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Abstract: Interventionism is a theory of causal explanation developed by Woodward and 

Hitchcock. I defend an interventionist perspective on the causal explanations offered within 

scientific psychology. The basic idea is that psychology causally explains mental and behavioral 

outcomes by specifying how those outcomes would have been different had an intervention 

altered various factors, including relevant psychological states. I elaborate this viewpoint with 

examples drawn from cognitive science practice, especially Bayesian perceptual psychology. I 

favorably compare my interventionist approach with well-known nomological and mechanistic 

theories of psychological explanation. 

 

§1. Explaining psychological phenomena 

What is it to explain a mental or behavioral phenomenon? For example, suppose we want 

to explain why an object looks to have a certain shape. What features should we expect from an 

explanation of the perceptual shape-estimate? More generally, what features should we expect 

from explanations of perception, belief, action, language acquisition, memory, problem solving, 

decision-making, and other core psychological activities? What makes one psychological 

explanation better than another? To what extent does cognitive science already supply good 

psychological explanations of mental and behavioral phenomena? 



2 

 

 How one answers these questions depends heavily upon one’s background views 

regarding scientific explanation more generally. Some authors espouse a nomological approach 

(Fodor, 1981; 1987; 1994): psychological explanation deploys psychological laws that subsume 

the explanandum. Others espouse a mechanistic approach (Bechtel, 2008): psychological 

explanation identifies underlying mechanisms that produce the explanandum. I will advance an 

account grounded in interventionism, a theory of causal explanation developed by Woodward 

(2003) and Woodward and Hitchcock (2003a; 2003b). The basic idea is that psychology causally 

explains an explanandum by specifying how the explanandum would have been different had 

certain causal influences (such as sensory or psychological states) been suitably manipulated. I 

advance my account as a theory of causal explanation within psychology, leaving open that 

psychology may also offer non-causal explanations. Notwithstanding this restricted focus upon 

causal explanation, I will argue that an interventionist conception improves markedly upon the 

nomological and mechanistic conceptions. 

 Interventionism is already well-established as an appealing theory that honors many 

aspects of scientific practice (Woodward, 2003). Several authors (Campbell, 2007), (Woodward, 

2008a, 2008b), including myself (Rescorla, 2014), have previously applied it to mental activity. 

However, prior applications within philosophy of mind tend to focus mainly on causation rather 

than explanation. Relatedly, prior applications do not engage in much detail with cognitive 

science practice. As a result, they do not convey very well how explanation works in cognitive 

science, nor do they adequately highlight the explanatory benefits afforded by psychological 

inquiry. I hope that my discussion will foster more robust appreciation of those benefits. 

 §2 critically reviews the nomological and mechanistic conceptions of psychological 

explanation. §3 presents key features of interventionism. §§4-6 develop an interventionist 
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conception of causal explanation within psychology, taking Bayesian perceptual psychology as 

an illustrative case study. §§7-8 favorably compares my interventionist conception with the 

nomological and mechanistic conceptions. 

 

§2. Laws and mechanisms 

 According to the deductive-nomological (DN) model of scientific explanation, scientists 

explain a phenomenon by showing how to deduce it from laws of nature (Hempel, 1965). More 

precisely, DN explanations instantiate the following schema: 

(1)  L1, …, Ln 

  C1, …, Lk 
____________ 

  E 

E is the explanandum, L1, …Ln are laws, and C1, …Ck specify particular circumstances. For 

example, E might be the acceleration of a physical body, L1, …Ln might be physical laws, and 

C1, …Ck might be particular masses and locations in the physical system. By deducing E from 

L1, …Ln and C1, …Ck, we show that E was to be expected given certain deep uniformities in 

nature and given certain particular circumstances. We thereby illuminate why E occurred. Thus, 

scientific explanation subsumes the explanandum under a covering law. Of course, any complete 

version of the DN model must say what counts as a “law.”
1
 

 Fodor (1981; 1987; 1994) applies the DN model to psychological explanation. In his 

words: “psychological explanation typically involves law subsumption” (1994, p. 3). On Fodor’s 

                                                 
1
 Hempel supplements the DN model with the deductive-statistical (DS) model and the inductive-statistical (IS) 

model. The DS model is really just a special case of the DN model, in which the laws take a statistical form. For the 

IS model, one does not deduce the explanandum from the explanantia. Rather, one shows that the explanandum was 

likely to occur (at least to some degree) given the explanantia. Technically speaking, the “nomological conception of 

scientific explanation” includes the IS model along with the DN model. However, addressing the IS model would 

complicate my exposition without affecting the main thrust of my argument. 
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picture, cognitive science should delineate laws that describe interactions among sensory inputs, 

psychological states, and behavioral outputs. We explain some mental or behavioral outcome by 

citing appropriate psychological laws, combined with details of the psychological system. Many 

other philosophers explicitly endorse or implicitly presuppose the nomological conception of 

psychological explanation (Antony, 1995), (Aydede, 2000), (Horgan and Tienson, 1990), 

(Pietroski and Rey, 1995), (Schneider, 2005). Much of the surrounding literature has centered 

upon matters such as: which properties psychological laws must have to support good 

explanations; whether we can find laws with these properties; the extent to which such laws are 

already implicit in folk psychological practice; how the requisite laws compare to laws found in 

other scientific disciplines; and so on. 

 Critics have launched various objections to the DN model construed both as a general 

theory of scientific explanation and more specifically as a theory of psychological explanation. 

Some highlights: 

- Numerous powerful counterexamples establish that subsumption under a covering 

law does not suffice for explanation (Salmon, 1989), (Woodward, 2003, pp. 154-

155). For example, we can deduce a flagpole’s height from the laws of optics, the 

sun’s position, and the length of the shadow cast by the flagpole --- yet this does not 

count as a genuine explanation of the flagpole’s height. When we show that some 

explanandum was to be expected, we do not necessarily explain it. 

- Philosophers widely agree that scientific practice features few truly exceptionless 

generalizations (Fodor, 1987; 1991a), (Pietroski and Rey, 1995), (Woodward, 2003). 

Accordingly, proponents of nomological explanation usually propose that we qualify 

laws with ceteris paribus clauses. Critics respond that ceteris paribus laws are too 
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empty, untestable, vague, or otherwise problematic to figure in satisfying scientific 

explanations (Earman, Roberts, and Smith, 2002). 

- Many philosophers argue that psychological practice offers few if any explanatory 

generalizations that count as laws (Bechtel and Wright, 2009), (Dennett, 1993), 

(Gauker, 2005), (Schiffer, 1991), even if we allow laws to include ceteris paribus 

clauses. Obviously, the force of this worry depends on how we demarcate the laws.
2
 

All three worries have been extensively discussed in the literature over the past few decades. 

 Responding to the DN model’s perceived failures, philosophers propose various non-

nomological theories of scientific explanation. Recently, a mechanistic approach has gained 

popularity (Bechtel, 2008), (Craver, 2006). The rough idea is that explanation decomposes a 

complex system into parts, describes how the parts are organized, specifies operations of the 

parts, and exhibits how the explanandum results from joint operation of the parts. Thus, 

explanation unveils causal mechanisms that help produce the explanandum. To unveil these 

mechanisms, we need not subsume the explanandum under anything resembling a law. 

 From a mechanistic viewpoint, psychological explanation should isolate components of 

the psychological system and describe how joint operations of those components produce some 

mental or behavioral outcome. As Bechtel and Wright put it, “[t]he major tasks in developing 

mechanistic explanations in psychology are to identify the parts of a mechanism, determine their 

operations, discern their organization, and finally, represent how these things constitute the 

system’s relationship to the target explanandum” (2009, p. 120). Proponents usually emphasize 

neural parts (Bechtel and Wright, 2009), (Piccinini and Craver, 2011). On this approach, 

psychological explanation should isolate regions of the brain and specify how activity in those 

                                                 
2
 Bechtel and Wright (2009) note that the phrase “law” is seldom used in scientific psychology. This does not strike 

me as an important datum for philosophical theorizing, since a psychological generalization might satisfy the 

traditional philosophical criteria for lawhood even though psychologists do not call it a law. 
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regions produces the explanandum. In contrast, Stinson (2016) allows that the “parts” specified 

by mechanistic psychological explanation may be abstract cognitive items (e.g. memory 

registers) that do not map straightforwardly onto neural regions. 

 A recurring worry facing the mechanistic conception of scientific explanation is that 

many successful scientific explanations seem non-mechanistic. Consider the ideal gas law: 

(2) PV = nRT, 

where P is pressure, V is volume, n is moles of the gas, R is the ideal gas constant, and T is 

temperature. (2) seems to support good explanations. For example, we can use (2) to explain why 

a gas exerts the pressure that it does. When you learn (2) along with V, n, and T, you have 

learned something illuminating about P. Yet (2) does not isolate anything resembling a 

mechanism. (2) does not even decompose a gas into component parts. From a mechanistic 

perspective, (2) is not explanatory. A genuinely mechanistic explanation must instead deploy 

statistical mechanics, which describes the gas as a collection of tiny interacting particles. I 

acknowledge that statistical mechanics can augment the explanatory power of (2). It does not 

follow (and is not true) that (2) itself is unexplanatory. Surely there is some good sense in which 

(2) helps us explain pressure even when unaccompanied by statistical mechanical details. While 

the mechanistic conception may isolate one important class of scientific explanations, it does not 

tell the whole story. 

 This worry arises with particular force for cognitive science, where it is widely accepted 

that good explanation can abstract away from underlying neural and computational mechanisms. 

When cognitive scientists study perception, action, decision-making, concept learning, 

navigation, and numerous other core phenomena, they often operate at an abstract psychological 

level that looks quite non-mechanistic (Weiskopf, 2011). I will provide examples in §§4-8. 
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 The foregoing considerations may not constitute definitive arguments against the 

nomological and mechanistic conceptions of psychological explanation. Still, it seems well 

worth exploring alternative options. In what follows, I will advance an alternative interventionist 

conception.
3
 

 

§3. Interventionism 

 Interventionism is a theory of causal explanation, i.e. explanation that illuminates causal 

influences upon the explanandum. There may be non-causal scientific explanations (Lange, 

2016), such as dimensional explanations or mathematical explanations. Interventionists 

acknowledge that non-causal explanation is potentially illuminating, but they only seek to 

elucidate causal explanation. According to interventionists, a causal explanation specifies how 

the explanandum would have been different had certain explanantia been suitably manipulated. 

Causal explanation answers what if things had been different questions (or w-questions) about 

the explanandum. 

Interventionists codify this intuitive idea by talking about variables and interventions. 

The values of a variable are possible states of the system under consideration. A variable must 

have at least two values. Roughly, an intervention on a variable X is an idealized experimental 

manipulation of X’s value. Slightly more carefully, an intervention on variable X with respect to 

                                                 
3
 The literature offers several additional theories of scientific explanation, such as the unificationist conception 

(Kitcher, 1989) and the kairetic conception (Strevens, 2008). There is not enough space to discuss all existing 

theories in a single paper, so I have focused upon the two rival theories that seem to have been most influential 

within philosophy of cognitive science: the nomological and mechanistic conceptions. The unificationist conception 

faces serious problems (e.g. Woodward, 2003, pp. 358-373), and in any event it never found wide application among 

philosophers concerned with psychological explanation. Strevens (2008, pp. 464-468) briefly addresses how the 

kairetic conception applies to psychological explanation. He focuses exclusively on high-level propositional 

attitudes. He holds that psychological properties of propositional attitudes are noncausally explanatorily relevant to 

mental and behavioral outcomes. In contrast, I think that many good causal explanations found within cognitive 

science cite causally relevant psychological properties of mental states. My discussion is devoted to developing that 

viewpoint. More detailed discussion of the unificationist and kairetic conceptions must await another occasion. 
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variable Y is a change in X’s value that changes Y’s value if at all only through the change in X 

and not through an independent causal route. Specifically, an intervention must not change any 

confounding variables. Woodward (2003, pp. 94-114) offers a detailed theory of interventions. 

For present purposes, I forego further elucidation. 

According to interventionists, we causally explain Y’s value by revealing how 

interventions on some variable X would alter Y. An intervention on flagpole height with respect 

to shadow length (say, by extending the flagpole) yields determinate changes in shadow length. 

An intervention on shadow length with respect to flagpole height (say, by distorting the sun’s 

rays with a prism) does not yield determinate changes in flagpole height. Intuitively, 

manipulating the flagpole’s height is a way of manipulating its shadow, but manipulating its 

shadow is not a way of its manipulating its height. That is why one can explain shadow length in 

terms of flagpole height but not vice-versa. 

 Interventionists replace (1) with a similar but improved schema (Woodward and 

Hitchcock, 2003b). According to interventionism, science aims for explanations of the form  

(3) f(X1, X2, ..., Xn) = Y 

 X1 = x1, X2 = x2, …, Xn = xn 
 _________________________________ 

 Y = y = f(x1, x2, ..., xn) 

Here X1, X2, ..., Xn are explanantia variables and Y is the explanandum variable. The first line of 

(3) is an explanatory generalization that describes how Y’s value depends upon the values of X1, 

X2, ..., Xn. A causal explanation satisfies two conditions. First, X1, X2, …, Xn, Y actually have the 

respective values x1, x2, …, xn, y. Second, the generalization f(X1, X2, ..., Xn) = Y specifies with at 

least approximate accuracy a non-trivial change in Y that results from interventions on X1, X2, ..., 

Xn. To clarify the second condition, say that a test intervention is an intervention that alters at 
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least one of the variables X1, X2, ..., Xn, where the generalization f(X1, X2, ..., Xn) = Y predicts that 

the altered values yield a different value for Y than its actual value. A test counterfactual 

specifies which value of Y is predicted, assuming that the relevant test intervention were to 

occur. In other words, a test counterfactual has the form: 

If an intervention had fixed X1 = x1*, X2 = x2*, …, Xn = xn*, then it would have been the 

case that Y = y*, 

where xi  xi* for at least one i and where y  y*. The second condition requires that our 

explanation generate at least one approximately true test counterfactual.
4
 

Interventionism sets a fairly low threshold for explanation. As long as we secure at least 

one approximately true test counterfactual, we have illuminated the explanandum by clarifying 

how it depends upon certain explanantia. We have answered at least one relevant w-question. 

Obviously, it would be desirable to answer more than a single w-question regarding the 

explanandum. Interventionists hold that a causal explanation is better or deeper to the extent that 

it generates a larger class of approximately true test counterfactuals. 

 As noted in §2, scientific practice features very few exceptionless generalizations. 

Interventionists respond by emphasizing background conditions. To illustrate, consider the 

formula for period of a pendulum: 

(4) 
g

L
T 2 , 

where T is period, L is length of the pendulum, and g is local acceleration of gravity. (4) only 

prevails when suitable background conditions are in place: amplitude is not too large; no obstacle 

impedes the pendulum; wind resistance is not too great; and so on. Assuming background 

                                                 
4
 Woodward (2003, pp. 209-220) extends interventionism to encompass singular causal claims, such as “The short 

circuit caused the fire.” Woodward holds that singular causal claims answer certain w-questions and hence are 

minimally explanatory. We need not evaluate this aspect of Woodward’s position. 
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conditions where such exceptional factors do not arise, we can use (4) to say how period would 

have been different if length had been different. More generally, an explanatory generalization G 

will typically prevail only against appropriate background conditions, and we will generally not 

be able to articulate those background conditions fully and explicitly. Nevertheless, we can use G 

to answer numerous w-questions. We can do so whenever we are confident that appropriate 

background conditions obtain (as scientific practice shows that we often are). 

 Note here an important contrast between interventionism and the traditional literature on 

nomological explanation. Proponents of the DN model try to salvage the truth of explanatory 

generalizations by introducing ceteris paribus clauses. In contrast, interventionists concede that 

explanatory generalizations used in science are often false. For example, (4) is false, because it 

fails when appropriate background conditions do not obtain. Interventionists hold that false 

explanatory generalizations can be explanatory. A false generalization is explanatory when 

appropriate background conditions obtain, so that the generalization yields approximately true 

counterfactuals. Although this analysis may initially sound counterintuitive, it seems to accord 

rather well with actual scientific practice. 

 

§3.1 Laws and counterfactuals 

Some readers may suggest that interventionism is a variant of the DN model. On this 

analysis, interventionists do not so much reject the DN model as offer a novel account of “law.” 

We can rescue the DN model simply by defining “law” along the following lines: explanatory 

generalization that generates at least one approximately true test counterfactual. 

The issue here is partly terminological. Clearly, one may stipulatively define “law” 

however one pleases. As Woodward emphasizes (2003, pp. 285-288), though, proponents of the 
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DN model have not traditionally defined “law” by invoking test counterfactuals. They have 

instead chosen other defining properties. As a result, the traditional literature on laws obfuscates 

the boundary between explanatory and unexplanatory generalizations. 

The defining property most commonly cited in the traditional literature is that laws 

“support counterfactuals.” This feature is supposed to demarcate “lawlike” generalizations from 

mere “accidental” generalizations. The generalization 

 Water boils at 100 Celsius. 

is lawlike, because it “supports” the counterfactual 

 If we were to heat this sample of water to 100 Celsius, then it would boil. 

The generalization 

 All the coins in my pocket are quarters. 

is accidental, because it does not “support” the counterfactual 

 If we were to add this coin to my pocket, then it would be a quarter. 

Proponents of the DN model assign great weight to the distinction between generalizations that 

“support counterfactuals” and generalizations that do not. Yet the distinction does not in fact 

seem like the crucial one we should be studying, because many unexplanatory generalizations 

“support counterfactuals.” For example, Salmon’s (1971) famous generalization 

(5) All males who take birth control pills regularly fail to get pregnant. 

cannot be used to explain why a man fails to become pregnant after taking birth control pills, 

even though it supports a counterfactual along the following lines: 

 If John were to take the birth control pill regularly, then he would fail to get pregnant. 

From an interventionist viewpoint, the traditional literature errs by emphasizing counterfactuals 

in general rather than the sub-category of test counterfactuals. (5) supports counterfactuals, but it 
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does not support approximately true test counterfactuals. Intervening on whether John takes the 

birth control pill would have no impact on whether he becomes pregnant. That is why (5) is 

unexplanatory even while it supports certain counterfactuals. 

 Readers are free to define the phrase “law” however they like. Speaking for myself, I find 

it most helpful to eschew this phrase along with its traditional connotations. Doing so encourages 

us to emphasize more important questions, such as: When does an explanatory generalization 

help explain some phenomenon? Interventionism sheds considerable light upon this question --- 

far more so than traditional versions of the DN model. 

 

§3.2 Causation and mechanism 

Interventionism about causal explanation comes packaged with an appealing theory of 

causal relevance. The rough idea: X is causally relevant to Y just in case Y’s value would change 

if suitable interventions altered X’s value. For example, flagpole height is causally relevant to 

shadow length, because intervening on flagpole height yields a determinate change in shadow 

length. Woodward (2003, pp. 25-93) develops these ideas at length. We need not delve into the 

details. The key point is that, if we accept an interventionist theory of causal relevance, then an 

interventionist explanation (3) adduces at least one variable that is causally relevant to the 

explanandum variable. If X = (X1, X2, ..., Xn) is a vector of the explanantia variables, then (3) is 

explanatory only if some test intervention on X would yield a change in Y’s value. So (3) is 

explanatory only if X is causally relevant to Y. Individual explanantia variables Xi may be 

causally relevant to Y as well.
5
 

                                                 
5
 Strictly speaking, one can embrace interventionism about causal explanation without embracing interventionism 

about causal relevance (Saatsi and Pexton, 2013). However, much of the motivation for interventionism about causal 

explanation lies in the nexus with interventionism about causal relevance. 
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An intervention on X with respect to Y cannot alter any variables that are causally 

relevant to Y and that lie on a causal route independent of the causal route (if any) from X to Y. 

To state this constraint, we must cite the relation of causal relevance between variables. Since 

intervention is elucidated in terms of causal relevance and causal relevance is elucidated in 

terms of intervention, interventionists do not purport to have supplied a non-circular analysis for 

either notion. Instead, interventionists want to illuminate how the two notions relate to one 

another and to the scientific practice of supplying causal explanations. 

By placing causation at center stage, interventionism accords with the mechanistic 

conception. Interventionism differs from the mechanistic conception by denying that explanation 

must decompose a system into components whose joint operations produce the explanandum. 

Take the ideal gas law. (2) yields numerous test counterfactuals, e.g. counterfactuals describing 

how pressure P exerted by the gas would change if an intervention altered volume V or 

temperature T. So interventionists regard (2) as explanatory. They hold that it underwrites non-

mechanistic causal explanations that illuminate how causally relevant variables (V and T) impact 

P. Thus, while interventionists and mechanists both emphasize causal antecedents that produced 

the explanandum, interventionists hold that we can illuminate those causal antecedents without 

limning anything like an underlying mechanism. Although interventionists deny that good 

explanation must expose underlying mechanisms, they agree that exposing those mechanisms 

often improves explanation (Woodward, forthcoming). Supplementing a non-mechanistic 

explanation with mechanistic details will often generate additional test counterfactuals. For 

example, statistical mechanical explanation of pressure improves upon (2). It generates 

additional test counterfactuals that describe how P would change if an intervention altered the 

velocities of individual particles. It also describes how P would change in various conditions 
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where (2) breaks down. Thus, interventionists hold that non-mechanistic causal explanation is 

possible but that mechanistic details often improve the explanation. 

Often, not always. From an interventionist perspective, adding further mechanistic details 

to an explanation need not improve it and may even make it worse (Woodward, 2008b). 

To illustrate, suppose that a bridge will collapse precisely when the weight on it exceeds 

5000 kg. If I want to explain why the bridge collapsed, then adducing the specific weight 8356 

kg seems like no advance over saying that the weight exceeded 5000 kg. Indeed, the more 

specific explanation seems worse to the extent that it misleadingly intimates explanatory import 

for the particular weight 8356 kg. From an interventionist perspective, these intuitive verdicts are 

readily explicable. I do not generate additional approximately true test counterfactuals by citing 

the particular weight 8356 kg, so I gain no explanatory benefit by citing it. Moreover, depending 

on the context, citing the particular weight 8356 kg may misleadingly suggest that any lower 

weight would not have caused the bridge to collapse. Moral: adding further details about the 

explanans does not always improve an explanation.
6
 

                                                 
6
 If we regiment explanation using variables, then there are at least four putative explanations of the bridge collapse 

to consider. The first cites a binary variable T whose two values reflect whether the weight on the bridge exceeds 

5000 kg. The second cites a binary variable U one value of which is 8356 kg and the other value of which 

corresponds to all other possible weights. The third cites a binary variable V whose two values reflect whether the 

weight was less than 8356 kg. The fourth cites a continuum valued variable W whose values are all possible weights. 

T supports a good explanation of why the bridge collapsed. U does not: there is no determinate answer as to whether 

the bridge would collapse if an intervention altered the weight from 8356 kg, because the answer depends on 

whether the altered weight exceeded 5000 kg. Similarly for V. W can figure in good explanations of why the bridge 

collapsed, since each possible value of W has a determinate implication for whether the bridge collapses. The 

intuitive statement “The bridge collapsed because the weight on it was 8356 kg” is misleading to the extent that it 

suggests a regimented explanation using U or V, acceptable to the extent that it suggests a suitable regimented 

explanation using W. The question remains: how do explanations that cite T compare to explanations that cite W? 

Woodward (2008b) suggests that causal explanations are better when they are “proportional,” meaning roughly that 

they describe the explanans in just enough detail to explain the explanandum. From this perspective, an explanation 

that cites T is superior to an explanation that cites W. Franklin-Hall (2016) argues against proportionality. I remain 

neutral regarding proportionality. In particular, I remain neutral as to whether T is a better explanans variable than 

W. What matters for my purposes is that W does not seem like a better explanans variable than T. We gain no 

explanatory benefit by citing the fine-grained W rather than the binary T. (Thanks to an anonymous referee for 

suggesting that I discuss the bridge example.) 
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In particular, adding further mechanistic details does not always improve an explanation. 

For example, economists explain the inflation rate using models that describe how factors such 

as the money supply, interest rates, and inflationary expectations influence price levels (Mankiw, 

1997, pp. 146-182). They also model how factors such as currency levels and reserve-deposit 

ratio requirements influence the money supply (Mankiw, 1997, pp. 475-493). These models yield 

numerous approximately true test counterfactuals concerning the inflation rate. To render the 

models more mechanistic, we might add further mechanistic details about how the money supply 

changes. We might describe gear configurations of currency printing presses, or silicon chip 

states in the computers through which the central bank communicates reserve-deposit ratio 

requirements, and so on. However, economic explanation invariably neglects gear configurations 

and silicon chip states. From an interventionist viewpoint, the neglect is readily explicable. In 

adducing specific printing press gear configurations that occurred when the money supply 

changed, we do not thereby generate new approximately true test counterfactuals involving 

economic variables. Depending on the context, we may even misleadingly suggest that any 

different gear configurations would have caused a different economic outcome. Details about 

gear configurations or silicon chip states do not by themselves improve explanation of inflation, 

the money supply, or any other economic variable. 

Some mechanists might acknowledge that details about printing press gear configurations 

do not improve economic explanation. They might say that only certain privileged mechanistic 

details improve explanation. They must then answer the question: which mechanistic details 

improve explanation? Interventionism offers a principled, systematic answer: mechanistic details 

improve explanation when they help us answer additional w-questions about the explanandum. 
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§3.3 Incorporating interventionist notions into the mechanistic account? 

Craver (2006, 2014) advances a mechanistic account that incorporates interventionist 

elements. He distinguishes two kinds of scientific description: 

- Phenomenal models, such as Snell’s law, which summarize a body of data without 

providing any explanation for the data. 

- Mechanistic explanations, which limn the mechanisms that produce an explanandum. 

“In many cases,” Craver writes, “the distinction between explanatory and non-explanatory 

models is that the latter, and not the former, describe mechanisms” (2006, p. 367). He grants that 

scientific explanation sometimes provides only a mechanism sketch that “characterizes some 

parts, activities, and features of the mechanism’s organization” while leaving numerous 

mechanistic details unspecified (2006, p. 360). He acknowledges that the word “explanation” is 

used in various ways within scientific practice and that not all usages align with the mechanistic 

conception (2006, p. 367). Still, he insists that mechanistic explanation has a privileged status, 

because it constitutes a normative ideal to which scientific practice aspires (2014, pp. 37-41). 

Scientific models are explanatory only to the extent that they reach this normative ideal. 

 Craver develops his mechanistic viewpoint using interventionist ideas. He says that 

mechanistic models are explanatory because they answer a wide range of w-questions (2006, p. 

358, p. 374). He acknowledges that phenomenal models “typically allow one to answer some w-

questions” (2006, p. 358), but he says that they do not answer a suitably wide range of w-

questions to count as explanatory. Thus, while interventionists hold that an explanation need 

only yield a single approximately true test counterfactual, Craver holds that an explanation must 

yield a suitably wide range of approximately true test counterfactuals. A natural question for 

Craver is why non-mechanistic “phenomenal” descriptions are non-explanatory even when they 



17 

 

yield approximately true test counterfactuals. If mechanist models are explanatory by virtue of 

generating a wide range of approximately true test counterfactuals, then shouldn’t a phenomenal 

model count as at least a little explanatory when it generates some approximately true test 

counterfactuals? Craver does not answer this question in a clear, consistent way.
7
 He offers no 

principled basis for requiring explanations to meet such a high standard. 

 Another problematic aspect of Craver’s position concerns the explanatory value 

contributed by additional mechanistic details. Craver appears to hold that adding mechanistic 

details always helps us answer additional w-questions and thereby improves explanation (2014, 

pp. 40-41). I critiqued that thesis in §3.2. In response to my critique, Craver might retrench to a 

weaker thesis: adding mechanistic details improves an explanation just in case the new details 

help us answer additional relevant w-questions. I endorse this weaker thesis. I also note that the 

weaker thesis is not very congenial to Craver’s mechanistic viewpoint. According to the weaker 

thesis, the mechanistic details that improve explanation are simply those details that yield new 

approximately true test counterfactuals. The explanatory power of a scientific model is 

determined by the test counterfactuals that it generates, not the amount of mechanistic detail that 

it incorporates. Better then to jettison mechanistic locutions and emphasize what really matters: 

the w-questions that a scientific theory answers. 

 

§4. Interventionist explanation within scientific psychology 

 The rest of the paper develops an interventionist conception of causal explanation within 

psychology. Psychology may also provide non-causal explanations, but I focus solely on causal 

psychological explanations, i.e. psychological explanations that illuminate causal influences 

                                                 
7
 Craver writes in one passage that “phenomenal models are at best shallow explanations” (2006, p. 374), which 

suggests that they may be explanations after all (even if not particularly satisfying ones). However, this passage 

clashes with Craver’s repeated, emphatic insistence that phenomenal models are unexplanatory. 
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upon the explanandum.
8
 I will pursue the following idea: scientific psychology causally explains 

mental and behavioral outcomes by specifying how those outcomes would have been different 

had an intervention altered various factors, including relevant psychological states. 

 Cognitive science invokes a wide range of psychological states, events, and processes. 

Here is an extremely partial list: 

- Ordinary propositional attitudes, e.g. belief, desire, and intention. 

- Perception, e.g. a perceptual estimate of the shape, color, size, or location of some 

perceived object. 

- Mental imagery, e.g. rotating a mental image to compare it with another mental 

image. 

- Navigation, e.g. updating a cognitive map through dead reckoning. 

- Computational states posited by Turing-style models, e.g. storing a mental 

representation in a memory register. 

- Associations, e.g. an associative bond of a certain strength between a conditioned 

stimulus and an unconditioned stimulus. 

- Activation weights among nodes in a connectionist network. 

Each item in this list has proved controversial at various points in intellectual history. I offer the 

list simply to evoke the varied posits found in scientific psychology. 

                                                 
8
 Cummins (2000) emphasizes a mode of psychological explanation that he calls functional analysis, which explains 

a psychological capacity (e.g. the capacity to perceive depth, or to speak English) by decomposing it into less 

sophisticated capacities. Functional analysis is arguably an example of non-causal psychological explanation: it 

explains a psychological capacity not by specifying causal influences upon the capacity but rather by revealing how 

the capacity decomposes into more basic capacities. While I agree with Cummins that functional analysis plays a 

role in cognitive science practice, I do not think that it exhausts psychological explanation. In many cases, the 

explananda of interest to scientific psychology are not capacities but particular states or events. For example, we 

might want to explain why someone perceived an object as having a certain depth, or why she understood a 

particular English utterance as expressing a particular propositional content. Cummins does not say what it takes to 

explain such outcomes. He focuses exclusively upon functional analysis of psychological capacities.  
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 We may formalize these posits using variables. For example, we may introduce variables 

corresponding respectively to 

- Possible intentions (e.g. intentions to reach one’s arm to various possible locations). 

- Possible aspects of perception (e.g. possible perceptual estimates of an object’s 

shape). 

- Possible orientations of a mental image. 

- Possible cognitive maps of the environment. 

- Possible contents of some memory register. 

- Possible strengths of the associative bond between two stimuli. 

- Possible activation weight between two nodes in a connectionist network. 

These are psychological variables, in the sense that their values reflect possible psychological 

states or events. 

 Cognitive science also cites non-psychological aspects of the individual or the 

environment. Here is an extremely partial list: 

- Distal stimuli (e.g. the size or color of a perceived object). 

- Proximal stimulations of the individual’s sensory organs (e.g. a pattern of retinal 

stimulation). 

- Bodily motions (e.g. the trajectory of one’s arm). 

- Motor commands (i.e. electromagnetic impulses transmitted from the brain to the 

musculature). 

- Efference copy (i.e. a copy of a motor command, transmitted back to the brain). 

In each case, one can introduce a non-psychological variable whose values reflect possible non-

psychological states or events (e.g. a variable that reflects possible arm trajectories). 
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 I will not try to clarify the boundary between psychological and non-psychological 

variables. Some cases may be borderline, indeterminate, or controversial. In practice, it is usually 

fairly clear whether a variable is psychological or non-psychological.
9
 

 Psychological variables figure as both explananda and explanantia in scientific 

psychology. One might want to explain why an individual acquires some belief; or why the 

perceptual system estimates that an object has a certain shape; or why an associative bond of a 

certain strength is formed. Or one might cite an individual’s perceptual states to explain her 

beliefs; or her beliefs and desires to explain her intentions; or her cognitive map to explain why 

she forms a plan to move in a certain direction. Psychological explanation may also employ non-

psychological variables as explananda (e.g. one can cite intentions to explain bodily motions) or 

explanantia (e.g. one can cite proximal sensory stimulation to explain perceptual states). 

 On an interventionist conception, scientific psychology causally explains by delineating 

explanatory generalizations that describe the interaction among psychological and non-

psychological variables. The generalizations yield true (or approximately true) test 

counterfactuals specifying how some psychological or non-psychological explanandum variable 

would change were interventions to alter certain psychological or non-psychological variables. 

The generalizations conform to schema (3), where X1, X2, ..., Xn and Y may be either 

psychological or non-psychological variables. At least one variable must be psychological in 

order for the explanation to count as psychological. Thus, the boundary between psychological 

and non-psychological explanation is only as clear as the boundary between psychological and 

non-psychological variables. I am not trying to clarify those boundaries. I am trying to clarify 

                                                 
9
 Neural variables describe possible neural states. Are any neural variables also psychological variables? That 

depends on whether any neural states are psychological states --- more carefully, on whether any neural state-types 

are psychological state-types. This is a controversial question. Luckily, I do not need to take a stand here. Nothing in 

my treatment turns upon whether any neural variables are psychological variables. 
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what it takes for psychological generalizations to yield good causal explanations, assuming an 

antecedent demarcation of the psychological.
10

 

 The previous paragraph delineates an interventionist template for psychological 

explanation. My first main thesis is normative: causal psychological explanation should conform 

to the interventionist template. This thesis follows from interventionism more generally. My 

second main thesis is descriptive: current cognitive science already offers numerous explanations 

that conform well to the interventionist template. I now defend the second thesis. 

Experimental psychology isolates various “effects,” such as the McGurk effect 

(MacDonald and McGurk, 1978), the Garcia effect (Garcia and Koelling, 1966), the 

ventriloquism effect (Alais and Burr, 2004), the spacing effect (Madigan, 1969), the Stroop effect 

(Stroop, 1935), the bystander effect (Darley and Latané, 1968), and many others. We can 

summarize these effects through generalizations couched with varying degrees of precision and 

rigor. Great mathematical precision is sometimes possible, especially within perceptual 

psychology. Consider Weber’s law (Palmer, 1999, pp. 671-672): 

(6) k
I

I



, 

where I is the magnitude of some distal stimulus dimension (e.g. the length of a line), I is the 

just noticeable difference (JND) for the stimulus, and k is a constant called the Weber fraction. 

(6) is really a generalization schema, since different stimuli have different Weber fractions. 

Rearranging terms in (6), we obtain 

                                                 
10

 Folk psychology offers numerous singular psychological explanations of mental and behavioral outcomes (e.g. 

“John went to the restaurant because he wanted to meet Sam there.”) How interventionists should assess these 

singular explanations depends, in part, on the general issues about singular causal explanation raised in note 4. 

These matters deserve their own dedicated paper. But it seems clear that anything resembling scientific 

psychological explanation requires generalizations rather than mere singular causal statements. Folk psychology also 

offers various platitudes, such as the belief-desire law. Whether those platitudes are (or can be converted into) 

generalizations that conform to the interventionist template (3) is a tricky question that I will not address here. 
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(7)  I = kI, 

which displays the JND as a function of the stimulus magnitude. (7) generates test 

counterfactuals that describe how the JND would change if an intervention were to change the 

stimulus magnitude. From an interventionist viewpoint, (7) explains JNDs. A similar diagnosis 

applies to many other generalizations that summarize psychological effects, although few such 

generalizations match the precision, accuracy, and scope of Weber’s law. 

 Cummins (2000) offers an opposing analysis. He denies that one can explain a 

psychological explanandum through a generalization that summarizes some psychological effect 

(2000, p. 119):  

No laws are explanatory in the sense required by DN. Laws simply tell us what happens; 

they do not tell us why or how... In psychology, such laws there are are almost always 

conceived of, and even called, effects: the Garcia effect (Garcia, 1966), the spacing effect 

(Madigan, 1969), the McGurk effect (MacDonald and McGurk, 1978), and many, many 

more. But no one thinks that the McGurk effect explains the data it subsumes. No one not 

in the grip of the DN model would suppose that one could explain why someone hears a 

consonant like the speaking mouth appears to make by appeal to the McGurk effect. That 

just is the McGurk effect. 

Bechtel (2008) and Craver (2006) concur. 

 In contrast, I maintain that summaries of psychological effects are sometimes 

explanatory. A well-chosen summary does not just tell us what happens. It tells us what would 

have happened had an intervention altered certain factors. It thereby illuminates the 

explanandum. To illustrate: 
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- We do not explain the McGurk effect itself by citing the McGurk effect. But we can 

explain particular perceptual events by invoking the McGurk effect. For example, 

suppose we want to explain why someone heard /da/ even though /ba/ was uttered. A 

proper appeal to the McGurk effect illuminates this perceptual event by pinpointing a 

key causally relevant factor: visual appearance of lip movements associated with /ga/. 

Our explanation is illuminating because it supports helpful test counterfactuals (e.g. 

the perceiver would not have heard /da/ had the lips not looked like they were 

articulating /ga/). 

- Weber’s law helps us explain why a stimulus has a certain JND. When we use 

Weber’s law to derive the JND, we pinpoint a key causal influence upon the JND: the 

stimulus magnitude. We also specify how the JND would have changed had an 

intervention altered the stimulus magnitude. We thereby provide valuable information 

that illuminates why a certain JND arises. 

A generalization that merely summarizes some psychological effect can be explanatory. 

 Still, I think that Cummins is right to find such generalizations unsatisfying. They are 

clearly rather shallow and superficial. We would like deeper psychological explanations. From 

an interventionist perspective, there is a straightforward reason why mere summaries of 

psychological effects seem unsatisfying: they answer a fairly limited range of w-questions. For 

example, a summary of the McGurk effect does not specify how speech perception would have 

changed under various further manipulations: interventions that insert a temporal lag between lip 

movements and sound (as in a badly dubbed movie); interventions that alter the perceiver’s 

attention; interventions that blur visual input; and so on. Analogous points apply to other 

generalizations that merely summarize psychological effects. At best, these summaries generate 
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relatively few test counterfactuals. Even when the summaries are explanatory, they are minimally 

explanatory. A satisfying scientific psychology should move beyond minimally explanatory 

generalizations, articulating generalizations that answer a wider range of w-questions. 

 To what extent does current scientific psychology already do so? In some areas (e.g. 

social psychology), the explanatory generalizations on offer arguably do not go much deeper 

than careful summaries of psychological effects. In other areas, though, psychology has isolated 

far more informative generalizations. §5 illustrates by discussing Bayesian models of perception. 

 

§5. Explaining perception 

 The perceptual system estimates distal conditions (e.g. shapes, sizes, colors, and locations 

of perceived objects) based upon proximal sensory stimulations (e.g. retinal stimulations). As a 

simple example, consider shape from shading. Suppose that you perceive an object whose 

shading is compatible with two conflicting hypotheses: light comes from overhead and the 

perceived object is convex; or light comes from below and the perceived object is concave. Then 

you will perceive the object as convex rather than concave (Palmer, 1999, pp. 244-245). Thus, a 

certain pattern of retinal illumination is reliably mapped by your perceptual system into a percept 

that estimates convexity (rather than concavity). Perceptual psychology studies the mapping 

from proximal sensory stimulations to perceptual estimates. The science offers numerous 

extremely precise generalizations that describe how aspects of the percept (e.g. perceived shape, 

size, color, or location) depend on proximal sensory input. 

 Generalizations along these lines play a central role within Burge’s (2010) analysis of 

perceptual psychology. Burge emphasizes what he calls formation laws: “laws that determine 

transformation of sensory registrations --- sensory states that correlate highly with a type of 



25 

 

stimulation --- into perceptual representational states with representational content” (2010, p. 

345. Burge (2010, p. 383) writes that perceptual psychology “explains by citing laws or law-like 

patterns of operation that lead from given registrations of proximal stimulation to perceptual 

states that specify particulars as having specific attributes.” Formation laws dictate which 

percepts ensue from which sensory registrations. Perceptual psychology explains by subsuming 

percepts under appropriate formation laws. 

 I set aside the question whether “formation laws” should be called “laws.” The key point 

I want to emphasize is that, from an interventionist perspective, many formation laws do seem 

explanatory. A well-chosen formation law exhibits how intervening on proximal sensory input 

would alter the percept --- e.g. how intervening on shading would alter perceived shape. Suitable 

formation laws illuminate the percept by identifying causally relevant antecedents (salient 

aspects of the proximal stimulus) and by exhibiting how the percept would have been different 

had we suitably manipulated those antecedents. 

 Nevertheless, we would like to move beyond formation laws that merely dictate which 

proximal sensory inputs are mapped into which perceptual states. How exactly does the 

perceptual system transform proximal sensory inputs into perceptual states? To answer this 

question, we must “look inside the black box,” clarifying the psychological processes that 

mediate between sensory inputs and percepts. 

 

§5.1 Bayesian perceptual psychology 

 Helmholtz (1867) proposed that the perceptual system executes an unconscious inference 

from sensory input to a “best” hypothesis regarding distal conditions. In the 1990s, perceptual 

psychologists began using Bayesian decision theory to develop Helmholtz’s proposal. 
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Bayesian decision theory hinges on the notion of subjective probability. Bayes’s Rule 

describes how one should update subjective probabilities in light of new evidence: 

Bayes’s Rule: When one receives evidence e, one should update p(h) by replacing it with 

p( h | e). 

p(h) is the probability of h ---  usually called the prior probability --- and p(h | e) is the 

probability of h given e --- usually called the posterior probability. An invaluable aide to 

computing the posterior is Bayes’s theorem: 

Bayes’s Theorem: )()|()|( hphepehp  , 

meaning that the left-hand side is proportional to the right-hand side. Bayes’s theorem expresses 

the posterior in terms of the prior probability and the prior likelihood p(e | h). Another key 

element of Bayesian decision theory is expected cost minimization (equivalently, expected utility 

maximization). This rule instructs one to choose an action that minimizes expected cost, where 

“expected cost” is determined by one’s probabilities and a cost function. 

 On a Bayesian approach, perception executes an unconscious statistical inference 

(Feldman, 2015), (Knill and Richard, 1996), (Rescorla, 2015). The perceptual system allocates 

probabilities over hypotheses drawn from a hypothesis space, where each hypothesis h reflects 

some aspect of the distal environment (e.g. the shape of a perceived object). The perceptual 

system encodes prior probabilities p(h) and prior likelihoods p(e | h), where each e corresponds 

to possible sensory input (e.g. possible retinal stimulation; possible proprioceptive input). After 

receiving input e, the perceptual system reallocates probabilities across the hypothesis space in 

rough accord with Bayes’s Rule, yielding a posterior p(h | e). 
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 To illustrate, consider shape from shading. Let s reflect possible shapes, θ reflect possible 

lighting directions, and e reflect possible patterns of retinal illumination. Stone (2011) offers a 

Bayesian model with the following elements: 

A prior probability p(s) over possible distal shapes. 

A prior probability p(θ) over possible lighting directions. The prior assigns higher 

probability to overhead lighting directions. 

A prior likelihood p(e | s, θ), which codifies the likelihood that distal shape s and lighting 

direction θ cause retinal illumination e. 

Upon receiving retinal illumination e, the perceptual system reallocates probabilities in rough 

accord with Bayes’s Rule, yielding a posterior p(s | e). 

 Any Bayesian perceptual model must describe how the perceptual system transits from 

the posterior p(h | e) to a specific perceptual estimate ĥ . For example, a Bayesian model of shape 

perception must describe how the perceptual system transits from a posterior over possible 

shapes to a specific shape-estimate that goes into the percept. Bayesian models vary in how they 

handle the transition from the posterior to the estimate ĥ . The most common modeling strategy 

posits unconscious expected cost minimization. The “action” is selection of estimate ĥ . The cost 

function reflects various possible factors: the penalty for an incorrect answer; which distal 

properties are more “important”; and so on. If one chooses a suitable cost function, then expected 

cost minimization reduces to a simpler decision rule (e.g. selecting the median of the posterior). 

 Perceptual psychologists have employed the Bayesian paradigm to illuminate numerous 

perceptual phenomena, including perceptual estimation of size, shape, orientation, weight, color, 

speed, location, depth, and so on. 
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§5.2 Priors as explanantia 

 Bayesian perceptual modeling exhibits how key features of the percept depend upon the 

priors. We may schematize many Bayesian models using an equation of the form: 

(8) ĥ = (prior probability, prior likelihood, e). 

(8) depicts perceptual estimate ĥ  (e.g. estimated shape, size, color, or location) as a function of 

three variables: the prior probability; the prior likelihood: and proximal sensory input e. (8) 

displays how ĥ  would have changed had an intervention altered one of those variables. For 

example, a suitable Bayesian model of shape perception can answer the questions How would the 

perceptual shape-estimate have been different had an intervention altered the prior p(θ) over 

lighting directions? and How would the final shape-estimate have been different had an 

intervention altered the prior p(s) over shapes? Bayesian perceptual models isolate crucial 

explanantia (perceptual priors) that causally influence the explanandum (the percept), and they 

describe how the explanandum would have been different had an intervention altered the 

explanantia. They thereby answer numerous w-questions. 

 If we hold the priors fixed, then we can convert an equation of the form (8) into an 

equation of the form: 

(9) ĥ = (e). 

(9) describes a mapping from proximal sensory inputs e to perceptual estimates ĥ . Priors do not 

figure as explicit variables in (9). Instead, they are built into our choice of . Different priors 

induce a different . (8) explicitly depicts how the percept would have changed had the priors 

changed, while (9) does not. So (8) generates a much wider range of test counterfactuals than (9). 

(8), unlike (9), exhibits how the percept systematically depends upon the priors. From an 

interventionist perspective, (8) is far more explanatory than (9). This interventionist verdict 
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accords with actual scientific practice, which does not rest content with (9) but instead strives to 

articulate the deeper generalization (8). 

 In summary, Bayesian perceptual models specify how perceptual outcomes would have 

been different had an intervention altered the subject’s prior probabilities or prior likelihoods. By 

answering so many w-questions, Bayesian models go far beyond the minimally explanatory 

generalizations surveyed in §4. 

 

§5.3 Intervening on priors 

 Interventionism requires that there be a well-defined notion of “intervention” for each 

explanans variable. Intervening on sensory input e is relatively straightforward. For example, one 

can intervene on retinal input simply by altering the light that hits the retina. But how does one 

intervene on the priors? 

 It is well-established that experience can alter the priors. When environmental statistics 

change, the priors change. However, an “intervention” must target a specific explanans variable 

without altering any other variable that independently influences the explanandum. For example, 

an intervention on the prior probability must not alter the prior likelihood, because the prior 

likelihood exerts independent influence on the percept. In a notable experiment along these lines, 

Adams, Graf, and Ernst (2004) manipulated the lighting direction prior p(θ). They used 

performance in a shape-estimation task to infer the peak of each subject’s prior. They then 

exposed subjects to deviant stimuli indicating that the light source was shifted by as much as 30 

from that peak. The result was an altered percept: the same stimulus caused a different shape-

estimate before the experimental manipulation than it did afterwards. Performance also changed 

in a separate lightness-estimation task. Why did both shape-estimates and lightness-estimates 
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change, even though deviant stimuli occurred only in the shape-estimation task? The best 

explanation, Adams, Graf, and Ernst (2004) argue convincingly, is that exposure to the deviant 

stimuli in the shape-estimation task caused a shift in p(θ), which affected performance in both 

tasks. In other words, the experimental manipulation changed the lighting direction prior. The 

experimental manipulation does not seem to have altered p(S) or p(e | s, θ). So the experimental 

manipulation was plausibly an intervention (or close to an intervention) on p(θ) in the technical 

sense demanded by interventionists.
11

 

 Let us consider a more detailed example: velocity estimation. The perceptual system 

estimates velocities of distal objects based upon local measurements of retinal image motion. 

The inference from local motion measurements to distal velocities is a non-trivial problem, for 

several reasons. First, local motion measurement is noisy, especially in low contrast scenes. 

Second, a given local motion measurement is often compatible with multiple distal velocities. 

This is called the aperture problem: motion of an edge across an aperture is ambiguous, since 

many possible velocities are compatible with what one can measure through the aperture. See 

Figure 1. The perceptual system somehow transits from the overall pattern of local motion 

measurements to an estimate of distal velocity. 

 

INSERT FIGURE 1 ABOUT HERE 

  

                                                 
11

 Experimental manipulation of the lighting prior alters additional mental states, especially ancillary beliefs. For 

example, the subject comes to believe that she participated in a psychology experiment. If Bayesian perceptual 

models are on the right track, then a change in ancillary belief influences the percept (if at all) only by altering the 

priors, the prior likelihoods, or the cost function. In the experimental manipulation performed by Adams, Graf, and 

Ernst (2004), p(θ) changes but p(S) and p(e | s, θ) do not. The cost function also remains fixed. Thus, any changes in 

ancillary belief influence the percept (if at all) only by altering p(θ). For this reason, the experimental manipulation 

still counts as an intervention on p(θ) with respect to the percept even though it alters various ancillary beliefs. 
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Weiss, Simoncelli, and Adelson (2002) offer a Bayesian velocity estimation model that 

illuminates how the human visual system overcomes the aperture problem. The model applies in 

circumstances where one’s eyes are fixated while observing a pattern moving in a two-

dimensional fronto-parallel plane. Under these circumstances, the velocity v of the image cast by 

the pattern on the retina serves as a decent proxy for the pattern’s own distal velocity. The model 

takes as input an image intensity function I(x, y, t), which gives the light intensity at retinal 

location (x, y) at time t. To estimate v, the model deploys the following elements: 

- Prior probability p(v) over velocities. The model employs a prior that favors slow 

speeds, reflecting the environmental regularity that objects tend to move slowly. 

More specifically, the prior is a Gaussian centered at speed 0 with variance 
2

p . A 

generalized model offered by Sotiropoulos, Seitz, and Seriès (2011) allows Gaussian 

priors with non-zero mean  = (x, y), where x and y are the x and y components of 

velocity . 

- Prior likelihood p(I | v). The model assumes that image intensity changes only 

because of the moving pattern’s translational motion, not because points on the 

pattern change in apparent brightness. The model also assumes that local motion 

measurements are corrupted by Gaussian noise with variance 
2 . 

The model combines the prior and prior likelihood into: 

- Posterior probability p(v | I), reflecting the probability of velocity v given the overall 

pattern of retinal image intensity I. 

Given input I, the model selects the velocity-estimate v̂  that maximizes p(v | I). The generalized 

model offered in (Sotiropoulos, Seitz, and Seriès, 2011) expresses v̂  as 
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where Ix, Iy, and It are the derivatives of I with respect to x, y, and t, and where sums are taken 

over pixels in the stimulus image. For our purposes, the details of (10) are less important than its 

schematic form: 

(11) ),,,,(ˆ
2

2

tyx

p

IIIv



 . 

(11) displays estimated velocity v̂  as a function of several variables: the mean  of the velocity 

prior; the ratio 
2

2

p


; and the spatial and temporal derivatives of image intensity I. Using the 

Bayesian model, one can explain a variety of motion illusions that are otherwise quite difficult to 

accommodate within a single unified framework. In the words of Born and Bradley (2005, p. 

179): “[t]he model can explain a remarkable range of psychophysical observations.” For 

example, low-contrast stimuli typically appear to move slower than high-contrast stimuli. The 

Bayesian model explains this as follows: lower contrast stimuli induce noisier local motion 

measurements, which lead to a relatively “spread out” likelihood function, which allows the slow 

motion prior p(v) to dominate computation of the posterior, which yields a lower speed estimate. 

 (10) answers numerous w-questions of the form: How would the velocity estimate have 

been different had an intervention altered the velocity prior? (10) specifies how v̂  would have 

changed had an intervention altered the prior’s mean  (corresponding to a change in anticipated 

velocity) or variance (corresponding to increased or decreased uncertainty regarding anticipated 

velocity). It thereby depicts how the explanandum (estimated velocity) depends upon the 
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explanans (the velocity prior). To test (10), Sotiropoulos, Seitz, and Seriès (2011) experimentally 

manipulated the velocity prior. They exposed subjects to two-dimensional moving stimuli. When 

subjects repeatedly encountered fast-moving stimuli, the velocity prior shifted so as to favor 

speeds faster than zero. As a result, velocity estimates increased in accord with (10). The visual 

system interpreted the same stimulus as moving faster after the experimental manipulation. Quite 

plausibly, this experimental manipulation counts as an intervention on the velocity prior. So (10) 

yields approximately true test counterfactuals describing the relation between  and v̂ . 

 I submit that we find the motion estimation model explanatorily powerful precisely 

because it yields so many approximately true test counterfactuals. The model explains velocity 

estimation by revealing how the velocity percept would change if an intervention altered a key 

antecedent mental state: the velocity prior. 

 To derive (10) from Bayes’s Rule, we make numerous assumptions about the stimulus: 

that the perceived pattern moves with a single translational velocity; that points on the pattern do 

not change in apparent brightness as they move; that the image intensity function is smooth 

enough to allow a Taylor series approximation; that measurement noise is independent across 

spatial location; etc. The derivation also makes several restrictive assumptions based more upon 

mathematical convenience than psychological realism. For example, it assumes that the velocity 

prior is a Gaussian, even though evidence suggests that the true velocity prior is “heavier tailed” 

than a Gaussian (Stocker and Simoncelli, 2006). So (10) only prevails for certain stimuli, and it 

only prevails under restrictive assumptions (some false) about the perceptual system. A similar 

diagnosis applies to all other Bayesian models found in perceptual psychology. 

 From an interventionist perspective, these facts are not troubling. As long as a 

generalization generates approximately true test counterfactuals, it supports satisfying scientific 
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explanations. That (10) meets this standard has been experimentally confirmed. Even though we 

derived (10) using restrictive assumptions (some false) about the perceptual system, and even 

though (10) fails against certain background conditions, it still achieves the goal that causal 

explanation of perception should achieve: it illuminates how the percept depends upon key 

causally relevant factors. 

 I have adduced actual experimental interventions on perceptual prior probabilities. The 

literature depicts additional experimental manipulations that plausibly intervene upon prior 

probabilities (Ernst, 2007), (Flanagan, Bittner, Johansson, 2008), (Knill, 2007) or prior 

likelihoods (Sato and Kording, 2014), (Seydell, Knill, Trommershäuser, 2010). No doubt further 

such experimental interventions will emerge as the field develops. Even when researchers have 

not directly confirmed test counterfactuals generated by some Bayesian perceptual model, the 

model’s other predictive successes often provide strong evidence that those counterfactuals are at 

least approximately true. Overall, then, explanatory practice within Bayesian perceptual 

psychology conforms nicely to the interventionist template. Bayesian perceptual psychologists 

try to isolate (and often successfully isolate) explanatory generalizations that generate 

approximately true test counterfactuals. 

 

§5.4 Non-deterministic Bayesian perceptual modeling 

 So far, I have emphasized Bayesian models that can be schematized using (8). These 

models are deterministic. However, many Bayesian perceptual models involve indeterministic 

elements that flout schema (8). 

One source of indeterminacy is noise. Human neural activity, including perceptual 

processing, is very noisy. For that reason, the same stimulus can cause different percepts on 
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different occasions. To model trial-by-trial variation in human perceptual response, Bayesian 

modelers frequently add indeterministic perturbations to the model. In this spirit, Stone (2011) 

offers a deterministic Bayesian model of shape perception based on shading cues, and he then 

corrupts the model with indeterministic Gaussian noise. The resulting non-deterministic model 

yields a formula for O(c), the probability that one perceives shape c. Here O(c) is an objective 

probability rather than a subjective probability. 

Another possible source of indeterminacy is multistable perception. Certain ambiguous 

stimuli, such as the Necker cube, cause the perceptual system to “flip” between rival percepts. 

Bayesian perceptual psychologists sometimes model multistable perception in indeterministic 

terms. They replace expected cost minimization with an indeterministic strategy for transiting 

from the posterior p(h | e) to the estimate ĥ . The usual idea is that the perceptual system samples 

an estimate from the posterior, where the frequency distribution of sampled estimates 

approximately matches the posterior. Moreno-Bote, Knill, and Pouget (2011) offer a model of 

this kind. The model concerns an ambiguous stimulus composed of two gratings that drift in 

opposite directions. Perceived depth ordering of the gratings spontaneously reverses. See Figure 

2. By varying the gratings’ wavelengths and speeds, we vary the frequency freq(o) with which 

depth ordering o appears. The Bayesian model expresses freq(o) as a function of three factors: a 

prior p(o) over depth orderings; a prior likelihood p( | o) that relates the depth ordering o to 

the difference in wavelength  between the gratings; and a prior likelihood p(v | o) that relates 

the depth ordering to the difference in speed v between the gratings. 

 

INSERT FIGURE 2 ABOUT HERE 
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 How should interventionists handle non-deterministic Bayesian perceptual modeling? 

The interventionist schema (3) features a deterministic generalization that describes how 

interventions on certain explanantia variables would alter Y’s value. Taking (3) as our guide, 

non-deterministic models look unexplanatory. For example, Stone’s (2011) model of shape 

perception does not depict how changes to the priors would determinately change the shape-

estimate. Should interventionists conclude that Stone’s model does not explain the perceptual 

state estimate? 

 To avoid that conclusion, interventionists might generalize schema (3) to allow non-

deterministic explanations. They might allow that a non-deterministic generalization involving 

explanandum variable Y can explain Y’s value. Woodward and Hitchcock (2003b) mention this 

option but do not endorse it. 

 I favor a different line. I concede that non-deterministic Bayesian models do not explain 

perceptual estimates, but I insist that they explain objective probabilities or frequencies of 

perceptual estimates. Take Stone’s (2011) model of shape perception. Because it is non-

deterministic, the model yields no generalization of the form (3). I grant that the model does not 

explain the perceptual shape-estimate. Nevertheless, the model yields a determinate equation of 

the form 

(12) O(c) = (prior, prior likelihood, e). 

It thereby depicts how interventions on priors would alter the objective probability of a given 

shape-estimate. Even if the model does not explain the shape-estimate itself, it explains the 

objective probability of a given shape-estimate. Similarly, the model offered by Moreno-Bote, 

Knill, and Pouget (2011) yields a determinate equation of the form: 

 freq(o) = (prior probability, prior likelihood, e); 
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or, more specifically, 

(13) freq(o) = (p(o), p( | o), p(v | o), , v). 

Equation (13) expresses the frequency freq(o) with which ordering o is perceived as a function of 

the priors and sensory input. (13) generates approximately true test counterfactuals describing 

how freq(o) would vary if an intervention were to alter the priors. It thereby explains freq(o), 

even if it does not explain the perceived ordering o itself. 

 I conclude that interventionism, although geared towards deterministic explanation, can 

handily accommodate indeterministic Bayesian perceptual modeling. 

 

§6. Bayesian cognitive science 

Inspired by the success of Bayesian perceptual psychology, cognitive scientists have 

offered Bayesian models for numerous additional mental processes. Researchers have applied 

Bayesian modeling to many areas: motor control (Wolpert, 2007); language acquisition (Chater 

and Manning, 2006); high-level cognition (Chater and Oaksford, 2008), (Griffiths, Kemp, and 

Tenenbaum, 2008), including social cognition (Baker and Tenenbaum, 2014), intuitive physics 

(Sanborn, Masinghka, and Griffiths, 2013), and causal reasoning (Gopnik, Glymour, Sobel, 

Schulz, and Kushnir, 2004); human and nonhuman navigation (Madl et al., 2014), (Petzschner 

and Glasauer, 2011); mental disorders, such as schizophrenia (Fletcher and Frith, 2009) and 

autism (Pellicano and Burr, 2012); and so on. The resulting theories are often far more rigorous 

and better-confirmed than alternative theories. A Bayesian model of a mental process generates 

detailed counterfactuals describing how the process would have proceeded differently had we 

intervened on the priors. One reason why Bayesian models often seem so much more fruitful 

than rival theories is that they generate so many detailed test counterfactuals. 



38 

 

Whether the test counterfactuals are true depends, naturally, upon the specific model. We 

have seen that test counterfactuals generated by Bayesian perceptual psychology are often at 

least approximately true. For a non-perceptual example, consider Bayesian sensorimotor 

psychology. This research program studies the mental processes that transform intentions into 

motor commands. For instance, if I form an intention to pick up a ball, then my motor system 

must transform my intention into motor commands that help execute the intention. Bayesian 

models postulate that the motor system transforms intentions into motor commands through 

unconscious inference and decision-making (Bays and Wolpert, 2007), (Rescorla, 2016), 

(Wolpert, 2007). The motor system uses Bayesian inference to estimate environmental state 

(including the subject’s own bodily state) based on sensory feedback. The resulting 

environmental state estimates guide the motor system as it selects motor commands that promote 

the individual’s intentions. These motor commands are selected through expected cost 

minimization. Bayesian sensorimotor models generate well-confirmed counterfactuals that 

describe how motor outcomes would have changed had an intervention altered the motor 

system’s priors or the individual’s intentions.
12

 Thus, Bayesian sensorimotor psychology 

explains motor outcomes by revealing how those outcomes depend upon antecedent mental 

states. 

 Bayesian perceptual psychology and Bayesian sensorimotor psychology are the best-

developed areas of Bayesian cognitive science. Other areas do not achieve such massive 

explanatory success. Nevertheless, all areas of Bayesian cognitive science try to articulate 

generalizations that generate true test counterfactuals. In many cases, the generalizations are 

approximately true. Thus, Bayesian cognitive science goes substantially beyond the minimally 

explanatory generalizations discussed in §4, such as Weber’s law. Future work should bolster my 

                                                 
12

 See (Campbell, 2007) for discussion of what it is to intervene on an intention. 
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assessment by analyzing additional Bayesian case studies. Future work should also evaluate the 

extent to which non-Bayesian cognitive science improves upon minimally explanatory 

generalizations. 

 

§7. Comparison with the nomological conception 

 How does my interventionist conception of psychological explanation compare with the 

nomological and mechanistic conceptions? I discuss the nomological conception in this section 

and the mechanistic conception in §8. 

 Interventionism and the DN model both emphasize explanatory generalizations. The 

difference concerns which generalizations count as explanatory. DN theorists prioritize the 

distinction between lawlike and accidental generalizations. Interventionists do not invoke the 

notion of law. Instead, they prioritize test counterfactuals. Weber’s law is minimally explanatory, 

because it supports a restricted range of test counterfactuals. Generalizations such as (10) and 

(13) are more explanatory, because they support a wider range of test counterfactuals. 

 Interventionism accords much better than the DN model with actual cognitive science 

practice. Cognitive scientists do not treat a generalization as explanatory simply because it is a 

law. Instead, they pursue generalizations that generate approximately true test counterfactuals --- 

the more such counterfactuals, the better. 

To illustrate, consider a famous puzzle: the moon illusion. We can describe the moon 

illusion through the following law: 

(14) The moon looks larger on the horizon than at its zenith, ceteris paribus. 

Fodor frequently cites (14) as a paradigmatic psychological law (Fodor, 1991a), (Fodor, 1991b, 

p. 280), (Fodor and Lepore, 1992, pp. 151-152). And (14) does indeed seem as a close to a 
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psychological law as one could hope to find. In particular, it supports counterfactuals along the 

following lines: 

(15) If the moon had been at the horizon rather than its zenith, then it would have looked 

larger. 

Nevertheless, (14) does not seem explanatory. Intuitively, (14) does not provide the slightest 

indication which features of the distal or proximal stimulus are responsible for the change in 

apparent lunar size. After all, lunar elevation in itself hardly seems like a plausible causal 

influence upon apparent lunar size. No vision scientist would take (14) seriously as even the start 

of an explanation for why the moon appears larger on some occasions than others. (14) merely 

states a phenomenon that we wish to explain.
13

 

 From an interventionist viewpoint, counterfactuals such as (15) are irrelevant to causal 

explanation. What matters are test counterfactuals. (14) does not support test counterfactuals that 

are even approximately true. As lunar elevation changes during the nighttime, a crucial 

additional variable typically changes: distance cues afforded by surrounding terrain. An 

intervention on lunar elevation should hold ground terrain distance cues fixed. Rock and 

Kaufman (1962) performed such an intervention. They used optical tricks to reverse ground 

terrain cues, so that the moon appeared in zenith position with horizon ground terrain surround 

and in the horizon position with an empty sky surround. This experimental intervention reversed 

the moon illusion: the horizon moon looked smaller than the zenith moon. Hence, (14) does not 

accurately specify how perceived lunar size would change if an intervention altered lunar 

elevation. Rather than isolate a causally relevant variable, (14) highlights an irrelevant 

concomitant (lunar elevation). 

                                                 
13

 Fodor seems to recognize that (14) looks unexplanatory, because he usually cites it as an explanandum rather than 

an explanans. I doubt that Fodor can consistently classify (14) as unexplanatory, since it counts as a law according to 

the traditional criteria of lawhood. 
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In this respect, (14) compares unfavorably with even a minimally explanatory 

generalization such as Weber’s law. At least Weber’s law isolates a crucial variable (stimulus 

magnitude) that causally influences the explanandum (JND). For a more pointed comparison, 

Rock and Kaufman (1962) show that a suitable generalization 

(16) S = f(G), 

holds against normal background conditions, where G is a binary variable that reflects whether 

ground terrain surround is present and S is a binary variable that reflects whether perceived lunar 

size exceeds an appropriately chosen reference standard. (16), unlike (14), supports true test 

counterfactuals. (16), unlike (14), specifies how to manipulate the percept by intervening on a 

key explanans variable. So (16) is explanatory, if minimally so. My verdict accords with the 

widespread scientific consensus that Rock and Kaufman achieved considerable explanatory 

progress by isolating a key causal influence on apparent lunar size. 

 Obviously, we would like a deeper explanation for the moon illusion than (16). 

Unfortunately, the psychological processes that generate the moon illusion are highly 

controversial (Hershenson, 1989), (Kaufman and Kaufman, 2000). Thus, (16) is only the 

beginning of a fully satisfying explanation. But it is a beginning, whereas (14) is not. This 

contrast in explanatory status supports the interventionist conception over the nomological 

conception. 

 Over the past few decades, philosophers have extensively debated whether scientific 

psychology can supply explanatory generalizations that deserve the honorific “law” (Davidson, 

1980), (Fodor, 1987), (Dennett, 1993), (Schiffer, 1991). One might therefore ask which, if any, 

of the explanatory generalizations (7), (10), (12), (13), and (16) count as laws. I can remain 

neutral on this question, because my positive account does not employ the notion law. 
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Depending on how one demarcates the laws, some of the generalizations may count as laws. 

Depending on how one demarcates the laws, some explanations offered within cognitive science 

may conform to the nomological conception. My primary complaint about the nomological 

conception is not that it fails to recognize certain psychological explanations as explanations. My 

primary complaint is that the nomological conception (as traditionally developed) does not 

elucidate why these explanations are explanatory. From an interventionist viewpoint, it does not 

much matter whether a psychological generalization counts as a law. What matters is how many 

(if any) approximately true test counterfactuals a psychological generalization generates. 

 In summary, interventionism provides what the traditional literature on laws does not: a 

principled account that illuminates why generalizations such as (7), (10), (12), (13), and (16) are 

explanatory while generalizations such as (14) are unexplanatory.  

  

§8. Comparison with the mechanistic conception 

 Bechtel (2008) illustrates the mechanistic viewpoint with various case studies drawn 

from cognitive science. At least some of Bechtel’s case studies yield approximately true test 

counterfactuals, so these count as genuine explanations from an interventionist viewpoint. Some 

psychological explanations therefore conform to the mechanistic conception. Nevertheless, the 

mechanistic conception does not fit well with numerous other psychological explanations, 

ranging from minimally explanatory generalizations such as Weber’s law or (16) to the far 

deeper Bayesian explanations canvassed in §§5-6. 

 Consider (16). This is a paradigmatic “phenomenal” description of the sort that Craver 

and other mechanists disapprovingly compare with genuine explanations. (16) has a purely 

input-output character: it says that stimuli with certain properties reliably cause percepts with 
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certain properties. It does not even begin to suggest computational or neural mechanisms that 

mediate between proximal sensory input and the percept. It tells us nothing about the 

mechanisms that generate perceived lunar size, except of course that those mechanisms are 

sensitive to presence or absence of ground terrain surround. From a mechanistic viewpoint, it is 

quite mysterious why (16) constitutes such a marked advance over (14) in our understanding of 

the moon illusion. From an interventionist viewpoint, the advance is apparent: (16), unlike (14), 

yields approximately true test counterfactuals. 

 Or consider the Bayesian perceptual models surveyed in §5. The models are highly non-

mechanistic. They provide no clue regarding how the perceptual system encodes prior 

probabilities or prior likelihoods. Nor do they decompose the perceptual system into neural or 

computational components. Nor do they identify underlying neural processes or mental 

computations through which the perceptual system executes Bayesian inference. The non-

mechanistic character of Bayesian modeling is widely acknowledged within cognitive science 

(Griffiths, Kemp, and Tenenbaum, 2008), (Jones and Love, 2011), (Knill and Richards, 1996) 

and philosophy (Colombo and Hartmann, 2017), (Herschbach and Bechtel, 2011). Some authors 

invoke it to critique the Bayesian paradigm (Jones and Love, 2011), (Herschbach and Bechtel, 

2011). I think we should instead regard it as evidence against the mechanistic conception of 

psychological explanation. Many Bayesian models, including the motion estimation model, are 

explanatory. 

 When confronted with putatively non-mechanistic psychological explanations, 

mechanists sometimes reply that the putative counterexamples are mechanism sketches (Piccinini 

and Craver, 2011). They say that a theory counts as explanatory if it sketches a mechanism, with 

full mechanistic details to be disclosed at a future date. This reply seems rather forced when 
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applied to minimally explanatory generalizations. For example, (16) does not meet Craver’s 

(2006, p. 360) criteria for a mechanism sketch, because it provides no hint how the relevant 

perceptual mechanism decomposes into computational or neural parts. The appeal to mechanism 

sketches seems more compelling when applied to Bayesian models. A Bayesian model delineates 

abstract computational features of neural processing, so one might plausibly contend that it 

sketches a neural mechanism. Colombo and Hartmann (2017) argue along these lines. They say 

that Bayesian modeling constrains neural mechanisms, thereby providing a first step towards 

full-blown mechanistic explanation. 

 In response, I deny that constraints upon neural mechanism suffice for psychological 

explanation. To illustrate, consider motion perception. Many computations that underlie primate 

motion perception occur in the middle temporal brain region (V5). We know a huge amount 

about V5, its internal structure, its contribution to motion perception, and its place in neural 

architecture (Born and Bradley, 2005), (Zeki, 2015). Notably, though, much of this knowledge 

does not illuminate why the perceptual system estimates a particular velocity. For example, we 

have detailed knowledge about the neural pathways into V5 from V1, V2, V3, and other brain 

areas. These are mechanistic details. They concern how certain regions of the brain are 

organized. These particular mechanistic details do not in themselves illuminate why the 

perceptual system estimates one velocity rather than another. No practicing scientist would say 

that we have explained perceived velocity, even in a superficial way, simply by specifying the 

neural pathways into V5. A mechanism sketch that merely specifies pathways into V5 does not 

explain why the perceptual system estimates one velocity rather than another. 

Some mechanism sketches explain the explanandum. Others do not. So the mere fact that 

a Bayesian model sketches a mechanism does not entail that it explains the explanandum. We 
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cannot elucidate the explanatory value of Bayesian models simply by noting that they supply 

mechanism sketches or that they constrain underlying mechanisms. We need a systematic 

account that demarcates the explanatory mechanism sketches from the unexplanatory mechanism 

sketches. Interventionism provides the needed demarcation: the explanatory mechanism sketches 

are those that generate suitable test counterfactuals. For example, a specification of the neural 

pathways into V5 may predict that certain kinds of brain damage would impair motion 

perception, but it does not pinpoint any intervention that would produce a specific velocity 

estimate. Therefore, it does not explain why the perceptual system estimates one velocity rather 

than another.
14

 The Bayesian motion estimation model explains why the perceptual system 

estimates one velocity rather than another, because it describes how intervening on the priors 

would produce specific velocity estimates. If we want to evaluate whether a model explains an 

explanandum, the crucial question is which test counterfactuals the model generates, not whether 

the model sketches a mechanism. 

I conclude that interventionism outperforms the mechanistic conception in its handling of 

the numerous non-mechanistic explanations offered within cognitive science. 

Interventionism also provides useful guidance regarding how one might improve upon 

non-mechanistic psychological explanations. Everyone agrees that it would be desirable to 

clarify the neural mechanisms that underlie psychological activity. In particular, we would like to 

supplement existing Bayesian models by specifying how neural states encode priors and how 

neural activity approximately implements Bayesian inference. However, not all mechanistic 

details improve explanation. If we learn that a certain pattern of neural firing occurs in the causal 

                                                 
14

 Some well-confirmed test counterfactuals relate V5 to perceived velocity. Researchers have confirmed 

counterfactuals of the form: If we microstimulate certain cells in V5, then certain changes in the velocity percept 

will occur (Zeki, 2015). Accordingly, I count some mechanistic details about V5 as explanatory. My point in the 

main text is that some notable mechanistic details about V5 are not explanatory. 



46 

 

chain from proximal stimulation to percept, this mechanistic detail does not necessarily improve 

our understanding of why the percept occurs. The specific pattern of neural firing may be 

explanatorily important, or it may be more analogous to the specific weight 8356 kg on the 

collapsing bridge or to specific printing press gear configurations through which the money 

supply changes. We would like a principled account that clarifies which details about neural 

mechanisms are explanatory. Which ways of “filling in the mechanism sketch” with neural 

details improve psychological explanation? Interventionism provides a systematic, satisfying 

answer: neural details improve psychological explanation when they generate new approximately 

true test counterfactuals. For example, a theory of the neural substrate for Bayesian perceptual 

inference will constitute an explanatory advance if it clarifies how the percept would change if 

we intervened on various neural states, or if it isolates neural conditions under which an idealized 

Bayesian perceptual model breaks down. The scientific literature already offers some speculative 

theories that attempt this sort of advance (Pouget, Beck, Ma and Latham, 2013). 

 

§9. Advantages of the interventionist conception 

 An interventionist approach to psychological explanation offers notable advantages over 

the nomological and mechanistic conceptions. Like the nomological conception, interventionism 

emphasizes the pivotal role that generalizations play within psychological explanation. 

Interventionism improves upon the nomological conception by clarifying what makes a 

psychological generalization explanatory. Like the mechanistic conception, interventionism 

places causation at center stage. Interventionism improves upon the mechanistic conception by 

elucidating how one can expose explanatorily important causal structure without limning 
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anything like a mechanism that produces the explanandum. Hence, interventionism preserves 

virtues of the nomological and mechanistic conceptions while improving upon both. 
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Figure 1. Motion of a straight edge, as observed through a small aperture. The observation is 

consistent with infinitely many velocity vectors, as illustrated by the five grey vectors. 
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Figure 2. The ambiguous stimulus is shown at the top. Two percepts A and B are possible, 

corresponding to two depth orderings for superimposed gratings moving in opposite directions. 

The percept flips between A and B. freq(o) is the frequency with which ordering o is perceived. 

In this figure, both gratings have the same wavelength, i.e. the two gratings have the same 

spacing between lines. freq(o) changes when there is a disparity in wavelength , i.e. when 

lines are spaced differently in one grating than in the other. freq(o) also changes in response to 

changes in the relative speed v with which the gratings move. Rpt. from (Moreno-Bote, Knill, 

and Pouget, 2011) with permission from Proceedings of the National Academy of Sciences. 


