The language of Temporal Logic:

$$WWF ::= |p| \neg \varphi | \varphi \wedge \psi | P\varphi | F\varphi |$$

The language of Temporal Hybrid Logic

$$WWF ::= |i|p| - \varphi|\varphi \wedge \psi|P\varphi|F\varphi|@_{ij}|$$

Semantic to THML

To generate the semantics of these operators, we need to add the valuation function V (over the frames (T, R) which takes propositional symbols, and nominals to subsets of points of T. But we place an important restriction on the valuation V(i) of any nominal i: this must be a singleton subset of T. This means (as we said above) that nominals enable us to specify names for times in T.

Given a model $\mathfrak{M} = (T, R, V)$ we define satisfaction as follows:

 \mathfrak{M} , $t \models a$ iff a is atomic and $t \in V(a)$

 $\mathfrak{M}, t \models \neg \varphi$ iff $\mathfrak{M}, t \not\models \varphi$

211, t | \phi \psi iff 211, t | \phi and 211, t | \psi

 $\mathfrak{M}, t \models P\varphi$ iff for some t', t'Rt and $\mathfrak{M}, t' \models \varphi$

 $\mathfrak{M}, t \models F \varphi$ iff for some t', tRt' and $\mathfrak{M}, t' \models \varphi$

2N, $t = @_{t} \varphi$ iff 2N, $t' = \varphi$ and $t' \in V(i)$

Semantic to THML wit now

The extended model $\mathfrak{M} = (T, R, V, t_0)$ is similar to an ordinary model together with a designated time $t_0 \in T$ and V is extended to V' in the following way:

$$V(a) =$$

V'(a), otherwise.

The semantic of the operator now, is straightforward:

$$\mathfrak{M}, t = now \quad \text{iff} \quad t \in V(now)$$

$$\mathfrak{M}, t \models @_{now} \varphi \text{ iff } \mathfrak{M}, t \models \varphi \text{ and } t \in V(now)$$