve density function d(x). We theorists 

represent d(x), but the neural network itself does not represent d(x). Assuming decoder (20), the 

prior is not explicitly recorded anywhere in the network’s computations. Instead, it is implicitly 

enshrined by the neural network’s allocation of resources. 

 Third moral: The prior probability and the posterior may have very different neural 

realizers. In (Ganguli and Simoncelli, 2014), the prior probability is realized by tuning curve 

density d(x) via equation (20), while the posterior is encoded by firing rate profile via equation 
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(23). In (Nessler et al., 2013), the prior probability is encoded by the neuron excitability profile 

via equation (28), while the posterior is encoded by sampling propensities. These examples 

demonstrate that a single neural network may realize credal assignments in different ways at 

different stages of computation. The examples vividly illustrate multiply realizability, a crucial 

mark of the mental first highlighted by Putnam (1967). A psychological state type (in this case, a 

credal assignment over a hypothesis space) may have distinct tokens that are quite diverse at the 

neural level. Our examples show that distinct tokens may be neurally diverse even within a single 

biologically plausible neural system. 

 Fourth moral: The prior probability and the prior likelihood may or may not be 

separately encoded. They are separately encoded in most of the models I considered. In (Ma et 

al., 2006), for example, the prior probability is encoded by spike counts in a neural population 

via equation (16), while the prior likelihood is encoded by objective chances via equation (14). 

In some models, though, a single neural state encodes both the prior probability and the prior 

likelihood. The Boltzmann machine encodes a prior p(x1,…, xn) via equation (24), and the 

encoded prior determines all relevant unconditional and conditional probabilities ---- including 

the prior likelihood p(x1,…, xk | xk+1,…, xn). Similarly for the (Buesing et al., 2011) model. 

Nothing about the Bayesian framework requires separate encoding of the prior p(h) and the prior 

likelihood p(e | h). One can instead encode a prior p(e, h) and then define conditional 

probabilities via the ratio formula. In that case, the prior probability and the prior likelihood are 

encoded by the same neural variable. In terms of clauses (5) and (7): U = V, and Φ maps u to the 

prior probability p(h) while Ψ maps v ( = u) to the prior likelihood p(e | h). 

 Fifth moral: There are diverse biologically plausible candidate neural implementation 

mechanisms for approximate Bayesian inference. Physical implementation of approximate 
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Bayesian inference can be achieved, at least in principle, through diverse neural operations 

falling squarely within the repertoire of the human brain. In (Ma et al., 2006), approximate 

Bayesian inference is implemented by linear combination of spike counts. In (Ganguli and 

Simoncelli, 2014), it is implemented by linear combination of spike counts, exponentiation, and 

normalization. In sampling models, it is implemented by a sampling algorithm. In (Spratling, 

2016), it is implemented by computation of prediction errors. These implementation schemes are 

under active scientific investigation, with various pieces of empirical evidence for or against 

each candidate scheme. In particular, predictive coding is just one proposed neural 

implementation among others. Many proposed implementations do not involve anything like 

computation of prediction error. At least some of those proposed implementations have just as 

much empirical support as any known predictive coding implementation (Aitchison and Lengyel, 

2017). 

 

§5. Simulation, not implementation 

 I have been discussing the diverse ways that a neural network might implement 

approximately Bayesian inference. I will now discuss neural networks that simulate rather than 

implement approximate Bayesian inference. 

In a typical Bayesian perceptual model, the new credal state pnew(h) is not the final output 

but instead is used to select a privileged estimate h*. The model determines a deterministic or 

stochastic mapping from inputs e to estimates h*. In principle, there are several ways a neural 

network might instantiate the desired mapping from e to h* without implementing the credal 

transition depicted by Figures 4 and 5: 
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• No priors, no approximate posterior (Figure 11). As noted in §2, the mapping from e 

to h* could be implemented by a machine that consults a look-up table. Alternatively, 

we can sometimes train a neural network to implement the mapping (Simoncelli, 

2009). There are even circumstances where unsupervised learning enables a system to 

emulate a Bayesian estimator (Raphan and Simoncelli, 2007). Thus, a neural network 

can mimic Bayesian estimation without instantiating any credal states or transitions. 

• Prior likelihood, approximate posterior, but no prior probability (Figure 12). A 

system may encode the prior likelihood and an approximate posterior but not the prior 

probability. To illustrate, consider a simplified version of the (Ma et al., 2006) model. 

As we have seen, the prior likelihood p(r | x) is encoded by the objective chance 

distribution governing a neural population N, via equation (14). Assuming a flat prior, 

one can show that the posterior p(x | r) is a Gaussian with parameters determined by 

(15). So, assuming a flat prior, there is no need for separate encoding of the prior or 

separate computation of the posterior: the spike count profile r over N itself already 

encodes the posterior. See (Ma et al., 2006, pp. 1433-1444) for discussion. 

• Prior probability, approximate posterior, but no prior likelihood (Figure 13). A 

system may encode the prior probability and the approximate posterior but not the 

prior likelihood. Consider the model given by Rullán Buxó and Savin (2021), which 

combines sampling and parametric encoding. Firing rates in neural population N1 

encode samples from a probability distribution over random variables X1,…, Xn. At 

first, N1 samples spontaneously from the prior p(x1,…, xn). Upon receiving sensory 

input e, N1 samples from the posterior p(x1,…, xn | e). Samples produced by N1 serve 

as input to a second neural population N2, which computes parameters for an 
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approximate posterior pnew(xi) over a single variable of interest Xi. Although the prior 

probability and the approximate posterior are implicitly encoded, the prior likelihood 

p(e | x1,…, xn) is not. No neural variable realizes p(e | x1,…, xn). Instead, the prior 

likelihood is embedded in the sampling dynamics for N1. 

• Priors, but no approximate posterior (Figure 14). A system may encode the prior 

probability and the prior likelihood but transform input e into estimate h* without 

computing an approximate posterior. Consider the predictive coding model given by 

Rao and Ballard (1999). The neural network encodes the prior probability and the 

prior probability. In response to input e, the network uses a predictive coding 

algorithm to select the MAP estimate. As Rao (2004, pp. 29-30) notes, the network 

does not compute p(h | e) or any approximation to p(h | e). It only computes argmaxh 

p(h | e). So it does not implement a credal transition (a transition among credal states). 

• Approximate posterior, but no priors (Figure 15). We might train a system to 

compute p(h | e) in response to input e even though the system does not encode the 

prior probability or the prior likelihood. An example is the neural network given by 

Echeveste et al. (2020), which was trained to respond to input e with a sampling-

based encoding of the posterior p(h | e). 

A neural network that implements the mapping from e to h* need not instantiate Figure 5. It 

might instead instantiate one of Figures 11-15. 

 

INSERT FIGURES 11-15 ABOUT HERE 
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 A key feature that differentiates Figure 5 from Figures 11-15 is the presence of neural 

realizers for credal states. Neural networks conforming to Figure 5 feature neural realizers for the 

prior probability, the prior likelihood, and the approximate posterior. Figures 11-15 depict 

situations where at least one of those three credal states lacks a neural realizer. Genuine 

implementation of approximate Bayesian inference requires that all three credal states have 

neural realizers. 

 If a neural network maps inputs e to estimates h* in accord with an approximately 

Bayesian model, then the network’s activity must reflect the model’s priors in some way. The 

question is how it reflects them. According to Figure 5, priors are encoded by states of the neural 

network. The network applies general neural operations (e.g. linear combination of spike counts), 

yielding a new neural state that encodes a new credal state pnew(h). Figures 11-15 diverge from 

that picture to varying degrees. 

Take Figure 12. Here the prior probability is not encoded by any neural state but is 

instead subsumed into the network dynamics: the transition from the prior likelihood to the 

approximate posterior is only appropriate assuming the fixed prior probability. Depending on the 

details, it may be difficult or impossible to change the network dynamics to reflect a different 

prior. Figure 5 posits a flexible dynamics that can accommodate different priors, while Figure 12 

posits a dynamics tailored to a specific prior. Figure 5 views the prior as an adjustable parameter 

that can change even as the network dynamics remains fixed. Figure 12 recognizes no such 

adjustable parameter. To illustrate, compare the (Ma et al., 2006) model in two versions: the 

version from §3.1, with a separate neural population N2 that encodes the prior; and the version 

captured by Figure 12, in which the dynamics is tailored to a flat prior. In the first version, the 

prior is an adjustable parameter. We can change it (by changing spike counts in N2) without 
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changing the network dynamics. In the second version, the flat prior is not an adjustable 

parameter. Incorporating a non-flat prior would require radical changes to the network dynamics. 

 A similar contrast applies to Figure 5 versus Figure 13: the former posits a flexible 

dynamics that can accommodate different prior likelihoods, while the latter posits a dynamics 

tailored to a specific prior likelihood. The contrast is even starker for Figures 11 and 15, which 

posit a dynamics tailored to a specific prior probability and a specific prior likelihood. 

 Now compare Figure 5 with Figure 14. Figure 5 computes the full approximate posterior, 

while Figure 14 only computes an estimate h*. Networks conforming to Figure 5 can, at least in 

principle, support computations that networks conforming to Figure 14 cannot. A neural network 

that encodes the approximate posterior can in principle execute (or be supplemented so as to 

execute) the following computations: 

• expected value computation relative to the approximate posterior. 

• probability matching, i.e. stochastically selecting a privileged estimate h* with 

objective chance given approximately by the approximate posterior.  

• further approximate Bayesian inference, with the approximate posterior serving as 

the new prior. 

These computations may not always be possible in practice. But the implementation schemes 

surveyed in §§3-4 support at least some of the computations through biologically plausible 

neural operations. For example, the Ganguli and Simoncelli (2014) model supports expected 

value computation, and sampling models trivially support probability matching. In contrast, a 

neural network that does not encode the approximate posterior cannot execute any such 

computations. Crucial information is irretrievably lost when a network encodes only a privileged 
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estimate h* rather than an approximate posterior. Thus, the contrast between Figures 5 and 14 

has significant implications for future computation. 

 Our discussion highlights a crucial advantage offered by neural networks that implement 

approximate Bayesian inference versus neural networks that merely simulate approximate 

Bayesian inference: flexibility. Neural realization of the priors enables a flexible dynamics that 

can remain fixed as the priors change. It thereby supports Bayesian estimation across changing 

environmental conditions. Neural realization of the approximate posterior enables flexibility 

regarding which future computations can be executed. It thereby supports more computational 

options than are supported by selection of a privileged estimate h*. Hence, implementation offers 

greater computational flexibility than mere simulation.10 

 

  §6. Methodological implications of realism 

 The debate between realism and instrumentalism has major methodological implications 

for computational neuroscience. From the realist perspective, we should expect to find neural 

realizers for the credal states posited by empirically successful Bayesian perceptual models. We 

should take Figure 5 as a guide to underlying neural activity. From the instrumentalist 

perspective, there is no reason to take Figure 5 as a guide. There is no reason to expect that we 

will find neural realizers for priors or the approximate posterior. 

 Figures 11-15 decline to extend the realist viewpoint towards the prior probability, the 

prior likelihood, or the approximate posterior. Importantly, though, only Figure 11 embodies 

                                                 
10 In the machine learning literature, it is standard to distinguish between generative versus discriminative models 

(Murphy, 2012, pp. 270-279). Basically, a generative model uses the prior p(h) and the prior likelihood p(e | h) to 

compute the posterior p(h | e), while a discriminative model computes the posterior or some function of the posterior 

but does not encode the priors. Generative models correspond to Figure 5. Discriminative models correspond either 

to Figure 11 or to Figure 15, depending on whether the model merely maps e to a function of p(h | e) or whether the 

model computes p(h | e) itself. Increased computational flexibility is widely recognized as an advantage offered by 

generative models over discriminative models (Murphy, 2012, p. 271). 
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total rejection of realism. Each other figure extends the realist viewpoint towards either the prior 

probability, the prior likelihood, or the approximate posterior. So each other figure embodies 

what one might call local realism regarding specific elements of Bayesian models (e.g. realism 

regarding the prior probability but not the prior likelihood or the approximate posterior). Local 

realism conflicts with instrumentalism, which declines to extend the realist viewpoint towards 

any credal states posited by Bayesian models.11 

 My analysis hinges upon neural realization of credal states, yet I have not said what 

makes it the case that a neural variable realizes a credal state. To illustrate, assume for the sake 

of argument that spike count profile realizes the prior according to decoder (16). Why that 

particular decoder rather than some other decoder or no decoder at all? Lacking concrete answers 

to such questions, some readers may feel that I have not identified any substantive difference 

between implementing versus merely simulating approximate Bayesian inference. It might seem 

that one can always read the causal structure from Figure 5 into a physical system that emulates 

approximate Bayesian inference. One need merely isolate variables U, V, and W that mediate in 

the appropriate way between e and h*. One can then interpret those variables using whatever 

                                                 
11 Sohn and Narain (2021) distinguish two perspectives on neural implementation of Bayesian inference: the 

modular perspective and the transform perspective. According to the modular perspective, “probabilistic 

computations are carried out using independent representations of likelihood, prior, and posterior distributions, 

followed by the generation of an estimate” (p. 123). They cite (Ma et al., 2006) as an exemplar of the modular 

perspective. According to the transform perspective, “uncertain sensory measurements can be directly mapped into 

Bayesian estimates via latent processes within which prior distributions are embedded. This process does not 

mandate encoding of probabilistic distributions on each trial” (pp. 122-123). The transform perspective does not 

require encoding of priors or prior likelihoods, nor does it require computation of the posterior. It only requires that 

the system emulate Bayesian estimation. Thus, it encompasses Figure 11-15. Sohn and Narain (p. 124) also cite the 

(Ganguli and Simoncelli, 2014) model as an example of the transform perspective rather than the modular 

perspective. In that model, the prior and the likelihood functions are not independently encoded: the density d(x) 

warps the tuning curves fi(x) and thereby influences the prior likelihood (14); so a change in the prior will generally 

induce a change in the likelihoods. I believe that the contrast between the modular and transform perspectives, while 

useful for some purposes, blurs vital distinctions. There is a significant difference between the (Ganguli and 

Simoncelli, 2014) model and a neural network with the causal structure of Figure 11: the former uses an implicitly 

encoded prior and prior likelihood to compute the posterior; the latter does not. Even though the (Ganguli and 

Simoncelli, 2014) model does not encode the prior and the prior likelihood independently, it seems closer in many 

important respects to the (Ma et al., 2006) model than to a neural network that merely emulates Bayesian estimation. 
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decoders , , and  one pleases, thereby depicting the system as conforming to Figure 5. 

Apparently, the contrast I have drawn between realism and instrumentalism evaporates.12 

 I find this line of thought misplaced for several reasons. First, it is hardly obvious that we 

can find suitable neural variables U, V, and W that mediate between e and h*. We should allow 

only variables that a neuroscientist would take seriously --- e.g., spike count, firing rate, synaptic 

weight, etc. We should disallow disjunctive or gerrymandered variables. This restriction severely 

limits our ability to read the causal structure from Figure 5 into a physical system. Second, one 

cannot simply interpret a neural variable using whatever decoder one pleases. Whether a neural 

state realizes a credal state is not a matter of interpretation. Either the neural state realizes the 

credal state or it does not. Admittedly, I have not given necessary and sufficient conditions for 

realizing a credal state. But this does not mean that anything goes. As mentioned in §3, a neural 

state can realize a prior over a distal variable only if the neural state bears appropriate causal 

connections to the distal variable. Quite plausibly, the neural state must also figure or potentially 

figure in some characteristic Bayesian computations, such as computation of expected value or 

of an approximate posterior. More generally, a neural state realizes a credal state only if the 

neural state is appropriately related to the distal environment and to other neural states. Given 

these restrictions on variables and decoders, it is not so easy to read Figure 5 into any arbitrary 

system that emulates approximate Bayesian estimation. For example, there is no evident way to 

impose Figure 5 upon a system that emulates Bayesian estimation using a look-up table. To take 

a more realistic example, there is no evident way to depict the (Rao and Ballard, 1999) predictive 

coding model as including a neural realizer for the approximate posterior. 

                                                 

12 This worry is closely connected triviality arguments regarding computational implementation, propounded by 

Putnam (1988) and Searle (1990). For critical discussion of triviality arguments, see (Rescorla, 2013; 2014a). 
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 Obviously, we would like to clarify physical realization of credal states. The key point for 

present purposes is that, even lacking the desired clarification, realism entrains fundamentally 

different methodological commitments than instrumentalism. If we adopt a realist viewpoint 

towards a credal state, then we should seek a neural realizer for the credal state. If we extend the 

realist viewpoint towards the prior probability, the prior likelihood, and the posterior, then we 

should seek neural realizers for all three credal states. Instrumentalists see no need to seek neural 

realizers for any credal states. In practice, then, realists and instrumentalists will tend to pursue 

very different models of neural computation. 

 Should we adopt a realist viewpoint towards the credal states posited within Bayesian 

perceptual psychology? In my opinion, there is strong evidence that perceptual computation 

exhibits the flexibility characteristic of Figure 5: 

• Change in the prior probability. To illustrate, consider a well-known perceptual 

illusion: when a moving line is viewed at low contrast, its perceived direction of 

motion is biased towards the perpendicular. The (Weiss, Simoncelli, and Adelson, 

2002) motion estimation model explains this illusion through the “slow motion” 

prior: the illusory perpendicular velocity is slower than the true velocity. 

Sotiropoulos, Seitz, and Seriès (2011) exposed subjects to fast moving parallel lines. 

After exposure, subjects tended to perceive the lines as moving obliquely rather than 

perpendicularly, corresponding to a faster speed. The change in motion perception is 

well-explained by a shift in the “slow motion” prior to favor faster speeds.13 

• Change in the prior likelihood. In many cases, sensory adaptation is well-explained 

by a change in the prior likelihood. Consider the ventriloquism illusion: if there is a 

                                                 
13 Another example of flexibility: new priors can transfer from one perceptual task to another (Adams, Graf and 

Ernst, 2001; Maloney and Mamassian, 2009). See (Rescorla, 2020b) for discussion in support of realism. 
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conflict between visual and auditory cues to stimulus location, the visual system 

heavily favors the visual cue when forming a unified location estimate. The 

ventriloquism illusion can be explained in Bayesian terms, as an inference based on 

the visual cue and the auditory cue (Alais and Burr, 2004). Repeated exposure to the 

ventriloquism illusion induces the ventriloquism aftereffect, in which location 

estimates based solely on the auditory cue are systematically altered. Sato, 

Toyoizumi, and Aihara (2007) show that the ventriloquism aftereffect is well-

explained by a shift in the prior likelihood relating location estimates to auditory cues. 

Intuitively: sustained exposure to ventriloquism changes the auditory stimulation that 

the perceptual system expects from a given stimulus location. 

• Computations that exploit the (approximate) posterior. There is strong evidence that 

the perceptual system can sometimes execute computations exploiting the 

approximate posterior (Koblinger, Fiser, and Lengyel, 2021). A good example is the 

object-tracking model given by Kwon, Tadin, and Knill (2015). The model posits 

sequential Bayesian estimation of position and velocity in response to sequential 

sensory input. At each stage, the Bayesian estimator executes a new probabilistic 

inference, taking the posterior from the previous stage as the new prior. The model 

explains a range of motion illusions that otherwise resist unified explanation. 

These are just some representative examples. Overall, the scientific literature offers strong 

psychophysical evidence for flexible perceptual computations that fit better with a realist 

approach to credal states than with an instrumentalist approach (Rescorla, 2020b). 

 Instrumentalists may hope to explain the psychophysical evidence through alternative 

anti-realist explanations. In that spirit, Block (2018) suggests that one might explain apparent 
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changes in the prior probability through a model that simulates Bayesian estimation and also 

simulates a changing prior caused by changing environmental conditions. However, it is not 

enough merely to suggest that some possible theory might explain the change in direction 

perception documented by Sotiropoulos, Seitz, and Seriès (2011). One must propose an actual 

theory that explains the observed phenomena without positing a changed prior. One must then 

compare the proposed theory with the realist alternative. So far, this has not happened. 

Instrumentalists have not proposed alternative explanations that abjure credal states and 

transitions, let alone argued that such explanations can equal or surpass explanations that posit 

credal states and transitions. 

I think that we currently have good reason to favor realism over instrumentalism. We 

have good reason to take Figure 5 as a guide to neural activity. As I have documented, lots of 

research within computational neuroscience pursues precisely that realist agenda. The agenda has 

proved fruitful, with several recent studies supplying suggestive neurophysiological evidence for 

neural realization of credal states (Berkes et al., 2011; Sohn and Narain, 2021; Walker et al., 

2020). Future scientific developments will reveal whether the realist agenda yields well-

confirmed models of the brain. 
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Figure 1. An example of a pdf p(x). The area under the curve between points a and b is the 

probability assigned to the interval [a, b]. 

 

 
 

 

Figure 2. Gaussian pdf with mean  and variance 2.  
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Figure 3. The top left panel is the likelihood function defined by equation (2) for fixed y. The 

top right panel is the pdf defined by equation (1). The bottom panel is the posterior determined 

by equation (3). 
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Figure 4. Causal structure of approximate Bayesian inference. Arrows represent the direction of 

causal influence. 

 

 

  
 

Figure 5. Schematic form for a neural implementation theory. Single arrows represent the 

direction of causal influence. Double arrows represent decoders, which map neural states to 

credal states. 
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Figure 6. A collection of Gaussian tuning curves. The horizontal axis contains possible values of 

a one-dimensional continuous stimulus. Each tuning curve depicts the average response of the 

corresponding neuron to possible stimulus values. fi(x) is the average firing rate elicited by 

stimulus x in neuron i. The tuning curve fi(x) with preferred stimulus value xi is thickened. Firing 

rate is typically measured in spikes per second. Shapes and maximum values for  fi(x) vary with 

the neural population.  
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Figure 7. Firing activity in a hypothetical neural population on a given occasion. The horizontal 

axis groups neurons according to preferred stimulus value. The vertical axis gives the firing rate 

for each neuron. 
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Figure 8. Activity in N1 (encoding the likelihood function), N2 (encoding the prior probability), 

and N3 (encoding the posterior). In N3, each neuron’s firing rate is obtained by multiplying the 

firing rates of the corresponding neurons in N1 and N2. The vertical axis for N3 has been rescaled 

for greater legibility. Note the similarity with Figure 3. 
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Figure 9. Activity in hypothetical neural populations N1, N2, and N3. In N3, each neuron’s spike 

count is obtained by adding the spike counts of the corresponding neurons in N1 and N2. The 

spike count profile r over N1 encodes an unnormalized Gaussian likelihood with mean y and 

variance 2 given by (15). The spike count profile s over N2 encodes a Gaussian prior with mean 

µ and variance 2 given by (16). The spike count profile t over N3 encodes a Gaussian posterior 

with mean  and variance 2 given by (18). Note that the mapping from r to the unnormalized 

Gaussian is not a decoder Ψ in the sense of (7), because it carries the spike count profile to a 

likelihood function rather than a prior likelihood. 
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Figure 10. The bottom left panel depicts a collection of tuning curves fi warped by a density 

function d(x) via equation (19). The pdf p(x) determined by decoder (20) is depicted in the top 

left panel. The bottom right panel depicts a collection of tuning curves warped by a different 

density function. The top right panel depicts the encoded pdf. 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 11. Causal structure of a neural network that does not encode priors or a posterior. 
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Figure 12. Causal structure of a neural network that encodes a prior likelihood and an 

approximate posterior but not a prior probability. 

 

 

 

 

 
 

 

 

 

 

Figure 13. Causal structure of a neural network that encodes a prior probability and an 

approximate posterior but not a prior likelihood. 
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Figure 14. Causal structure of a neural network that encodes a prior probability and a prior 

likelihood but not an approximate posterior. 

 

 

 

 
 

 

Figure 15. Causal structure of a neural network that encodes an approximate posterior but not a 

prior probability or a prior likelihood. 

 

 

 

 

 


