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Abstract: When P(E) > 0, conditional probabilities P(H | E) are given by the ratio formula. An 

agent engages in ratio conditionalization when she updates her credences using conditional 

probabilities dictated by the ratio formula. Ratio conditionalization cannot eradicate certainties, 

including certainties gained through prior exercises of ratio conditionalization. An agent who 

updates her credences only through ratio conditionalization risks permanent certainty in 

propositions against which she has overwhelming evidence. To avoid this undesirable 

consequence, I argue that we should supplement ratio conditionalization with Kolmogorov 

conditionalization, a strategy for updating credences based on propositions E such that P(E) = 0. 

Kolmogorov conditionalization can eradicate certainties, including certainties gained through 

prior exercises of conditionalization. Adducing general theorems and detailed examples, I show 

that Kolmogorov conditionalization helps us model epistemic defeat across a wide range of 

circumstances. 

 

1 Beyond ratio conditionalization 

 Bayesian decision theory studies an idealized rational agent who assigns subjective 

probabilities, or credences, to propositions. The agent’s credences at each moment conform to 

the probability calculus axioms. The agent conditionalizes on E when she replaces her initial 

credences Pold(H) with new credences Pnew(H) given by 

 Pnew(H) = Pold(H | E), 
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where Pold(H | E) is the initial conditional probability of H given E. If Pold(E) > 0, then Pold(H | E) 

is given by the familiar ratio formula: 
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yielding the following formula for Pnew: 
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When an agent updates her probabilities in accord with (1), I will say that she engages in ratio 

conditionalization. 

 Suppose that an agent is certain of H, in the sense that she sets Pold(H) = 1. If Pold(E) > 0, 

then the ratio formula and the probability calculus axioms entail that Pold(H | E) = 1. It follows 

that ratio conditionalization cannot eliminate certainties. An agent who is certain of H and who 

updates her credences solely through ratio conditionalization will remain forever certain of H. 

A striking illustration arises through the very exercise of ratio conditionalization. The 

ratio formula and the probability calculus axioms entail that Pold(E | E) = 1, so an agent who 

conditionalizes on E must set Pnew(E) = 1. She must also set Pnew(E | F) = 1 for any F such that 

Pnew(F) > 0. Thus, subsequent exercises of ratio conditionalization cannot dislodge her newfound 

certainty in E, no matter what further evidence F she receives. This situation is widely regarded 

as disturbing (Jeffrey, 1983; Levi, 1980; Titelbaum, 2013; Williamson, 2000; Weisberg, 2009b). 

Surely an agent who conditionalizes on E can later receive strong evidence against E! For 

example, a scientist may conditionalize on the proposition that her experiment had a certain 

outcome and later learn that the experiment had a different outcome (e.g. her laboratory assistant 

initially misreported an experimental measurement). An agent who updates her credences only 
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through ratio conditionalization risks permanent certainty in propositions against which she has 

overwhelming evidence. 

 Partly in response to such worries, Jeffrey (1983) develops an alternative framework that 

de-emphasizes conditionalization. Jeffrey contends that empirical propositions rarely if ever 

merit credence 1 and hence that one should rarely if ever update using ratio conditionalization. 

He proposes an update strategy, now usually called Jeffrey conditionalization, that does not 

mandate new certainties. Jeffrey conditionalization applies when an external influence causes an 

agent to reallocate credences across a partition containing countably many mutually exclusive, 

jointly exhaustive propositions E1, E2, …, Ei, …. Jeffrey proposes that, in response to the 

reallocated credences, the agent should form new credences given by: 

(2) ( ) ( | ) ( )new i new iold
i

P H P H E P E= . 

An agent who uses Jeffrey conditionalization rather than ratio conditionalization can update her 

credences without acquiring new certainties. 

 I think that Jeffrey conditionalization is a useful update strategy in some circumstances. 

However, I doubt that it can completely replace ordinary conditionalization. Ordinary 

conditionalization figures crucially within scientific applications of the Bayesian framework. 

Wholesale replacement of ordinary conditionalization by Jeffrey conditionalization would 

require sweeping changes to scientific practice, with major side effects both foreseen and 

unforeseen. It is far from clear that those changes would preserve the explanatory and pragmatic 

achievements of contemporary Bayesian practice (Rescorla, 2022). 

 In any event, I will follow a different path. The basic idea I will pursue is that an agent 

can eradicate certainties by conditionalizing on an E such that Pold(E) = 0. Although Pold(H | E) = 

1 whenever Pold(H) = 1 and Pold(E) > 0, there is no reason to expect that Pold(H | E) = 1 when 
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Pold(H) = 1 and Pold(E) = 0. On the contrary, one would expect that Pold(H | E) < 1 for any H that 

entails E. In principle, then, an agent who conditionalizes on probability zero propositions can 

lose certainties --- including certainties gained through previous exercises of conditionalization. 

Any account along these lines must look beyond the ratio formula to secure the needed 

conditional probabilities. Among the options found in the literature, I favor an approach that 

traces back to Kolmogorov (1933/1956) and that centers upon the notion of a regular conditional 

distribution (rcd). Rcds are central to probability theory. They also underlie countless scientific 

applications, especially within Bayesian statistics. Only recently have their virtues begun to 

receive sustained philosophical attention (Easwaran, 2008, 2011, 2019; Gyenis and Rédei, 2017; 

Huttegger, 2015; Huttegger and Nielsen, 2020; Meehan and Zhang, 2020, 2022; Nielsen 2021; 

Rescorla, 2015b, 2018a, forthcoming). I will use them here to model certainty eradication across 

a range of situations.1 

Section 2 reviews basic aspects of rcds. Section 3 discusses how rcds support a kind of 

conditionalization, which I call Kolmogorov conditionalization. Sections 4-5 explore how 

Kolmogorov conditionalization can eradicate certainties. Section 6 articulates a rational norm, 

Rigidity, that constrains Kolmogorov conditionalization in many cases of epistemic defeat. 

Section 7 articulates a more general norm, Generalized Rigidity, that accommodates additional 

cases. The analysis from Sections 6-7 indicates that rcds coupled with suitable rational norms 

can model numerous defeasible inferences. Section 8 highlights cases of epistemic defeat that my 

approach does not accommodate. Section 9 compares my approach with treatments due to 

Skyrms, Titelbaum, and Williamson. 

                                                 
1 Several previous authors have suggested that one might model epistemic defeat of certainties by allowing 

conditionalization on an E such that Pold(E) = 0 (Pryor, 2013; Weisberg, 2009b).  However, no one appears to have 

developed the suggestion in any detail, and no one has yet drawn the connection with rcds. 
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2 Regular conditional distributions 

 Consider an idealized agent with prior credences modeled by a (, F, P), where  is a 

set, F is a -field over , and P is a probability measure on F.2 Elements of  are outcomes. 

Elements of F, called events, serve as mathematical proxies for propositions. For each AF, we 

construe P(A) as the credence that the agent attaches to A. In a measure-theoretic setting, the 

ratio formula becomes: 

 ( )
( | )

( )

P H E
P H E

P E


= , 

with intersection of events serving as a proxy for conjunction of propositions.  

How should we define P(H | E) when P(E) = 0? There is a pressing need for such 

conditional probabilities, quite independent of the considerations raised in Section 1. Scientific 

applications of Bayesian decision theory frequently require an agent to update her credences 

based upon learning that random variable X has value x. For example, an astronomer might learn 

that an asteroid has a certain velocity and, on that basis, update her credences regarding the time 

that the asteroid will reach Earth. Let 

X = x 

be shorthand for the event {: X() = x}. If X has uncountably many possible values, then 

orthodox probability theory requires that P(X = x) = 0 for all but countably many values x 

(Billingsley, 1995, p. 188). Thus, the ratio formula cannot supply all the conditional probabilities 

P(H | X = x) that we need. 

Kolmogorov (1933/1956) offers a theory of conditional probability that goes far beyond 

the ratio formula. His central insight is that, when P(E) = 0, we should consider E not on its own 

                                                 
2 See (Billingsley, 1995) for an introduction to measure-theoretic probability. 
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but rather as embedded in a larger collection of events (some of which may also have probability 

zero). Formally speaking, Kolmogorov’s theory centers on a subset G  F, where G is itself a -

field. His theory addresses scenarios where the agent gains new certainties over G and on that 

basis reallocates credences over the rest of F. New certainties over G can be acquired through 

perception, testimony, introspection, or any other means. Some of the new certainties may only 

by implicit in the agent’s mental activity. Kolmogorov constructs a systematic framework that 

models credal updates in light of implicit new certainties over G.3 

To understand Kolmogorov’s approach, it helps to formalize the intuitive notion implicit 

new certainties over G. For each , define : G →  by 
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     for each GG. 

Call  a certainty profile over G, and call  an index of . Each certainty profile  models a 

scenario where the agent becomes certain that the true outcome does or does not belong to any 

given GG.4 To illustrate, suppose the agent becomes certain that random variable X has value x. 

Assuming that she represents x through any standard notational scheme for the real numbers, she 

should be willing to affirm or deny that X’s value lies between a and b, for each a, b . Thus, 

she should be willing to assign probability 1 or 0 to each event 

 X -1(a, b)       for any a, b . 

Let (X) be the -field generated by these events, i.e. (X) results from starting with the events X 

-1(a, b) and closing under complementation and countable union. The agent’s new certainties 

                                                 
3 Kolmogorov himself subscribed to a frequentist rather than subjectivist interpretation of probability. Thus, I do not 

claim that he intended to model credal updates in light of new certainties. I claim only that his mathematical 

framework serves this purpose admirably. 
4 A single certainty profile can have many different indices. If outcomes  and  belong to precisely the same 

members of G, then they index the same certainty profile:  = . 
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over the events X -1(a, b) determine a unique certainty profile over (X): namely, the certainty 

profile , where  is any outcome such X() = x. This certainty profile is implicit in the agent’s 

newfound certainty that X has value x. 

 A certainty profile models a situation where the agent gains new certainties. In some 

cases, the agent’s certainty profile  tracks the truth: 

(3) For each GG, (G) = 1 iff the true outcome belongs to G. 

I will call (3) the factivity assumption. Kolmogorov’s framework accommodates scenarios where 

the factivity assumption prevails, and it also accommodates scenarios where the factivity 

assumption fails. In what follows, I will discuss scenarios of both kinds. As argued in (Rescorla, 

2021), there is no principled reason to restrict attention to scenarios where the agent 

conditionalizes on truths. People make mistakes all the time. An agent’s certainties over G may 

be misplaced, i.e. they may violate the factivity assumption. Undoubtedly, though, it is a good 

thing when the factivity assumption prevails. 

How should our agent reallocate credence over the rest of F in light of her newfound 

certainty profile ? To address this question, we will use a function C: F   → . Intuitively, 

C( . , ) encodes probabilities over F conditional on the truth of all those GG such that (G) = 

1. I will notate C(A, ) as C(A | ). When convenient, I will notate C( . | ) as C. Our question 

now becomes what constraints we should place upon C. Since we are using probability measures 

to model credences, we demand that: 

(4) C: F →  is a probability measure   for each . 

Kolmogorov additionally demands that, for each AF, the one-place function C(A | . ):  →  is 

G-measurable: 

(5) C(A | . )-1 (-, a] G     for each a . 
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As explained in (Rescorla, forthcoming), G-measurability formalizes the following intuitive 

thought: the agent’s newfound certainties over G dictate the new credences to be allocated over 

F. Call any function C that satisfies clauses (4) and (5) an update rule for (, F) and G.5 

 Kolmogorov supplements (4) and (5) with an additional constraint upon C. The constraint 

is now usually called the integral formula: 

(6) )()|()( dPωACGAP
G=     for each AF and GG . 

The integral formula generalizes the law of total probability: for any partition E1, E2, …, Ei, … 

such that P(Ei) > 0 for all i, 

(7) ( ) ( | ) ( )i i

i

P A P A E P E= . 

(7) follows from the ratio formula and the probability calculus axioms. Kolmogorov’s approach 

turns the entailment around, treating the law of total probability (generalized to the integral 

formula) not as a theorem but as a definitional constraint upon conditional probabilities. 

A function C: F   →  satisfying clauses (4)-(6) is called a regular conditional 

distribution (rcd) for P given G. One can show that there exists an rcd for P given G in a wide 

variety of cases, including virtually all cases likely to arise in scientific applications.6 I will 

frequently notate an rcd for P given G as PG. 

As a special case, suppose that G is generated by a countable partition E1, …, Ei, …, 

where P(Ei) > 0 for each i. Then there exists a unique rcd for P given G, defined by: 

                                                 
5 Assuming that C satisfies the G-measurability requirement (5), C induces a well-defined mapping from certainty 

profiles to credences: if  = , then C( . | ) = C( . |). See (Rescorla, forthcoming) for the proof, which is 

straightforward. 
6 A probability measure P is perfect iff, for every random variable X:  → , there exists a Borel set B  X() such 

that P(X-1(B)) = 1. If F is countably generated and P is perfect, then there exists an rcd for P given any sub--field G 

(Rao, 1995, pp. 134-135). These conditions are satisfied in virtually all scientific applications of Bayesian decision 

theory. For further discussion of rcd existence, see (Rao, 1995). 
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In this way, Kolmogorov’s theory subsumes the ratio formula. Kolmogorov’s theory also 

supplies conditional probabilities in numerous cases where the ratio formula goes silent. 

Rcds are widely employed within probability theory (Billingsley, 1995; Kallenberg, 

2002). Alternative theories of conditional probability are available (Dubins, 1975; Popper, 1959; 

Rényi, 1955), but they have exerted little impact upon mathematical or scientific practice. The 

main reason is that alternative theories typically impose few quantitative constraints beyond the 

ratio formula on the relation between conditional and unconditional probabilities, so they offer 

little useful guidance for computing conditional probabilities. In contrast, the integral formula 

tightly constrains conditional probabilities in relation to unconditional probabilities. Suppose that 

C and D are both rcds for P given G. Then, for every AF, 

C(A | ) = D(A | ) 

except perhaps for those  belonging to a set of P-measure 0. Alternative theories of conditional 

probability usually do not pin down conditional probabilities with nearly so much determinacy. 

For detailed comparison of rcds with alternative theories, see (Easwaran, 2019).7 

 

3 Kolmogorov conditionalization 

Rcds figure prominently in many scientific applications of Bayesian decision theory, 

including within statistics (Florens, Mouchart, and Rolin, 1990; Ghosal and van der Vaart, 2017; 

Schervish, 1995), economics (Feldman, 1987), and cognitive science (Bennett et al., 1996). 

                                                 
7 As Easwaran (2019) notes, Rényi’s (1955) theory may be regarded as generalizing the rcd formalism. Presumably, 

then, one could reformulate the ideas from the present paper using Rényi’s theory. I am not sure whether the 

reformulation would yield any benefits, but the matter seems worth pursuing. More generally, it would be worth 

investigating the extent which this paper’s ideas could be reformulated using various alternative theories of 

conditional probability. 
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Something like the following picture underlies these applications. At time t0, the agent has 

unconditional credences encoded by a probability space (, F, P). She also has conditional 

credences encoded by C, an rcd for P given G  F. At a later time t1, an exogenous event causes 

the agent to acquire a new certainty profile  over G. Based upon her new certainties over G, she 

adopts new credences C over F. As I will put it, she uses rcd C to conditionalize on . When 

an agent uses an rcd to conditionalize, I will say that she engages in Kolmogorov 

conditionalization.8 

In general, a probability measure P determines conditional probabilities C(A | . ) only up 

to measure 0. Thus, an agent’s unconditional credences do not typically determine unique 

conditional credences C. We must instead take C as an extra primitive element. This is an 

important difference between Kolmogorov conditionalization and ratio conditionalization, since 

the ratio formula uniquely determines conditional probabilities P(H | E) when P(E) > 0. The 

extra primitive element seems a small price to pay for the benefits that it buys. Anyway, all 

theories of conditional probability agree that unconditional probabilities do not uniquely 

determine conditional probabilities once we move beyond the simple case where P(E) > 0. 

Kolmogorov conditionalization is a very general update strategy, but it is not universally 

applicable. There are pathological cases where no rcd exists (Billingsley, 1995, p. 443). Even 

when an rcd exists, it may not support conditionalization. To see why, say that an update rule C 

for (, F) and G is proper at  iff 

(8) If G, then C(G | ) = 1   for all GG. 

                                                 
8 (Rescorla (2018a) proves a Dutch book theorem and converse Dutch book theorem for Kolmogorov 

conditionalization. The theorems show that Kolmogorov conditionalization is the unique credal update strategy that 

avoids a sure loss in certain natural learning scenarios. The theorems assume a factive setting. (Rescorla, 

forthcoming) generalizes the theorems to a non-factive setting. See also (Meehan and Zhang, 2022).  
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If C is improper at , then there exists GG such that 

 C(G | ) < 1 & G, 

which conflicts with the certainty profile’s assignment: 

 (G) = 1. 

When such a conflict arises, the agent cannot use C to extend  to all of F. Unfortunately, there 

are cases where every rcd for P given G is improper at some  (Blackwell and Dubins, 1975). 

Fortunately, impropriety occurs rarely if ever in practice. In actual scientific applications, there 

usually exists an rcd that is proper everywhere.9 The probability spaces considered in this paper 

support rcds that are proper everywhere. For further discussion of impropriety, see (Easwaran, 

2011; Meehan and Zhang, 2022; Rescorla, forthcoming). 

 Let X be a random variable, and let P(X) be an rcd for P given (X). Then P(X) dictates 

how to update credences in light of newfound certainty that X = x. Each possible value x 

corresponds to a distinct certainty profile that the agent might instantiate. When there are 

uncountably many possible values x, the model posits uncountably many possible mental states. 

Some readers may worry that any such model is inapplicable to ordinary humans, since it flouts 

the apparently finitary nature of human representational and discriminative capacities. The model 

may seem applicable only to an idealized superhuman with infinitary cognitive abilities that 

transcend our own.  

                                                 
9 The following theorem gives a sufficient condition for propriety almost everywhere (Seidenfeld, Schervish, and 

Kadane, 2001, p. 1614): If G is countably generated, and PG is an rcd for P given G, then PG is proper at  for P-

almost all . One cannot always remove the exceptional set where propriety fails (Blackwell and Ryll-Nardzewski, 

1963). To articulate a sufficient condition for propriety everywhere (not just almost everywhere), say that a function 

: F → G is a selection homomorphism for G with respect to F iff (a) it respects complementation and countable 

union, and (b) (G) = G for every GG. The following theorem gives a sufficient condition for existence of an 

everywhere proper rcd (Sokal, 1981): If F is countably generated, and P is perfect, and there exists a selection 

homomorphism for G with respect to F, then there exists an rcd for P given G that is proper at every . This 

sufficient condition is satisfied in many cases --- including typical applications of Bayesian decision theory. 
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 In evaluating this objection, it is instructive to consider the Bayesian models offered 

within current cognitive science. Cognitive scientists offer Bayesian models of numerous core 

mental phenomena (Griffiths, Kemp, and Tennenbaum, 2008), including perception, motor 

control, decision-making, language acquisition, navigation, social cognition, and causal 

reasoning. The models have achieved notable explanatory and predictive success, especially as 

applied to perception (Rescorla, 2015a) and motor control (Rescorla, 2016). Typically, the 

models posit uncountably many possible mental states. For example, Bayesian perceptual models 

describe how the perceptual system estimates environmental conditions based on sensory 

stimulations (Knill and Richards, 1996). The models usually posit uncountably many possible 

sensory states (e.g. uncountably many possible retinal states) that serve as possible inputs to 

Bayesian inference. They also posit uncountably many outputs that might result from the 

Bayesian inference (e.g. uncountably many possible estimates of an object’s shape, size, or 

location). Nevertheless, the models generate powerful psychological explanations (Rescorla, 

2018b; 2020). Thus, a Bayesian model may fruitfully apply to ordinary humans even though it 

posits uncountably many mental states. 

 I distinguish two possible reactions to such models. The first reaction accepts at face 

value the postulation of uncountably many mental states. On this reaction, we accept that an 

ordinary human can in principle instantiate uncountably many mental states. The second reaction 

regards the postulation of so many mental states as an infinitary idealization, akin to the 

postulation of an infinitely large biological population within population genetics. On this 

reaction, a Bayesian model that posits uncountably many mental states should eventually be 

replaced by a more psychologically realistic model. 
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 Both reactions merit further exploration. The key point for present purposes is that, on 

either reaction, there is a legitimate role for Bayesian models that posit uncountably many 

mental states. The first reaction holds that such models may be literally true. The second reaction 

holds that they include infinitary idealizations to be banished from a literally true description. 

Either way, the mere fact that a Bayesian model posits uncountably many mental states does not 

bar it from making a useful theoretical contribution. The present paper is offered in that spirit. 

 

4 Certainty eradication 

 Kolmogorov conditionalization offers a crucial advantage over ratio conditionalization: it 

can eradicate certainties. This is the flip-side of the fact that Kolmogorov conditionalization can 

raise probabilities from zero. Here is a simple example (not necessarily involving any kind of 

epistemic defeat). Suppose that P(X = x) = 0 and P(X  x) = 1. If the agent becomes newly 

certain that X = x, then she can use an rcd P(X) to conditionalize on a certainty profile  

corresponding to her newfound certainty, i.e. a certainty profile indexed by an  such that X() 

= x. She can do so as long as her rcd P(X) satisfies the condition: 

P(X)(X = x | ) = 1 & P(X)(X  x | ) = 0. 

By using P(X) to conditionalize, she demotes her former certainty in X  x all the down to 0. In 

general, Kolmogorov conditionalization can raise probabilities from 0 to 1 or anywhere in 

between, and it can lower probabilities from 1 to 0 or anywhere in between. 

 Here is a slightly more elaborate example (still not necessarily involving epistemic 

defeat). Consider the following probability density function p(x, y) over 2: 
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See Figure 1. For any topological space T, let B(T) consist of the Borel subsets of T. By 

integrating p(x, y), we define a probability measure P over ( 2, B( 2)): 

( ) ( , )df

H

P H p x y dxdy=  ,   for any Borel set H  2 . 

Suppose an agent has credences given by P. For any x, we have 

 P(X = x  Y  ½) = 0 

 P(X  x  Y > ½) = P((X = x  Y  ½)c) = 1. 

Let P(X) be an rcd for P given (X). Using standard mathematical techniques (Billingsley, 1995, 

p. 432), one can show that P(X) must satisfy (9) for almost all (x, y) lying in the unit square: 

(9) 

 

1
20,

1
2( )

0,1

( , )

( | , )
( , )

X

p x t dt

P X x Y x y
p x t dt



  =   =



. 

We may choose P(X) so that it satisfies (9) for all (x, y) lying in the unit square. For all other (x, 

y) --- these lie within a set of P-measure 0 --- we may choose P(X)( . | x, y) to be some fixed, 

arbitrary measure. Pick x1 such that 0  x1  ½. Then (9) yields 

(10) 

 

1
20,

1 1
2 2( ) 1 1

0,1

( | , )X

dt

P X x Y x y
dt



  =   = =



, 

for any y lying in the unit interval. See Figure 2. An agent who becomes certain that X = x1 and 

who updates her credences using P(X) will raise her credence in X = x1  Y  ½ from 0 to ½. 

This is the intuitively correct reaction: the agent concentrates all credal mass on the vertical line 
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X = x1 from 0 to 1, where the prior probability density p(x, y) is constant. Since P(X)( . | x1, y) is a 

probability measure, (10) entails 

(11) P(X)(X  x1  Y > ½ | x1, y) = ½. 

Thus, our agent demotes her former certainty in X  x1  Y > ½ from 1 to ½. In contrast, pick x2 

such that ½ < x2  1. Then (9) yields 

(12) 

(
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2

1 1
2 2

3
2 3

0, 4 31
2 4( ) 2 2
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dt
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++



 
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which entails 

(13) P(X)(X  x2  Y > ½ | x2, y) = ¼. 

See Figure 3. An agent who become certain that X = x2 and who updates her credences using 

P(X) will raise her credence in X = x2  Y  ½ from 0 to ¾, and she will lower her credence in X 

 x2  Y > ½ in from 1 to ¼. Again, this makes intuitive sense: the agent now concentrates all 

credal mass on the vertical line X = x2 from 0 to 1, and p(x, y) is weighted three times higher 

along the bottom half of the line. 

 

INSERT FIGURES 1-3 ABOUT HERE 

 

 The foregoing observations prompt us to reflect upon the meaning of “certainty” in 

Bayesian decision theory. “Certainty” may seem to connote immutable confidence that a 

proposition is true. Yet that is not what “certainty” means --- not if we define “certainty” as 

“assignment of credence 1.” As noted in Section 2, the probability calculus axioms entail that 

P(X = x) = 0 for all but countably many values x of a random variable X. When you set P(X  x) 

=1 and P(X = x) = 0, it does not follow that you regard X = x as metaphysically impossible, or 
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that have definitively ruled out X = x, or that no possible evidence could lead you to assign non-

zero credence to X = x. All that follows is that you regard X = x as vanishingly unlikely. The 

probability calculus axioms entail that you must regard X = x as vanishingly unlikely for all but 

countably many values x. Even though your credence in X = x is currently 0, you are prepared to 

raise this credence in light of new evidence. If you do so, you must simultaneously downgrade 

your certainty in X  x. You will typically downgrade many other certainties as well, as 

illustrated by (11) and (13). Kolmogorov conditionalization provides a principled basis for these 

credal transitions. 

 

5 Certainty gained, then lost 

 Since Kolmogorov conditionalization can eradicate certainties, it is much more flexible 

than ratio conditionalization. In what follows, I leverage the increased flexibility to model 

defeasible inference across a range of cases. This section warms up by modeling an example 

where an agent conditionalizes on a proposition and then loses certainty in the proposition. 

Defects in the model will motivate refinements made in Section 6. 

 

False Alarm. At time t0, John awaits his medical test result for a rare disease. At time t1, he 

receives his test result. Upon reading the report, he becomes certain that the test result was 

positive. He conditionalizes on the positive test result, substantially raising his credence that he 

has the disease. At time t2, John re-reads the medical report and realizes that he misinterpreted it. 

In fact, the test result was negative. Intuitively, he should now conditionalize on the negative test 

result and downgrade his credence that he has the disease. But he cannot do so using ratio 

conditionalization because at t1 he assigned zero credence to the negative test result. 
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 Using rcds, we can elaborate False Alarm into a model that includes certainty eradication 

at t2. Assume a suitable outcome space , and let 

Disease = the set of outcomes in which John has the rare disease 

No Disease = the set of outcomes in which John does not have the rare disease 

Positive = the set of outcomes in which the test has a positive result 

Negative = the set of outcomes in which the test has a negative result. 

I assume that the test can only have a positive or negative result, so that Positive and Negative 

are complements. Let F be the -field generated by Disease and Positive. John’s credences at t0 

are given by (, F, P), where P is the unique probability measure over F such that: 

 P(Disease) = .025    P(No Disease) = .975 

 P(Positive | Disease) = .95   P(Positive | No Disease) = .05 

 P(Negative | Disease) = .05   P(Negative | No Disease) = .95 

These credences reflect the base rate for the disease, the frequency of false positives, and the 

frequency of false negatives. By the law of total probability, 

 P(Positive) = P(Positive | Disease)P(Disease) + P(Positive | No Disease)P(No Disease) 

 = .95  .025 + .05  .975 = .0725, 

so that P(Negative) = .9275. By Bayes’s theorem, 

 19
58

( ) ( | ) .025 .95
( | )

( ) .0725

P Disease P Positive Disease
P Disease Positive

P Positive


= = =  

1
742

( ) ( | ) .025 .05
( | )

( ) .9275

P Disease P Negative Disease
P Disease Negative

P Negative


= = = . 

At t1, John conditionalizes on Positive, acquiring new credences 

1t
P (Positive) = 1 
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1t
P (Negative) = 0 

1t
P (Disease) = 19

58 . 

So far, so standard. 

Now comes the less standard part. To model John’s credal transition at t2, let G be the 

sub--field 

 {0, Positive, Negative, }. 

John’s realization that the test was negative corresponds to a certainty profile , where  is any 

outcome belonging to Negative. We model John’s conditional credences at t1 by stipulating 

19
58

1
742

( | )
if Positive

Disease
if Negative


 




= 


 

 
1

( | )
0

if Positive
Positive

if Negative


 




= 


 

These stipulations extend to a unique function : F   →  such that  is a probability 

measure for each . It is easy to check that  is an rcd for 
1t

P  given G. Specifically, the 

integral formula is trivially satisfied. At t2, John uses  to conditionalize on , where  is any 

outcome belonging to Negative. Thus, he acquires new credences 

2t
P (Positive) = 0 

2t
P (Negative) = 1 

2t
P (Disease) = 1

742 . 

He downgrades his certainty in Positive all the way down to 0 and downgrades his credence in 

Disease from 19
58  to 1

742 . 
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 Our model illustrates the increased flexibility afforded by Kolmogorov 

conditionalization. Over the course of John’s credal evolution, his credence in Positive goes from 

.0725 to 1 to 0, and his credence in Disease changes as dictated by his conditional credences. 

The postulated credal transitions look quite reasonable, given John’s initial credences. 

Nevertheless, there is something disturbingly trivial about the model. I stipulated that 

(Disease | ) = 1
742  if Negative, but I could have stipulated (Disease | ) = .5, or .9999, or  

even 1. Each alternative stipulation would also yield an rcd for 
1t

P  given G. Thus, John’s 

unconditional credences at t1 leave his conditional credences at t1 completely undetermined. Any 

alternative update rule * would satisfy the integral formula just as well as . Such extreme 

flexibility is undesirable. Ideally, a final theory of rational inference will pin down more 

determinately how credences evolve over time. 

 Our model of False Alarm shows that Kolmogorov conditionalization can, in principle, 

support acquisition and loss of certainties. But the model taken on its own is unsatisfying 

because it hinges upon arbitrary stipulation of an rcd . We must try to do better. 

 

6 Rigidity 

 I now advance a rational norm, inspired by Jeffrey (1983), that tightly constrains credal 

evolution. I call the norm Rigidity. Section 6.1 introduces Rigidity. Section 6.2 discusses how 

Rigidity yields an improved treatment of False Alarm and similar examples. 

 

6.1 Minimal change in conditional probabilities 

 Consider again the situation emphasized by Jeffrey: an external influence causes an agent 

to reallocate credences across a partition E = {Ei}, and on that basis the agent must assign 
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credences to all remaining propositions. Why should we accept Jeffrey’s recommended credal 

update strategy (2)? Beginning with Jeffrey (1983), and continuing through the later literature 

(e.g. Earman 1992, pp. 34-35; Joyce, 2009, pp. 35-35; Weisberg, 2009b), philosophers often 

motivate (2) by citing the invariance condition 

(14) Pold(H | Ei) = Pnew(H | Ei)  for all H and all Ei such that Pnew(Ei) > 0. 

(2) follows from (14) together with the law of total probability (7). 

 The rationale underlying (14) is that, when all credal change stems from reallocation 

across a partition, probabilities conditional on partition propositions should remain fixed. 

Intuitively: reallocating probabilities across a partition tells you nothing new about how 

probability mass should be distributed inside any member of the partition. Credal reallocation 

over the partition provides no rational basis for changing your credences conditional on a given 

partition proposition. As Joyce (2009, p. 36) notes, this rationale reflects “a kind of minimal 

change ‘ethos’ which prohibits the posterior from introducing distinctions in probability among 

hypotheses that are not already inherent in the prior or explicitly mandated by new evidence.” 

(14) enforces the minimal change ethos by holding conditional probabilities as fixed as possible, 

given that probabilities assigned to partition propositions have changed. 

 The rationale for (14) has a causal dimension: we assume that an external event triggers 

the transition from Pold to Pnew by instilling new credences across a partition E. Different authors 

express this causal assumption in different ways. Earman (1992, p. 34) says that credal changes 

are “generated” by new credences across the partition. Joyce (2009, pp. 35-36) posits an event 

whose “only immediate effect” is to fix new credences for partition propositions. In (Rescorla, 

2021), I said that the new credal assignment over the partition “mediates” the transition from Pold 

to Pnew. The core idea behind these varying formulations is that an event alters the agent’s 
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credences entirely by way of altering her credences over E. Intuitively: we restrict attention to 

situations where all credal change stems from the new credal assignment over E. Virtually all 

discussions of Jeffrey Conditionalization assume a restriction along these lines, although the 

restriction often figures only implicitly. 

 An important task for formal epistemology is to analyze more systematically the assumed 

restriction on causal structure. In (Rescorla, 2021), I offered one possible analysis. But I will not 

assume that analysis, or any other analysis. Even lacking a detailed analysis, the basic idea seems 

clear enough for present purposes. 

 It will prove helpful to articulate a more precise statement of the diachronic credal norm 

corresponding to (14). In (Rescorla, 2021), I formulated the norm as imposing the following 

requirement: 

(15) If an agent begins with credences Pold, and E = {Ei} is a countable set of mutually 

exclusive, jointly exhaustive propositions such that Pold(Ei) > 0 for each i, and she 

subsequently adopts new credences Pnew such that 1)( =
i

inew EP , and the new credal 

assignment over E mediates the transition from Pold to Pnew, then Pold( . | Ei) = Pnew( . | Ei) 

for all i such that Pnew(Ei) > 0, 

where the clause “the new credal assignment over E mediates the transition from Pold to Pnew” 

reflects a causal assumption that credences change solely due to the new credal assignment over 

E. For present purposes, one could equally well express the causal assumption through the 

language used by Earman (“generated”) or Joyce (“only immediate effect”). 

 The antecedent of (15) confines attention to situations where Pold(Ei) > 0 for each i, and 

the consequent addresses only those Ei such that Pnew(Ei) > 0. These restrictions ensure that 

conditional probabilities, as specified by the ratio formula, are well-defined. However, I see no 
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reason to impose the restrictions once we have in hand conditional probabilities beyond those 

given by the ratio formula. The intuitive rationale supplied by Joyce’s minimal change ethos 

applies just as well to cases where Pold(Ei) = 0 or Pnew(Ei) = 0. 

 Indeed, the rationale applies just as well to numerous cases that do not feature a countable 

partition E. Consider an agent with credences modeled by a probability space (, F, P), and let G 

 F be a sub--field. G may or may not be generated by a countable partition. Suppose that the 

agent has conditional credences over F given G, modeled by update rule C. Suppose that there 

occurs an exogenous shift in credal mass across G, inducing further credal changes across F. 

Following Meehan and Zhang (2020), I propose that the agent’s conditional credences C should 

remain fixed. More carefully, credal transitions should satisfy the following requirement: 

RIGIDITY: If an agent begins with unconditional credences Pold over F and conditional 

credences Cold over F given G, and she subsequently adopts new credences Pnew over F 

and new conditional credences Cnew over F given G, and the new credal assignment over G 

mediates the transition from Pold and Cold to Pnew and Cnew, then Cold = Cnew, 

where the clause “the new credal assignment over G mediates the transition from Pold and Cold to 

Pnew and Cnew” reflects a causal assumption that the agent’s conditional and unconditional 

credences change solely due to the new credal assignment over G. Again, we could equally well 

substitute other locutions that express the same causal assumption. Like (15), Rigidity is a 

minimal change principle. It leaves conditional probabilities as fixed as possible, given that 

credences over G have changed. Intuitively: credal reallocation across a sub--field provides no 

rational basis for changes in credence conditional on the sub--field. 

 It would be good to explore more fully the basis for Rigidity. In this paper, I focus on 

applying Rigidity. Actually, I will apply a fairly weak consequence of Rigidity: 
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WEAK RIGIDITY: If an agent begins with credences Pold over F and conditional 

credences Cold over F given G, and she subsequently adopts new credences Pnew over F 

and new conditional credences Cnew over F given G, and Pnew | G =  for some , and the 

new credal assignment over G mediates the transition from Pold and Cold to Pnew and Cnew, 

then Cold = Cnew, 

where Pnew | G is the restriction of Pnew to G. Weak Rigidity confines attention to cases where the 

new credal assignment over G is a certainty profile. For discussion of cases where the new credal 

assignment over G is not a certainty profile, see (Meehan and Zhang, 2020). 

 

6.2 Credal evolution conforming to Rigidity 

 I propose the following picture of credal evolution. At t0, an agent has unconditional 

credences modeled by a probability space (, F, P) and conditional credences modeled by C, an 

rcd for P given G. At t1, an exogenous change instills certainty profile  over G. Assume that C 

is proper at . Then the agent can use C to conditionalize on , adopting C as her new credal 

allocation over F. Her unconditional credences at t1 are modeled by (, F, C). Complying with 

Rigidity, she retains her conditional credences C. See Figure 4. 

 

INSERT FIGURE 4 ABOUT HERE 

 

Theorem: Let (, F, P) be a probability space, let G  F be a sub--field, and let C be an rcd for 

P given G. Suppose that C is proper at . Then C is an rcd for C given G. 
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Proof: The only non-trivial clause is the integral formula, with C serving as the unconditional 

probability measure: we must show that 

(16) ( ) ( | ) ( )
G

C A G C A dC   =   

for every AF and GG. Fix AF and GG. Define 

 H =df {v: C(A | ) = C(A | v)}. 

C(A | . ):  →  is G-measurable, and H is the inverse image of {C(A, )} under C(A | . ), so 

HG. Since H, it follows from (8) that 

 C(H) = 1 & C(Hc) = 0. 

We now calculate: 

 ( | ) ( ) = ( | ) ( ) + ( | ) ( )
cG G H G H

C A dC C A dC C A dC       
     

 = ( | ) ( ) + 0 ( ) ( ) ( ) ( )
G H G H

C A dC C A dC C A C G H      
 

= =    

Either G or G. If G, then (8) entails  

 C(G) = 1, 

so that 

 ( ) ( ) ( ) ( )C A C G H C A C A G    = =  , 

which confirms (16). If G, then (8) entails 

 C(G) = 0, 

so that 

 ( ) ( ) 0 ( )C A C G H C A G   = =   

which also confirms (16). We have therefore shown that C is an rcd for C given G.   
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Consider again the agent depicted in Figure 4: she begins with unconditional credences 

(, F, P) and conditional credences modeled by C, then transitions based on certainty profile  

to new unconditional credences C while holding fixed her conditional credences C. We have 

assumed that C is proper at . (Otherwise, the agent cannot use C to conditionalize on  in the 

first place.) Our theorem entails that C is also an rcd for the agent’s new unconditional credal 

allocation C. The agent may therefore continue to use C to conditionalize. If a new exogenous 

change instills a new certainty profile  at t2, then she can use C to conditionalize on the new 

certainty profile , so long as C is proper at . See Figure 5. 

 

INSERT FIGURE 5 ABOUT HERE 

 

Figure 5 is quite general. It applies to a wide range of situations in which an agent gains a 

certainty profile  over a sub--field and then gains a different certainty profile  over the 

same sub--field. I do not say Figure 5 applies to all such situations. If an rcd does not exist, or 

if every rcd is improper at  or , then Figure 5 does not apply. However, such situations arise 

rarely if ever in scientific applications. 

 To illustrate the virtues of Figure 5, let us revisit False Alarm. We saw in Section 5 that 

John can use  at t2 to conditionalize on his newfound certainty in Negative. The worry raised in 

Section 4.2 was that  seemed arbitrary. Why should John update his credences using  rather 

than another rcd *? Rigidity enables a principled answer. The key point here is that  encodes 

conditional probabilities that John has at t0. The conditional probabilities follow from our choice 

of P and from the ratio formula. When John conditionalizes on Positive at t1, Rigidity mandates 

that he leave those conditional probabilities fixed. John’s fixed conditional probabilities, codified 
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by , serve as a basis for conditionalization when at t2 he becomes certain of Negative. Hence, 

Rigidity rationalizes the choice of  rather than any alternative rcd *. Given John’s 

unconditional credences at t0,  is the unique rcd that conforms to Rigidity. See Figure 6. 

 

INSERT FIGURE 6 ABOUT HERE 

 

 Our revised analysis of False Alarm illustrates the benefits that Rigidity offers to 

Kolmogorov conditionalizers. By constraining conditional credence, Rigidity guides the course 

of iterated Bayesian inference. Here is another example along the same lines: 

 

Mismeasurement. Jane is a scientist with credences P at time t0. X is a random variable that 

reflects the outcome of an experiment. At t1, Jane becomes certain that X = x1 and updates her 

other credences on that basis. At t2, she realizes that her certainty in X = x1 was misplaced: she 

misread a measuring instrument, or the measuring instrument was poorly calibrated, or she was 

deceived by her assistant, etc. Jane becomes newly certain that X = x2. How should she proceed? 

 

 Using Rigidity, we can elaborate Mismeasurement so as to include a principled credal 

update at t2. Stipulate that Jane has conditional credences at t0 given by P(X), an rcd for P given 

(X). At t1, she becomes certain that X = x1 and on that basis acquires new credences P(X)( . | 

1), where 1 is any outcome such that X(1) = x1. Complying with Rigidity, she carries her 

conditional credences P(X) forward from t0 to t1. At t2, she becomes certain that X = x2 and on 

that basis acquires new credences P(X)( . | 2), where 2 is any outcome such that X(2) = x2. 

Given Rigidity, her conditional credences at t0 uniquely determine how she should update her 
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credences upon becoming certain at t1 that X = x1 and also how she should update her credences 

upon becoming certain at t2 that X = x2. See Figure 7. Jane can implement Figure 7 as long as 

P(X) is proper at 1 and 2. 

 

INSERT FIGURE 7 ABOUT HERE 

 

 More specifically, suppose that at t0 Jane has the probability density p(x, y) given by 

Figure 1. This is not a useful density for real-world applications, but it suffices for heuristic 

purposes. At t1, Jane becomes certain that X = x1, where 0  x1  ½. She forms new credences 

P(X)( . | x1, y), where y is any real number lying in the unit interval. In particular, she forms the 

credences given by (10) and (11). At t2, she becomes certain that X = x2, where ½ < x2  1. She 

forms new credences P(X)( . | x2, y), including the credences given by (12) and (13). Over the 

course of her credal evolution, her credence in X  x1  Y > ½ goes from 1 to ½ to ¾. 

 False Alarm and Mismeasurement illustrate how Rigidity can steer Kolmogorov 

conditionalizers through rational acquisition and loss of certainties. In each example, the agent’s 

initial doxastic state dictates how she should reallocate credence when she becomes certain of a 

conditioning proposition and also when she later becomes certain of a conflicting proposition. 

Of course, we must assume initial conditional and unconditional credences to derive a 

determinate credal reallocation policy. But this is no problem for my approach, because all 

Bayesian theorizing assumes that the agent has certain initial credences. One must always 

assume some credal starting point. As noted in Section 2, the assumed credal starting point will 

usually include primitive conditional credences over and above the agent’s unconditional 

credences once we move beyond simple cases where the ratio formula prevails. The essence of 
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the Bayesian framework is to place rational constraints on credal evolution given the agent’s 

initial conditional and unconditional credences. That is precisely what Rigidity accomplishes. 

 Figure 5 lends itself to iteration. Consider an agent who transitions from certainty profile 

1
 to certainty profile 

2
  to certainty profile 

3
 , and so on, all over a fixed sub--field G. So 

long as C is proper at each index 1, 2, 3, …, n, … the agent can carry C forward at each 

stage, using it as her fixed update rule. At each stage, the agent downgrades certainties acquired 

at the previous stage. See Figure 8. 

 

INSERT FIGURE 8 ABOUT HERE 

 

7 Generalized Rigidity 

 Rigidity applies to situations where credences shift over a single fixed conditioning sub-

-field G. In many applications, though, there is not a single fixed conditioning sub--field. 

Instead, the agent accumulates new evidence over a non-decreasing sequence of sub--fields: 

G1  G2  G3 …  Gn  … 

For example, an agent might progressively learn the values of random variables X1, X2, …, Xn, 

…, a situation we can model using the sub--fields: 

(X1)  (X1, X2)  (X1, X2, X3)  …  (X1, X2, …, Xn)  … 

I will now generalize Rigidity so as to accommodate sequential evidence accumulation. 

 

7.1 Minimal change revisited 

 Consider an agent who begins with unconditional credences modeled by a probability 

space (, F, P). Fix G1 and G2 such that G1  G2  F. Suppose that the agent has conditional 
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credences over F given G2, modeled by an update rule C: F   → . Suppose that there is an 

exogenous shift in credences across G1, inducing additional credal changes over the rest of F. I 

submit that this shift should leave fixed the agent’s credences conditional on G2. More precisely, 

I propose the following requirement on credal evolution: 

GENERALIZED RIGIDITY: If an agent begins with credences Pold over F and 

conditional credences Cold over F given G2, and she subsequently adopts new credences 

Pnew over F and new conditional credences Cnew over F given G2, and G1  G2, and the new 

credal assignment over G1 mediates the transition from Pold and Cold to Pnew and Cnew, then 

Cold = Cnew, 

where the clause “the new credal assignment over G1 mediates the transition from Pold and Cold to 

Pnew and Cnew” registers that the agent’s credences change solely due to the new credal 

assignment over G1. Generalized Rigidity demands that, in such situations, credences conditional 

on G2 remain constant. Note that Generalized Rigidity entails Rigidity. Like Rigidity, 

Generalized Rigidity is a minimal change principle. Intuitively: credal reallocation across a sub-

-field provides no basis for changing credences conditional on a larger sub--field.  

 To illustrate, consider a partition E = {Ei} and a finer-grained partition D = {Eij}, where 

i ij

j

E E= . Suppose that the agent at time t1 gains new credences over E and that these new 

credences cause her to reallocate credences over all remaining propositions. Intuitively, the 

agent’s new credal allocation over E should not lead her to change her probabilities conditional 

on members of D. Reallocating credence over the Ei should not affect how credence is allocated 

within each Ei, so it should not change how credence is allocated within each Eij. Indeed, one can 

easily show that Jeffrey conditionalization in response to new credences over E leaves fixed all 
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conditional probabilities P(H | Eij). Let G1 = (E), the -field generated by E, and let G2 = (D), 

the -field generated by D. Note that G1  G2. If the agent updates using Jeffrey 

Conditionalization, she will conform to Generalized Rigidity as applied to G1 and G2. 

 As with the original version of Rigidity, I focus exclusively on a weak consequence of 

Generalized Rigidity: 

WEAK GENERALIZED RIGIDITY: If an agent begins with credences Pold over F 

and conditional credences Cold over F given G2, and she subsequently adopts new 

credences Pnew over F and new conditional credences Cnew over F given G2, and G1  G2, 

and Pnew | G1 =  for some , and the new credal assignment over G1 mediates the 

transition from Pold and Cold to Pnew and Cnew, then Cold = Cnew. 

Weak Generalized Rigidity entails Weak Rigidity. I will use Weak Generalized Rigidity to 

model cases of defeasible inference that cannot be modeled using Weak Rigidity. 

 

7.2 Credal evolution conforming to Generalized Rigidity 

  I propose the following picture of credal evolution. At t0, an agent has unconditional 

credences modeled by a probability space (, F, P). She also has conditional credences modeled 

by 
1

P
G , a proper rcd for P given G1, and 

2
P
G , a proper rcd for P given G2, where G1  G2. 

Moreover, for each , 
2

P
G is an rcd for 

1
(. | )P 

G  given G2. At t1, an exogenous change instills 

certainty profile 
1

 over G1. In response, the agent uses 
1

P
G to conditionalize on 

1
 , adopting 

1 1(. | )P 
G  as her new credal allocation over F . The agent retains the same fixed conditional 

credences 
1

P
G  and 

2
P
G , as mandated by Generalized Rigidity. At t2, an exogenous change instills 

certainty profile 
2

  over G2. In response, the agent uses 
2

P
G  to conditionalize on 

2
 , adopting 
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2 2(. | )P 
G  as her new credal allocation over F. Her credences conditional on G2 are still given by 

2
P
G , as Generalized Rigidity mandates. See Figure 9. 

 

INSERT FIGURE 9 ABOUT HERE 

 

Note that, at t2, Generalized Rigidity does not require the agent’s credences conditional 

on G1 to be given by 
1

P
G . This is as it should be. To see why, fix events E and F such that P(E  

F) > 0. If the agent ratio conditionalizes on E  F, then she will not usually retain her initial 

conditional probabilities P(H | E). She is now certain of E, so her new credence in H conditional 

on E is simply her new unconditional credence in H: 

Pnew(H | E) = Pnew(H) = P(H | E  F), 

which may differ from P(H | E). Intuitively: newfound certainty in F may alter credences 

conditional on E. Restating the point using the rcd formalism, let G1 be the -field generated by 

{E}, and let G2 be the -field generated by {E, F}. Assume that rcd
1

P
G is an rcd for P given G1 

and that 
2

P
G  is an rcd for P given G2, where these rcds are given by the ratio formula. If 

2 E F   , then 
1

P
G  may not be an rcd for 

2 2(. | )P 
G given G1. Intuitively: newfound certainties 

regarding G2 may alter probabilities conditional on G1. 

 We may extend Figure 9 to scenarios where the agent sequentially accumulates evidence 

at times t1, t2, …, tn, … regarding sub--fields 

 G1  G2  G3 …  Gn  …. 

Suppose that 
n

P
G  is a proper rcd for P given Gn. Suppose also that, for each  , 

1n
P

+G
 is an rcd 

for (. | )
n

P 
G  given Gn+1. At tn, an exogenous change instills certainty profile 

n
  over Gn. In 
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response, the agent uses 
n

P
G to conditionalize on 

n
 , adopting (. | )

n nP 
G  as her new credal 

allocation over F . Complying with Generalized Rigidity, she retains the conditional credences 

given by 
n

P
G , 

1n
P

+G
, 

2n
P

+G
,  …, 

n m
P

+G
, … She uses those conditional credences for credal updates at 

tn+1, …, tn+m, …. In this manner, the agent’s initial conditional credences dictate her credal 

evolution as she sequentially gains new evidence. See Figure 10. 

 

INSERT FIGURE 10 ABOUT HERE 

 

 In presenting Figures 9 and 10, I made two assumptions about the rcds 
n

P
G . First, 

n
P
G  is 

proper at n. Second,
1n

P
+G

 is an rcd for (. | )
n nP 
G  given Gn+1. Only under those assumptions can a 

Kolmogorov conditionalizer use the rcds 
n

P
G  to conditionalize at each time stage tn. 

 Unfortunately, there is no global guarantee that the two assumptions are satisfiable. That 

1n
P

+G
 is an rcd for P given Gn+1 does not guarantee that it is an rcd for (. | )

n nP 
G  given Gn+1. Even 

if it is, it may not be everywhere proper. Thus, a Kolmogorov conditionalizer may not be able to 

comply with Figure 10 even when rcds 
1

P
G , 

2
P
G ,…, 

n
P
G , …exist. Luckily, though, Sokal (1981) 

has proved that my assumptions are satisfiable in numerous cases, including all or virtually all 

cases likely to arise in scientific applications. Sokal shows that, under rather mild conditions, 

there exist 
1

P
G , 

2
P
G ,…, 

n
P
G , …. such that, for all n, 

 
n

P
G  is an rcd for P given Gn   

 
n

P
G is proper at       for all  

 
1n

P
+G

 is an rcd for (. | )
n

P 
G  given Gn+1   for all . 
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Sokal’s theorem ensures that, in numerous cases, a Kolmogorov conditionalizer can update her 

credences in accord with Figure 10.10 

 More specifically, consider a standard setup from Bayesian statistics (Florens, Mouchart, 

and Rolin, 1990): we start with a parameter space (A, A) and a sample space (S, S) and form the 

product space (A, A)  (S, S) =df (A  S, A  S).11 The parameter space (A, A) models possible 

states of the worlds. The sample space (S, S) models evidence the agent may receive. In many 

applications, (S, S) has the form: 

 (T1, T1)   (T2, T2)  (T3, T3) …  (Tn, Tn) … 

and models a stream of incoming evidence received at times t1, t2, …, tn, …. Each outcome then 

has the form 

 = (0, 1, 2, 3,…, n, …), 

where 0A and nTn for n > 0. Define random variable Xn: A  S → Tn by projection onto the 

nth coordinate: 

 Xn() = n. 

To model sequential evidence accumulation regarding the sample spaces (Tn, Tn), we use 

certainty profiles over the sub--fields 

(X1), (X1, X2), (X1, X2, X3), …, (X1, X2, …, Xn), … 

                                                 
10 Here is the theorem proved by Sokal: Let (, F, P) be a probability space, where P is perfect and F is countably 

generated. Let G1, G2, G3 … , Gn , …. be a sequence of sub--fields such that Gn  Gn+1 for every n. Suppose that there 

exist functions n such that (a) n is a selection homomorphism for Gn with respect to F, for every n; and (b) n  

n+m = n, for every n, m. Then there exist 
1

P
G ,

2
P
G  ,…, 

n
P
G , …. such that for every n: (i) 

n
P
G  is an rcd for P given 

Gn; (ii)
n

P
G  is proper at , for every  ; and (iii)

1

( | ( | ) () | )
n n n

P A P A P d   
+

= 
G G G

, for all AF, and all . 

It follows that
1n

P
+G

is an rcd for (. | )
n

P 
G  given Gn+1, for every . 

11 A  S is the -field generated by sets of the form A  S, where AA and SS.  
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In this setting, Sokal’s theorem applies whenever the probability space (A  S, A  S, P) meets 

mild conditions --- conditions that are almost always met in the daily practice of Bayesian 

statistics.12 Assuming the conditions met, there exist functions 

 
1 1 2 1 2 3 1 2( ) ( , ) ( , , ) ( , ,..., ), , ,..., ,...

nX X X X X X X X XP P P P     

such that, for all n, 

 
1 2( , ,..., )nX X XP  is an rcd for P given (X1, X2, …, Xn)    

 
1 2( , ,..., )nX X XP is proper at        for all  

 
1 2 1( , ,..., )nX X XP +

 is an rcd for 
1 2( , ,..., ) ( . | )

nX X XP   given (X1, X2, …, Xn+1) for all . 

A Kolmogorov conditionalizer with these initial conditional and unconditional credences can 

update her credences in compliance with Generalized Rigidity. 

 Here is a simple example of Generalized Rigidity in action. 

 

Rabies Infection: Pierre, who lives in 19th century Paris, is bit by a rabid dog on his 35th 

birthday. Knowing that rabies is 100% fatal, Pierre becomes certain that he will die before his 

37th birthday. A week later, Pierre learns that Louis Pasteur has invented a vaccine for rabies and 

that the vaccine is highly effective if delivered soon enough after a bite by a rabid animal. Pierre 

contacts Pasteur and receives the vaccine. Pierre is not convinced that the vaccine will work, but 

he is no longer certain that he will die before his 37th birthday. 

 

Using Generalized Rigidity, we can elaborate Rabies Infection into a model that includes 

principled acquisition and loss of certainties. Let  be a suitable outcome space, and let 

                                                 
12 The functions n presupposed by Sokal’s theorem are easily shown to exist in the present context (Sokal, 1981, p. 

544). Thus, one need only assume that P is perfect and that A  S is countably generated.  
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Rabies = the set of outcomes in which Pierre is infected with rabies on his 35th birthday 

Vaccine = the set of outcomes in which Pierre receives an effective rabies vaccine within 

a week after his 35th birthday 

Dead = the set of outcomes in which Pierre dies before his 37th birthday 

Let F be the -field generated by {Rabies, Vaccine, Dead}. Suppose Pierre has initial conditional 

and unconditional credences before his 35th birthday given by: 

 1
30,000,000( )P Rabies =  

 P(Vaccine) = 0 

 P(Dead | Rabies  Vaccine) = ½ 

 P(Dead | Rabies  Vaccinec) = 1 

 1
500( | )cP Dead Rabies =  

These credences reflect the following factors: the low rate of exposure to rabies in 19th century 

Paris; non-existence of an effective rabies vaccine, so far as Pierre initially knows; the chancy 

nature of a new vaccine for a fatal illness; the certain death that follows from a rabies infection 

absent an effective treatment; and the chance of death from other causes. Assume that P(A | A) = 

1 for all A. Through the law of total probability and the ratio formula, our assumptions determine 

a unique probability measure P over F. For example, we compute: 

P(Dead) = P(Dead | Rabies  Vaccine) P(Rabies  Vaccine) + P(Dead | Rabies  

Vaccinec) P(Rabies  Vaccinec) + P(Dead | Rabiesc)P(Rabiesc) 

= 0 + 1
30,000,000 + 29,999,9991

500 30,000,000  .00200003327. 

and 

 P(Dead | Rabies) = P(Dead | Rabies  Vaccinec) = 1. 
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Let G1 be the -field generated by {Rabies}, and let G2 be the -field generated by {Vaccine, 

Rabies}. Our stipulations determine a privileged rcd for P given G1, defined by 

 
1

( | )
( | )

( | )c

P A Rabies if Rabies
P A

P A Rabies if Rabies







= 


G   

and a privileged rcd for P given G2, defined by 

 
2

( | )

( | )
( | )

( | )

( | )

c c

c c

c c c c

P A Rabies Vaccine if Rabies Vaccine

P A Rabies Vaccine if Rabies Vaccine
P A

P A Rabies Vaccine if Rabies Vaccine

P A Rabies Vaccine if Rabies Vaccine










  


  
= 

  
   

G
  

It is not hard to check that, for every , 
2

P
G  is an rcd for 

1
(. | )P 

G  given G2. Let  be the true 

outcome. When the rabid dog bites Pierre, he becomes certain of Rabies and responds by 

forming new credences 
1
(. | )P 

G . In particular, he becomes certain of Dead. Complying with 

Generalized Rigidity, his credences conditional on G2 are still given by 
2

P
G . When he receives the 

rabies vaccine, he becomes certain of Vaccine and responds by forming new credences 
2
(. | )P 

G , 

so that his credence in Dead goes from 1 to ½. See Figure 11. 

 

INSERT FIGURE 11 ABOUT HERE 

 

Rabies Infection illustrates the advantages that Weak Generalized Rigidity offers over 

Weak Rigidity. Pierre’s initial conditional credences carry forward in accord with Weak 

Generalized Rigidity. The conditional credences determine how he should conditionalize both 

when he learns that he is infected with rabies and when he later learns that he has received a 

rabies vaccine. In this manner, Weak Generalized Rigidity helps us model situations where the 

agent accumulates evidential certainties (modeled by certainties over G1 and then over G2). Weak 
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Rigidity only helps us model situations where evidence gained at a later time eradicates 

evidential certainties gained at an earlier time (modeled by shifting certainties over G1). 

 Relatedly, Weak Generalized Rigidity is much more useful than Weak Rigidity when the 

factivity assumption (3) prevails. To apply Weak Rigidity in a non-trivial way, we must consider 

a scenario where a certainty profile  over G supplants a conflicting certainty profile  over G. 

Conflicting certainty profiles cannot both satisfy the factivity assumption. At least one of them 

must be misplaced. In contrast, Generalized Rigidity helps us model cases where the agent 

conditionalizes on a certainty profile that satisfies the factivity assumption and subsequently 

conditionalizes on a distinct certainty profile that also satisfies the factivity assumption. Pierre 

correctly becomes certain that he is infected with rabies, then correctly becomes certain that he 

received an effective rabies vaccine. At neither time does he acquire misplaced certainties over a 

conditioning sub--field. Nevertheless, evidence gained at the later time defeats evidence gained 

at the earlier time. He gains strong evidence that he will die before his 37th birthday (he was 

infected by rabies), then subsequently receives strong defeating evidence (he has received an 

effective rabies treatment). Thus, Generalized Rigidity helps us model cases of epistemic defeat 

where the defeated evidence is veridical and the defeating evidence is also veridical.13 

 Here is a more elaborate example along similar lines. 

 

                                                 
13 Some readers may protest that, while my model of Rabies Infection does not explicitly invoke non-factive 

conditionalization, Pierre’s initial certainty that no effective rabies vaccine exists must result somehow from non-

factive conditionalization. I disagree. Pierre may have come to set P(Vaccine) = 0 based solely on veridical 

evidence. For example, let Expert be the proposition that the renowned medical expert Dr. Charbonnet asserts that 

no effective rabies vaccine could ever exist. Suppose Pierre has complete faith in Charbonnet and therefore sets 

P(Vaccine | Expert) = 0. If Charbonnet tells Pierre that no effective rabies vaccine could ever exist, Pierre will 

conditionalize on the true proposition Expert and hence set P(Vaccine) = 0. Thus, the credences posited by my 

model may arise through the exercise of factive conditionalization. Whether Pierre is rationally permitted to set 

P(Vaccine | Expert) = 0 is a trickier question that I must set aside for limitations of space. 
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Ring Time: A timer will ring during an interval [x, x+y]. Frank chooses the start time x, 

and Mary independently chooses the interval length y. Sarah believes that, given x and y, the 

timer is equally likely to ring at any time z falling in the interval [x, x + y]. At t0, Sarah is certain 

that Frank will choose a start time between 0 and 100, and she believes that he is equally likely 

to choose any start time within that interval. She is certain that Mary will choose interval length 

y0. At time t1, Sarah learns that Frank chose start time x1[0, 100]. This discovery, combined 

with her certainty that the interval length is y0, leads Sarah to become certain that the timer will 

ring during the interval [x1, x1 + y0]. At t2, Sarah learns that Mary chose interval length y2 > y0. 

This discovery eradicates Sarah’s certainty that the timer will ring during the interval [x1, x1 + 

y0]. 

 

 Using Generalized Rigidity, we can fill in the story to rationalize Sarah’s certainty loss at 

t2. We use a probability space ( 2, B( 2), ) to codify Sarah’s credences over possible start times 

x and interval lengths y. We use C: B( )  2 →  to codify Sarah’s credences over ring times 

conditional on start time x and interval length y. Given how I described Sarah’s initial credences, 

we naturally choose  and C defined by 

 
0[0,100]df yU =   

 [ , ](. | , ) df x x yC x y U +=  

where  is the product measure (Billingsley, 1995, pp. 232-233) and [ , ]a bU  is the uniform 

distribution over [a, b]. We define a probability measure P over the larger space ( 3, B( 3)): 

(17) 
,( ) ( , , ) ( ) ( , )A x yP A I x y z C dz d x y =

     for any AB( 3), 

where IA is the indicator function for A: 
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1

( )
0

A

if A
I

if A







= 


. 

P encodes Sarah’s credences over start times x, interval lengths y, and ring times z.14 It is easy to 

show that, for our choice of C and , the measure P defined by (17) concentrates all probability 

mass over the event 

 {(x, y0, z): 0  x  100 & x  z  x + y0}. 

See Figure 12. Let X and Y be projection mappings onto the x and y coordinates, respectively. 

Then the following function P(X, Y): B( 3)  3 →  is an rcd for P given (X, Y): 

 ( , ) [ , ]( . | , , )X Y x y x x yP x y z U   +=    

Note that P(X, Y) embeds the conditional credences C into corresponding conditional credences 

over the larger space ( 3, B( 3)). One can also show that the following function P(X): B( 3)  3 

→  is an rcd for P given (X): 

 
0 0( ) [ , ]( . | , , )X x y x x yP x y z U   +=   . 

Intuitively: newfound certainty that the start time is x, combined with prior certainty that Y = y0, 

induces a uniform distribution over ring times falling in the interval [x, x + y0]. In addition, one 

can show that P(X, Y) is an rcd for P(X)( . | x, y, z) given (X, Y), for any x, y, z.15 

 

INSERT FIGURE 12 ABOUT HERE 

 

                                                 
14 Definition (17) is a special case of the Ionescu Tulcea extension theorem, which shows that under highly general 

conditions one can convert conditional probabilities and select unconditional probabilities into a global 

unconditional probability measure (Kallenberg, 2002, p. 116). 
15 Proofs for all mathematical claims made in this paragraph are straightforward but tedious. 
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 At t0, Sarah has unconditional credences codified by P along with conditional credences 

codified by P(X) and P(X, Y). At t1, she becomes certain that Frank chose start time X = x1. We 

model her newfound certainty through a certainty profile 
1( , , )x y z  over (X), where y and z are 

arbitrary. We may assume that Frank really did choose x1, so that 
1( , , )x y z  satisfies the factivity 

assumption. Sarah conditionalizes using P(X), forming new credences: 

 
1 0 1 1 0( ) 1 [ , ]( . | , , )X x y x x yP x y z U   +=   . 

Thus, she is newly certain of the event 

 {x1}  {y0}  [x1, x1 + y0]. 

In other words: she is certain that John chose X = x1, that Mary chose Y = y0, and that the timer 

will ring in the interval [x1, x1 + y0]. See Figure 13. Complying with Generalized Rigidity, she 

retains P(X) and P(X, Y) as conditional credences at t1. At t2, she becomes certain that Mary chose 

the interval length y2 > y0. We model Sarah’s newfound certainty through a certainty profile 

1 2( , , )x y z  over (X, Y). We may assume that Sarah is correct, so that 
1 2( , , )x y z  satisfies the factivity 

assumption. In response to her new certainty profile, she conditionalizes using P(X, Y). Her 

credences are now given by: 

 
1 2 1 1 2( , ) 1 2 [ , ]( . | , , )X Y x y x x yP x y z U   +=   . 

See Figure 14. Thus, Sarah is newly certain of the event 

 {x1}  {y2}  [x1, x1 + y2]. 

See Figure 15. Her newfound certainty that Y = y2 eradicates her certainty (gained at t1) that the 

timer will ring in the interval [x1, x1 + y0]. 

 

INSERT FIGURES 13-15 ABOUT HERE 
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 In both Rabies Infection and Ring Time, the agent’s credences evolve according to Figure 

9. Some certainties gained at t1 are subsequently lost at t2. The examples demonstrate that 

Kolmogorov conditionalization, aided by Weak Generalized Rigidity, can induce principled 

acquisition and loss of certainties even when the factivity assumption (3) prevails. 

 

8 Scope and limits 

 I have illustrated Weak Rigidity and Weak Generalized Rigidity with four toy examples: 

False Alarm, Mismeasurement, Rabies Infection, and Ring Time. The toy examples only hint at 

the scope of Figure 10. Sokal’s theorem guarantees the existence of suitable rcds across diverse 

circumstances, including the vast majority of cases likely to arise in scientific applications. 

Whenever suitable rcds exist, a Kolmogorov conditionalizer can sequentially update her 

credences while complying with Weak Generalized Rigidity. Quite often, the sequential credal 

updates will eradicate certainties gained through earlier credal updates. 

 Although Weak Generalized Rigidity is widely applicable, there are situations where it 

does not apply. Weak Generalized Rigidity imposes a substantive constraint only when the agent 

gains new certainties over a conditioning sub--field G. As Jeffrey emphasizes, though, an agent 

may gain new credences over G that are not certainties. Jeffrey focuses on situations where G is 

generated by a countable partition. The general case, where G is not necessarily generated by a 

countable partition, has received some attention (e.g. Diaconis and Zabell, 1982; Hild, Jeffrey, 

and Risse, 1999; Meehan and Zhang, 2020) but not as much as it deserves. I suspect that 

Generalized Rigidity can shed light upon the general case. In any event, there are plainly 

situations where Weak Generalized Rigidity offers little help. 
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 Even if we restrict attention to credal changes sparked by new certainties, Weak 

Generalized Rigidity does not always offer useful guidance. Consider a variant of 

Mismeasurement: Jane learns at t2 that her laboratory assistant (who reported the result of the 

experiment measuring X’s value) is a pathological liar. Clearly, Jane should downgrade her 

certainty in X = x1. Assuming that X does in fact have value x1, we cannot model this case using 

Weak Generalized Rigidity. Weak Generalized Rigidity imposes a substantive constraint on 

cases falling into two categories: 

(i) An agent acquires a certainty profile over a sub--field G, then subsequently 

acquires a different certainty profile over G, and so on. 

(ii) An agent acquires a certainty profile over a sub--field G1, then acquires a 

certainty profile over a sub--field G2 such that G1  G2, and so on. 

Our new variant of Mismeasurement does not fall under either (i) or (ii): 

(i) Distinct certainty profiles over G cannot both conform to the factivity assumption. 

So category (i) does not include cases where the agent gains true evidence at 

every stage. 

(ii) If certainty profiles over G1 and G2 both satisfy the factivity assumption, and G1  

G2, then certainties over G1 gained at t1 persist when the agent gains new 

certainties over G2 at t2. 

Neither category (i) nor category (ii) includes cases where true evidence eradicates certainty in a 

true conditioning proposition. So my framework cannot model how Jane’s credences change in 

response to learning that her lab assistant is a pathological liar. More generally, my framework 
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does not help us model an agent who conditionalizes on a true proposition E but later learns 

truths that defeat her warrant for E.16 

 In response, one option is to abandon the assumption that the sub--fields are non-

decreasing. Rather than consider a sequence of sub--fields such that 

G1  G2  G3 …  Gn  …, 

we can instead consider a sequence of sub--fields 

 G1, G2, G3 …, Gn, … 

that is not necessarily non-decreasing. An agent may conditionalize based on new certainties 

over G1, then conditionalize based on new certainties over G2, and so on. Kallenberg (2010) has 

investigated iterated Kolmogorov conditionalization in this alternative setting. The alternative 

setting does not assume that Gn  Gn+1, so Generalized Rigidity does not apply. In the alternative 

setting, the agent can gain certainties over Gn and subsequently lose those certainties in response 

to new certainties over Gn+1 even though all certainties conform to the factivity assumption. In 

future work, I will use the alternative setting to model cases where true evidence eradicates 

newfound certainty in a true conditioning proposition. 

 Clearly, Figure 10 is not general enough to handle all cases of epistemic defeat. Still, it is 

general enough to handle many cases of epistemic defeat. In that respect, it marks significant 

progress over theories that rely solely on ratio conditionalization. 

 

9 Comparisons 

                                                 
16 See (Weisberg, 2009a) for related discussion in connection with ratio conditionalization and Jeffrey 

conditionalization. 
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 To clarify the scope and limits of my approach, I will now compare it with three 

treatments found in the literature. The treatments are due respectively to Skyrms (1983), 

Titelbaum (2013), and Williamson (2000). 

 

9.1 Skyrms on memory 

 Skyrms (1983, p. 157) notes that, when we update credences through ratio 

conditionalization, “there is a certain peculiar sense in which we lose information every time we 

learn something. That is, we lose information concerning the initial relative probabilities of 

statements not entailing S” whenever we ratio conditionalize on S. He proposes that we “give a 

probability assignment a memory” (p. 157), so as to retain information that would otherwise be 

lost. He suggests two information retention strategies. The basic idea behind both strategies is to 

maintain a record of earlier probabilities P, so that conditional probabilities P(H | F) can be 

computed using the ratio formula even after conditionalizing on a proposition E incompatible 

with F. The first strategy records unconditional probabilities from each time stage. The second 

strategy records initial unconditional probabilities along with total evidence to date. 

 By maintaining a record of previous unconditional probabilities and using that record to 

compute conditional probabilities, Skyrms’s treatment reflects roughly the same “minimal 

change ethos” as Rigidity and Generalized Rigidity. However, his proposed strategies retain 

more information than is needed to handle the defeasible inferences analyzed in this paper. If an 

agent conditionalizes on E and subsequently wishes to conditionalize on an incompatible F, then 

she does not need access to her initial unconditional probabilities. She only needs access to 

suitable probabilities conditional on F. By retaining earlier unconditional probability 

assignments, Skyrms’s two strategies retain extraneous information. In contrast, my approach 



45 

 

retains only the needed conditional probabilities. In Mismeasurement, for example, Jane can 

conditionalize on X = x1 at t1 and then (in accord with Weak Rigidity) use the same conditional 

probabilities to conditionalize on X = x2 at t2. Jane’s unconditional probabilities from t0 do not 

matter at t2. All that matters are her t1 conditional probabilities, as enshrined by P(X). 

More importantly, Skyrms’s two strategies do not handle examples featuring initial 

conditional probabilities beyond the ratio formula. We have seen that such examples arise 

routinely in scientific practice. We have also seen that the standard mathematical and scientific 

solution is to use rcds. My proposal builds upon the standard solution, carrying forward 

conditional probabilities as codified by rcds in accord with Weak Generalized Rigidity. In this 

way, my approach handles numerous cases that Skyrms’s does not, such as Rabies Infection, 

Ring Time, and versions of Mismeasurement where X has uncountably many possible values.17 

Skyrms writes that, “[a]fter conditionalizing on S, one might wish to be able to decide 

that this was an error and ‘deconditionalize’” (1983, p. 157). He models deconditionalization 

using the second of his information retention strategies: the agent adds proposition S to her total 

evidence at one time stage and deletes S from her total evidence at a later time stage (p. 159); 

conditionalizing on total evidence at the later time stage yields the desired deconditionalization. 

Notably, though, Skyrms does not formally model the factors that impel the agent to delete S 

                                                 
17 Skyrms mentions a third strategy that uses Jeffrey conditionalization rather than ordinary conditionalization. This 

third strategy may be useful for some purposes, but I do not think it fits current scientific practice very well. As 

indicated in Section 1, scientific applications of the Bayesian framework almost exclusively feature inferences that 

employ ordinary conditionalization rather than Jeffrey conditionalization. Virtually all of those inferences are 

vulnerable to epistemic defeat (e.g. a scientist may update based on the wrong value of an experimental variable, as 

in Mismeasurement). Replacing ordinary conditionalization with Jeffrey conditionalization would leave us unable to 

model such inferences as they occur in current practice. In contrast, my account preserves the central role that 

ordinary conditionalization plays within current scientific practice while accommodating types of epistemic defeat 

not typically explicitly addressed by that practice. My account extends current scientific practice, whereas an 

account grounded in Jeffrey conditionalization revises current scientific practice. 
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from her total evidence. For that reason, his proposal does not model everything we would like to 

model about deconditionalization. 

The situation is roughly comparable if we employ the rcd formalism. Consider yet 

another variant of Mismeasurement, in which Jane decides at t2 that it was a mistake to 

conditionalize on X = x1 and retreats to her former uncertainty regard X’s value. By stipulation, 

Jane’s t2 credences over (X) are given by P. In accord with Rigidity, she carries forward her 

conditional probabilities P(X) from t1 to t2. Then it is straightforward to show that her t2 

credences over the entire space are given by P. Thus, Jane’s renewed uncertainty regarding X’s 

value carries her back to her t0 credences, as one would intuitively expect. In this manner, the rcd 

formalism conjoined with Rigidity helps us model Jane’s evolution from uncertainty regarding 

X’s value to certainty and then back to uncertainty. But the result is arguably not too satisfying 

because it does not explicitly model why Jane decides that it was a mistake to conditionalize on X 

= x1. A more satisfying treatment would explicitly model Jane’s t2 evidence and how that 

evidence reinstates her t0 credences over (X). I believe that, ultimately, deconditionalization 

requires us to grapple with the issues raised in Section 8. 

 

9.2 Titelbaum on certainty loss 

Titelbaum (2013) models certainty eradication within a broadly Bayesian framework. He 

advances a diachronic norm, Generalized Conditionalization, that generalizes ratio 

conditionalization but can also accommodate some cases where agents lose certainties. He 

admits, though, that his framework does not satisfactorily handle “cases in which an agent 

becomes certain of a claim in response to a piece of evidence, then withdraws that certainty upon 

encountering a defeater” (pp. 296-298). 
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Suppose that evidence e gained at t1 leads an agent to become certain of hypothesis h and 

that further evidence d gained at t2 eradicates her newfound certainty in h. Titelbaum’s 

framework allows this to happen, but only within a model that stipulates certainty in h at t1. Such 

a model cannot capture why the agent’s doxastic state at t0 mandates her certainty in h at t1 in 

response to evidence e. As Titelbaum puts it, “nothing in the model is tracking e’s influence on 

h” (p. 297). In contrast, my framework can model how an agent’s initial credences (both 

conditional and unconditional) mandate new certainties at t1 and loss of those certainties at t2. 

False Alarm, Mismeasurement, Rabies Infection, and Ring Time all have that form. In each case, 

my model tracks e’s influence on h at t1 (e.g. learning that he was bit by a rabid dog leads Pierre 

to become certain that he will soon die of rabies) and d’s influence on h at t2 (e.g. learning that he 

received a rabies vaccine leads Pierre to lose that newfound certainty). So my framework 

supplies substantive rational constraints beyond those supplied by Titelbaum’s. 

 

9.3 Williamson on evidence 

Williamson (2000, pp. 205-206) suggests that you can gain evidence and assign it 

probability 1, then gain new evidence that has non-zero probability and on that basis rationally 

downgrade the probability of the old evidence. His main example runs as follows. You inspect a 

red ball and a black ball before placing them in an empty bag, which leads you to become certain 

that you placed a red ball and a black ball in the bag. You then execute 10,000 draws with 

replacement that all turn out red. According to Williamson, you should lose your certainty that 

you placed a black ball in the bag. 

The proposition that you drew red 10,000 times has non-zero probability, so 

conditionalizing on that proposition cannot dislodge your certainty that you placed a black ball in 
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the bag. Thus, as Williamson (pp. 219-220) emphasizes, his analysis mandates major revisions to 

Bayesian decision theory. He proposes an alternative framework that retains some Bayesian 

elements while rejecting the core Bayesian idea that agents should respond to new evidence by 

conditionalizing on it (p. 220). Williamson’s framework is designed to handle the bag example 

and other examples where evidence with non-zero probability supposedly dislodges certainties.  

I see no reason to revise Bayesian decision theory along the lines suggested by 

Williamson. On the contrary, the standard Bayesian analysis of the bag example seems correct to 

me: if you really are certain that you placed a black ball in the bag, then drawing red 10,000 

times cannot rationally dislodge that certainty. Of course, it is very unlikely that you would draw 

red 10,000 times if you placed a black ball in the bag. But unlikely events sometimes occur, and 

they are not in themselves a sound basis for certainty eradication. Perhaps you should not have 

initially become certain that you placed a black ball in the bag, yet given that you did become 

certain your certainty should persist despite the 10,000 red draws. Here it is crucial to distinguish 

between certainty that you placed a black ball in the bag and certainty that the bag currently 

contains a black ball. Even if you are certain of the first proposition, it does not follow that you 

are (or should be) certain of the second. After all, the black ball might have surreptitiously 

escaped through a small hole or some other chicanery. Drawing red 10,000 times may rationally 

lead you to downgrade your credence that the bag currently contains a black ball while 

remaining certain that you placed a black ball in the bag. 

At any rate, my framework cannot model situations (if such there are) where evidence 

with non-zero probability rationally dislodges certainties. It can model numerous situations 

where evidence with probability zero rationally dislodges certainties. It models these situations 
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without any revision to Bayesian decision theory. On my approach, certainties cannot be 

dislodged by mere unlikely evidence, but they can be dislodged by vanishingly unlikely evidence.  

 

10 Conclusion 

 Philosophers should retire the canard that conditionalization always leaves certainties in 

place. This canard reflects an overly narrow focus on the ratio formula and distorts scientific 

practice. Kolmogorov conditionalization can eradicate certainties, including certainties gained 

through prior exercise of conditionalization. It generates reasonable credal updates across a range 

of cases, especially when supplemented with Weak Generalized Rigidity. Overall, then, 

Kolmogorov conditionalization offers significant advantages over ratio conditionalization, 

including an improved ability to model epistemic defeat. 

I do not say that Kolmogorov conditionalization provides a universal basis for defeasible 

inference. No doubt there are situations where Jeffrey conditionalization or some other credal 

update strategy would be more appropriate. There are also situations where Kolmogorov 

conditionalization is inapplicable, such as when rcds do not exist or are improper. Still, 

Kolmogorov conditionalization is a valuable addition to the Bayesian toolbox. Further work will 

surely reveal additional philosophical applications beyond those discussed here. I submit that 

rcds have great potential to enrich formal epistemology, as they have already enriched other 

disciplines where Bayesian decision theory plays a prominent role. There awaits a vast terrain 

that philosophers have barely explored. 
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Figure 1. A simple probability density function over 2. All positive probability density is 

concentrated in the unit square. 

 

 

 

 

 
Figure 2. Assuming 0  x1  ½, probability density p(x, y) is constant along the vertical line X = 

x1. If the agent conditionalizes based on newfound certainty that X = x1, then she will allocate all 

her credence uniformly over this vertical line. 
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Figure 3. Assuming ½ < x2  1, probability density p(x, y) is higher along the bottom half of the 

vertical line X = x2 than along the top half. If the agent conditionalizes based on newfound 

certainty that X = x2, then she will allocate all her credence over this vertical line, with more 

credal mass assigned to the bottom half than the top half. 

 

 

 

 

 
 

 

Figure 4. The agent gains new certainty profile  and responds by using C to conditionalize on 

. Complying with Weak Rigidity, she retains her conditional credences C. In this diagram, and 

in subsequent such diagrams, unconditional credences lie above the dotted line and conditional 

credences lie below the dotted line. 
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Figure 5. The agent gains new certainty profile  and responds by using C to conditionalize on 

. Then she gains new certainty profile   and responds by using C to conditionalize on . 
 

 

 
 

Figure 6. Credal evolution in False Alarm. John’s initial unconditional credences P determine 

his conditional credences , via the ratio formula. John becomes certain of Positive and responds 

by forming new credences , where  is any arbitrary outcome belonging to Positive. Then he 

becomes certain of Negative and responds by forming new credences , where  is any arbitrary 

outcome belonging to Negative. Complying with Weak Rigidity, he retains his conditional 

credences  throughout this process. 

 

 

 
 

 

Figure 7. Credal evolution in Mismeasurement. 
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Figure 8. Sequential credal updates conforming to Weak Rigidity. At each time tn after the 

starting point t0, the agent gains new certainty profile 
n

 and responds by using C to 

conditionalize on 
n

 , yielding new credences 
n

C . Complying with Weak Rigidity, she retains 

her conditional credences C. 

 

 

 

 

 
 

 

Figure 9. Two credal updates conforming to Weak Generalized Rigidity. Note that the agent no 

longer has conditional credences 
1

P
G  at t2. 
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Figure 10. Sequential credal updates conforming to Weak Generalized Rigidity. At each time tn 

after the initial starting point t0, the agent uses 
n

P
G to conditionalize on 

n
 , adopting new 

credences (. | )
n nP 
G . Note that the agent no longer has conditional credences 

1n
P

−G
 at time tn. 

 

 

 

 
 

Figure 11. Credal Evolution in Rabies Infection.  is the true outcome. 
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Figure 12. Sarah’s credences at t0. The whole probability space is three-dimensional, but Sarah’s 

initial credal mass lies entirely in the two-dimensional sub-space (pictured here) where Y = y0. 

Sarah assigns credence 1 to the grey parallelogram. 

 
 

Figure 13. Sarah’s credences at t1. She assigns credence 1 to the event (pictured here by a black 

line segment) formed by intersecting the line X = x1 with the grey parallelogram. 
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Figure 14. Credal evolution in Ring Time. 

 

 

 

 
Figure 15. Sarah’s credences at t2. Her credal mass lies entirely in the two-dimensional sub-

space (pictured here) where Y = y2. She assigns credence 1 to the dotted black line segment 

reaching to (x1, x1 + y2). 
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