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Abstract: Conditionalization governs how to reallocate credence in light of new 

evidence. One prominent argument in favor of Conditionalization holds that an agent 

who violates it is vulnerable to a diachronic Dutch book: a series of acceptable bets 

offered at multiple times that inflict a sure loss. van Fraassen argues that an agent who 

violates the Principle of Reflection is likewise vulnerable to a diachronic Dutch book. 

He concludes that agents should conform to both Conditionalization and Reflection. 

Some authors reply that Reflection is implausible and hence that there must be 

something wrong with diachronic Dutch book arguments. Other authors try to isolate a 

principled difference between the Dutch book argument for Conditionalization and the 

Dutch book argument for Reflection, such that the former argument may succeed even 

though the latter fails. I pursue a version of this strategy. I contend that, once we 

properly elucidate the notion of sure loss, non-reflectors are not vulnerable to a sure 

loss. An agent who violates Reflection is not thereby subject to a diachronic Dutch 

book. Appearances to the contrary result from an unmotivated focus upon an overly 

narrow set of gambling scenarios. 

 

§1. Conditionalization and Reflection 
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 What are the rational norms that govern changes in credence? The most famous proposed 

norm is Conditionalization, which requires that you respond to evidence E by replacing your old 

credences P with new credences Pnew such that: 

 Pnew( . ) = P( . | E), 

where P(H | E) is the conditional probability of H given E.1 Conditionalization figures 

indispensably in virtually all scientific applications of Bayesian decision theory. 

 One prominent argument in favor of Conditionalization cites Dutch books. A Dutch book 

is a collection of bets that you regard as acceptable but that inflict a guaranteed net loss upon 

you. If you are Dutch bookable, then a clever bookie can pump you for money by offering bets 

that you accept. Thus, Dutch bookability is a very undesirable property. Ramsey (1931) and de 

Finetti (1937/1980) proved that an agent whose credences violate the probability calculus axioms 

is Dutch bookable. On that basis, they argued that the probability calculus axioms set norms for 

rational credal allocation. Lewis extended Dutch book argumentation to Conditionalization. He 

proved that an agent who follows any update rule other than Conditionalization is Dutch 

bookable in certain natural learning scenarios. Lewis’s proof features a diachronic Dutch book 

(involving bets offered at multiple times). Teller (1973) publicized Lewis’s proof, giving credit 

to Lewis, and Lewis (1999) eventually published his own treatment. Lewis, Teller, and many 

others deploy Lewis’s diachronic Dutch book to argue that one should obey Conditionalization. 

 Dutch books arguments (DBAs) have grown increasingly controversial over the past few 

decades (Hájek, 2009; Vineberg, 2011). Diachronic DBAs are especially controversial, partly 

because they seem to overgeneralize in a problematic way. van Fraassen (1984) articulates a 

putative requirement on rational credences that he calls the Principle of Reflection: 

                                                 
1 For discussion of how to formulate Conditionalization more carefully, see (Meacham, 2016; Rescorla, 2021). 
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 Reflection: If P(Pnew(H) = r) > 0, then P(H | Pnew(H) = r) = r. 

Reflection constrains the relation between second-order credences (credences about one’s own 

credences) and first-order credences (credences about non-credal matters). van Fraassen argues 

that an agent who violates Reflection (a non-reflector) is vulnerable to a diachronic Dutch book. 

He concludes that credences should conform to Reflection. Yet most philosophers regard 

Reflection as implausible. There are numerous compelling counterexamples to it (Briggs, 2009), 

such as cases where I know that my future credences will result from misleading evidence or 

cases where I know that I will not take my evidence properly into account. Since the diachronic 

DBA generalizes from Conditionalization to Reflection, and since Reflection looks unacceptable, 

mustn’t there be something amiss with the diachronic DBA for Conditionalization? 

 Some authors respond by trying to isolate a principled difference between the diachronic 

DBA for Conditionalization and the diachronic DBA for Reflection, such that the former 

argument may succeed even though the latter fails (e.g. Briggs, 2009; Mahtani, 2015). I will 

pursue a version of this strategy. I contend that, once we properly elucidate the notion of sure 

loss, non-reflectors are not vulnerable to a sure loss. An agent who violates Reflection is not 

thereby subject to a diachronic book that guarantees a loss. Appearances to the contrary result 

from an unmotivated focus upon an overly narrow set of gambling scenarios. Whether the DBA 

for Conditionalization succeeds is a further question that I leave unresolved. My thesis is just that 

Dutch book reasoning does not successfully generalize from Conditionalization to Reflection. 

 In §§2-3, I critique van Fraassen’s DBA for Reflection. I show that the argument goes 

through only if we restrict attention to scenarios where the bookie has infallible access to the 

non-reflector’s credences. Since we have no reason to impose any such restriction, the argument 

fails. §§4-5 show that, once we reject dubious infallibility assumptions, a non-reflector who 
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obeys Conditionalization and who satisfies the probability calculus axioms is not vulnerable to a 

sure loss. In contrast, an agent who follows an update rule other than Conditionalization is 

vulnerable to a sure loss even absent any infallibility assumptions. §6 examines several 

weakened variants of Reflection. §7 is an appendix that formalizes and proves some key results 

stated in the main text. 

 

§2. The Dutch book argument for Reflection 

 Consider an agent with credences P at time t1 and Pnew at a later time t2. Suppose that the 

agent violates Reflection at t1. van Fraassen argues that a clever bookie can pump the non-

reflector for money as follows. Let 

P(H | Pnew(H) = r) = s  r, 

and consider the case where s < r. At t1, the bookie offers the non-reflector a conditional bet with 

net payoffs given by Table 1. In addition, the bookie offers a sidebet on Pnew(H) with net payoffs 

given by Table 2. The conditional bet is acceptable relative to P, i.e. its expected value relative 

to P is non-negative. The sidebet is also acceptable relative to P. At t2, the bookie pursues the 

following strategy: 

(1) If Pnew(H)  r, the bookie offers no bet. 

If Pnew(H) = r, the bookie offers the bet with payoffs given by Table 3. 

The bookie offers the bet from Table 3 precisely when Pnew(H) = r, from which it follows that the 

bet is acceptable relative to Pnew(H) whenever the bookie offers it. Table 4 gives net payoffs for 

the overall gambling scenario. In this table, and throughout the rest of the paper, I assume that 

the gambling agent has a standing policy of accepting a bet just in case the bet is acceptable. My 

assumption is legitimate, since the assumed policy is compatible with the dictates of expected 
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utility theory. Net payoffs in Table 4 are everywhere negative. van Fraassen concludes that the 

bookie inflicts a sure loss upon the non-reflector. The case where s > r is handled similarly, 

except that all bets are reversed. 

 

INSERT TABLES 1-4 ABOUT HERE 

 

In computing net payoffs, Table 4 makes a crucial assumption: the bookie learns at t2 

whether Pnew(H) = r. Call this the credal access assumption. Only under the credal access 

assumption can the bookie successfully implement strategy (1). Only under the credal access 

assumption are we entitled to compute net payoffs in accord with Table 4. To see why, suppose 

that the bookie sometimes forms mistaken beliefs about Pnew(H). Suppose that the bookie can 

believe that Pnew(H) = r even though Pnew(H)  r, and suppose that the bookie can believe that 

Pnew(H)  r even though Pnew(H) = r. Then there are possible outcomes neglected by Table 4. 

Specifically, there is a possible outcome where ¬H & Pnew(H) = r but the bookie mistakenly 

believes that Pnew(H)  r. In this outcome, the bookie tries but fails to implement strategy (1). He 

does not offer the bet from Table 3, so no bet occurs at t2 to cancel out the non-reflector’s 

winnings from the bets enacted at t1. Net payoff is 

s + (r – s)[1 – P(Pnew(H) = r)], 

which is positive if s > 0 or P(Pnew(H) = r) < 1 and is 0 otherwise. Hence, van Fraassen’s proof 

crucially depends upon the credal access assumption. Absent that assumption, the bookie 

strategy does not inflict a sure loss upon the non-reflector. 

 We do not generally have infallible access to one another’s credences. I may receive 

misleading evidence regarding your credences, or I may not take my evidence properly into 
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account. The credal access assumption is false when construed as a general description of 

gambling interactions among agents. It may be a useful idealizing assumption in certain contexts, 

such as the game-theoretic study of interactions where deception and error are irrelevant. But we 

should not confuse a sometimes useful idealizing assumption with a well-motivated global 

restriction upon gambling transactions. 

 van Fraassen is commonly taken to have proved a theorem along the following lines: a 

non-reflector is vulnerable to a diachronic book that inflicts a sure loss. My analysis shows that 

the theorem is true only if one interprets it using a very restricted notion of “sure loss,” on which 

bets inflict a “sure loss” when they yield a loss in all outcomes where the credal access 

assumption prevails. Of course, van Fraassen is entitled to stipulate whatever meaning he likes 

for the phrase “sure loss.” But his favored notion of “sure loss” does not seem like a good 

stipulation once we recognize that the credal access assumption is false. Once we acknowledge 

that the bookie may mistake the non-reflector’s credences at t2, we see that the bookie strategy 

described by van Fraassen does not in any natural sense guarantee a loss for the non-reflector. 

When evaluating whether a bookie strategy inflicts a sure loss, we should consider outcomes 

where the credal access assumption fails. 

 van Fraassen might reply that it is only fair to impose the credal access assumption in the 

present dialectical context, because doing so ensures epistemic parity between the non-reflector 

and the bookie. Surely the non-reflector knows her own credences at t2. In particular, the non-

reflector t2 surely knows at t2 whether Pnew(H) = r. And it is only fair to assume that at t2 the 

bookie gains whatever knowledge the non-reflector gains. 

 The proposed reply assumes that the non-reflector knows at t2 whether Pnew(H) = r. Call 

this the credal introspection assumption. I reject the credal introspection assumption. As many 
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authors have emphasized (e.g. Roush, 2018; Schwitzgebel, 2008; Williamson, 2000, pp. 93-113, 

pp. 164-183), introspection is subject to error. We are fallible creatures liable to mistakes in all 

domains, including introspection. Myriad factors may induce mistaken beliefs about one’s own 

mental states: carelessness, self-deception, exhaustion, inebriation, external manipulation, and so 

on. To quote Williamson: “Mistakes are always possible. There is no limit to the conclusions 

into which we can be lured by fallacious reasoning and wishful thinking, charismatic gurus and 

cheap paperbacks” (2000, p. 94). Credal introspection is particularly error-prone (Christensen, 

2007). Do you know your current credences with complete precision? Can you infallibly 

determine that your credence in H is a precise number r, as opposed to r – .00000000000001? 

Surely small mistakes can easily occur. Large mistakes can also occur. For example, a defense 

attorney who assigns high credence to the proposition that his client is guilty may convince 

himself that he assigns the proposition low credence. Infallible credal introspection is perhaps a 

useful idealization in certain contexts, such as contexts where any distorting influence exerted by 

second-order credence upon first-order credence are negligible. When we debate Reflection, 

however, our goal is to understand the normative relation between first-order and second-order 

credences. In this context, it is inadvisable to begin with a blatantly false assumption about how 

first-order and second-order credences relate. We should allow the possibility of mistaken 

second-order credences. A compelling argument for Reflection should not invoke the credal 

introspection assumption. 

 Reflection fails when the agent recognizes that her future credences may be poorly tuned 

to reality. van Fraassen’s DBA for Reflection flounders once we recognize that second-order 

credences may be poorly tuned to credal reality. Both Reflection and van Fraassen’s DBA for 
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Reflection enshrine an overly idealized conception of credal formation with little bearing upon 

the all-too-fallible creatures we know ourselves to be.2 

 

§3. Fallible credal introspection 

 My critique of van Fraassen’s DBA hinges upon the possibility of mistaken credal 

introspection. Many formal epistemologists hold that such mistakes, while possible, are 

irrational. The idea is that a perfectly rational agent will infallibly know her own credences. 

Influential arguments propounded by Sobel (1987), Uchii (1973), and others allege that faulty 

credal introspection leaves agents Dutch bookable. So it may seem that fallible second-order 

credences, rather than circumventing sure loss, actually ensure that undesirable fate. 

I now attempt to assuage this worry. I begin by considering two putative norms that are 

widely discussed, and sometimes implicitly assumed, in formal epistemology: 

 Accuracy: If P(P(H) = r) = 1, then P(H) = r. 

                                                 
2 Mahtani (2015) argues that van Fraassen’s diachronic book does not inflict a sure loss upon the non-reflector. She 

defends this position in a different way than I do. She says that a genuine Dutch book should impose a loss even 

when we vary the interpretation of the sentences on which agents are betting. She says that we should hold fixed the 

interpretation of logical locutions but not the interpretation of any other locutions. To assess whether van Fraassen’s 

diachronic book imposes a sure loss, Mahtani considers alternative possible interpretations for the sentence “Pnew(H) 

= r”, e.g. an interpretation on which “Pnew(H) = r” means that the non-reflector’s credence in H is 2r. She says that 

van Fraassen’s book does not impose a loss under all such interpretations. She concludes that van Fraassen’s DBA 

for Reflection fails. Although I agree with Mahtani’s conclusion, I reject her argument for it. When two agents make 

a bet, they are not betting on an uninterpreted sentence. They are betting on a proposition, or on a sentence as 

interpreted a certain fixed way. Only if one fixes the particular proposition on which one is betting can one say what 

the bet’s net payoff would be given various possible states of the world. Only then can one compute the bet’s 

expected payoff. Only then can one evaluate whether the bet is acceptable and hence whether one should accept it. If 

sentence S expresses proposition p, then there is certainly a possible scenario where agents use S to express a 

different proposition q and use S to bet on q rather than p. However, any such scenario is irrelevant to evaluating 

payoffs from a bet on p itself. A bet on q is different than a bet on p. If we are interested in the ramifications of 

betting on p, we should hold p fixed. We should hold fixed the interpretation of the sentences that agents use to 

communicate when they wager with each other. When evaluating whether van Fraassen’s book inflicts a sure loss, 

we should hold fixed the propositions on which the agents are gambling --- proposition H (whatever it may be) and 

the proposition that Pnew(H) = r. We should consider the results of betting on those propositions, not other 

propositions that might have been expressed by the same sentences. Our question is whether van Fraassen’s book 

inflicts a sure loss when interpreted as intended, not whether it inflicts a sure loss when reinterpreted to involve bets 

on different propositions. Thus, Mahtani’s analysis does not undermine van Fraassen’s DBA. 
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 Confidence: If P(H) = r, then P(P(H) = r) = 1. 

I reject both Accuracy and Confidence. These principles may be useful idealizations for certain 

purposes, but they are not plausible constraints upon rational credal allocation: 

• It is relatively rare to become certain of a false proposition about one’s own 

credences, rarer still for such certainty to be rational. Nevertheless, rational violations 

of Accuracy seem possible when enough misleading evidence accumulates, especially 

if r is close enough to your true credence in H. For example, you might receive 

misleading evidence from a brain scanner that normally reveals your credences with 

tremendous reliability. (Cf. Armstrong, 1963.) Thus, you may in certain 

circumstances rationally set P(P(H) = r) = 1 even though P(H)  r.  

• Since credal introspection is fallible, uncertainty is usually the rationally appropriate 

stance towards your own credences. Generally speaking, you should maintain second-

order credences over possible values for your current first-order credences. For 

example, you may in some cases rationally set P(P(H)[a, b]) = .9. When you are 

uncertain about your own current credences, you violate Confidence. 

A rational agent may mistake her own credences or remain uncertain about her own credences. 

Uchii (1973) advances Accuracy and Confidence as constraints upon rational second-

order credences. He defends his position by offering DBAs for both norms. He contends that 

someone who violates either norm is vulnerable to a sure loss. His DBA for Accuracy concerns 

an agent with credences such that 

 P(P(H) = r) = 1 & P(H)  r. 

A bookie can offer this agent a bet on P(H) = r with net payoffs given by Table 5. The agent 

regards the bet as acceptable, so she accepts it. Since P(H)  r, Uchii contends that the agent has 
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guaranteed herself a net loss. He concludes that agents are Dutch bookable whenever they violate 

Accuracy. He argues along similar lines for Confidence. 

 

INSERT TABLE 5 ABOUT HERE 

 

If Uchii’s DBA were successful, it would pose a serious threat to §2’s analysis. It would 

show that the only way for the non-reflector to evade van Fraassen’s diachronic Dutch book is 

for her second-order credences to expose her to a potential synchronic Dutch book at t2. 

However, the DBA is unconvincing. As Roush (2018) emphasizes, the argument holds fixed that 

P(H)  r when assessing possible net payoffs. Whether P(H)  r is a contingent matter. It is the 

very matter about which agents are gambling when they enact the bet from Table 5. To assess 

prospective net payoffs from this bet, one cannot legitimately hold fixed that P(H)  r. By 

comparison, suppose we gamble on whether a fair coin landed heads or tails. The coin landed 

tails, but you do not know this and have credence .5 that it landed heads. I offer you a bet with 

net payoff given by Table 6. You regard the bet as acceptable. Does the bet inflict a guaranteed 

net loss upon you? Of course not. In evaluating whether you are vulnerable to a sure loss, one 

must consider counterfactual outcomes where the coin landed heads. Even though the coin 

landed tails, it might have landed heads, so a bet that yields a profit when the coin lands heads 

does not inflict a sure loss. Similarly, in evaluating whether Uchii’s bet imposes a sure loss, one 

must consider counterfactual outcomes where P(H) = r. Even though the agent does not assign 

credence r to H, she might have done, so a bet that yields net profit when P(H) = r does not 

inflict a sure loss. Hence, Uchii’s DBA for Accuracy is unconvincing. A similar criticism applies 
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to Uchii’s DBA for Confidence. For further development of these criticisms, see (Roush, 2018). 

 

INSERT TABLE 6 ABOUT HERE 

  

 Another norm that receives attention from formal epistemologists is a synchronic 

analogue of Reflection: 

Self-Respect: If P(P(H) = r) > 0, then P(H | P(H) = r) = r. 

Intuitively: you should stand ready to endorse your own current credences. Self-Respect entails 

Accuracy, as the following argument establishes: 

 For any proposition E with P(E) = 1, the ratio formula for conditional probabilities entails 

that P(H) = P(H | E). If P(P(H) = r) = 1, then P(H) = P(H | P(H) = r) and, assuming Self-

Respect, P(H | P(H) = r) = r. Thus, Self-Respect entails that P(H) = r if P(P(H) = r) = 1. 

van Fraassen (1995), Koons (1992, pp. 20-23), Sobel (1987), and Vickers (2000) claim that 

credences should conform to Self-Respect. 

 At first blush, Self-Respect may look more plausible than Reflection. Nevertheless, I 

agree with Christensen (2007), Lasonen-Aarnio (2015), and Roush (2009) that we should reject 

it. Counterexamples can arise when you suspect that your credal formation is rationally impaired. 

To borrow Roush’s example, suppose that you witness a crime and on that basis acquire some 

credence in the proposition J that John is the culprit. Suppose you also have strong evidence that 

people who are very confident when making eyewitness identifications tend to be overconfident. 

Then you may rationally set P(J | P(J) = .95) < .95. As this example illustrates, Self-Respect is 

not a plausible credal norm. When you suspect that your present credences arose through a 

defective process, you may rationally question them in a way that violates Self-Respect. 



12 

 

 Sobel (1987) defends Self-Respect with a DBA. Consider an agent who violates Self-

Respect as follows: 

 P(P(H) = r) > 0. 

 P(H | P(H) = r) = s < r.   

Sobel’s Dutch book involves three bets: a conditional bet on H, given by Table 7; a sidebet on 

P(H) = r, given by Table 8; and an unconditional bet on H, given by Table 9, which the bookie 

offers just in case P(H) = r. All three bets are acceptable when offered. Net payoff from the 

overall gambling scenario, given by Table 10, is everywhere negative. 

 

INSERT TABLES 7-10 ABOUT HERE 

 

 This is basically just van Fraassen’s diachronic book for non-reflectors, adapted to a 

synchronic setting. The central flaw in the argument, as with van Fraassen’s diachronic DBA, is 

its reliance upon the credal access assumption. Table 10 presupposes that the bookie offers the 

bet from Table 9 precisely when P(H) = r. We should not assume that the bookie can infallibly 

detect the agent’s credence in H, because agents do not typically have infallible access to one 

another’s credences. There are possible outcomes where the agent and the bookie both 

misconstrue the agent’s credences. Specifically, consider an outcome where H & P(H) = r but 

the bookie believes that P(H) ≠ r. Net payoff in that outcome is 

s + (r – s)[1 – P(P(H) = r)], 

which is positive if s > 0 or P(P(H) = r) < 1 and is 0 otherwise. Thus, Sobel’s book does not 

guarantee a sure loss once we recognize outcomes where the bookie mistakes the agent’s 
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credences. For further criticism of the DBA for Self-Respect, see Christensen (2007) and Roush 

(2018). 

 Rationality does not require that you infallibly know your own credences. Nor does it bar 

you from questioning your own credences. Error and self-doubt are rationally permissible. 

Accuracy, Confidence, and Self-Respect may apply to highly idealized rational beings, but they 

are not rational requirements upon the credal allocation of ordinary humans. 

 

§4. Dutch book arguments for Conditionalization 

 I have argued that van Fraassen’s DBA fails due to its reliance upon dubious infallibility 

assumptions. My argument raises some questions: 

• Although van Fraassen’s diachronic book inflicts a sure loss only given the credal 

access assumption, is there a different diachronic book that inflicts a sure loss absent 

the credal access assumption? van Fraassen’s DBA may not establish that one should 

conform to Reflection, but does some alternative DBA establish that conclusion? 

• To what extent, if at all, does my critique of van Fraassen’s DBA for Reflection 

extend to DBAs for Conditionalization? Do DBAs for Conditionalization also rely 

upon dubious infallibility assumptions? 

The rest of the paper addresses these questions. This section discusses Conditionalization. §5 

revisits Reflection. 

 

§4.1 Lewis learning scenarios 

I begin by reviewing Lewis’s DBA for Conditionalization. Lewis studies an agent who at 

t1 has initial credences P over some class of propositions, where P conforms to the probability 
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calculus axioms. Say that E is a partition iff it is a countable set of mutually exclusive, jointly 

exhaustive propositions such that 0 < P(E) < 1 for each EE. At t2, the agent learns which 

partition proposition E is true and as a result adopts new credences Pnew. More precisely, the 

agent sets Pnew(E) = 1 for some E, and it is guaranteed that 

(2) Pnew(E) = 1 iff E is true. 

The agent has determinate dispositions to reallocate credence upon learning that E is true. Let CE 

be the agent’s credal allocation upon learning that E is true: 

(3) If Pnew(E) = 1, then Pnew = CE. 

(2) and (3) entail 

(4) If E is true, then Pnew = CE. 

In order for (2) and (3) to hold when E is true, we must also have 

(5) CE(E) = 1. 

We assume that 

(6) CE conforms to the probability calculus axioms. 

Call any learning scenario of this kind a Lewis learning scenario. 

 Suppose that an agent in a Lewis learning scenario violates Conditionalization, setting 

CE(H)  P(H | E) for some proposition H and some partition proposition E. Lewis imagines that 

the agent faces a bookie with the following two properties: 

(7) The bookie learns the true partition proposition at t2. 

(8) The bookie knows at t1 whether CE(H) < P(H | E) or CE(H) > P(H | E). 

Lewis proves that the bookie can pursue a strategy that inflicts a net loss on the agent no matter 

how the gambling scenario unfolds. Thus, an agent whose update rule differs from 

Conditionalization is vulnerable to a sure loss in Lewis learning scenarios. 
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Should we accept the factivity assumptions (2) and (7)? As a general matter, these 

assumptions may well fail. In any ordinary situation, there is a possibility of misplaced certainty, 

i.e. assignment of credence 1 to a false proposition. I may misread a measuring instrument, or 

fall victim to deception, or make a computational error, and so on (Rescorla, 2021). Misplaced 

certainty is possible even when the proposition concerns my own mental states, including my 

own credences. Most ordinary learning scenarios are not Lewis learning scenarios. (2) and (7) 

sometimes may be useful idealizations, such as when we wish to ignore possible errors in the 

evidentiary base for Bayesian inference. As a general matter, they do not support a plausible 

model of gambling interaction. 

Once we lift assumptions (2) and (7), we must acknowledge possible situations where the 

agent and the bookie both become certain of a false partition proposition. As I show elsewhere 

(Rescorla, forthcoming), Lewis’s diachronic book yields a net profit for the agent in certain such 

possible situations. Thus, Lewis’s DBA for Conditionalization depends in an essential way upon 

the factivity assumptions (2) and (7). 

 

§4.2 Generalized Lewis learning scenarios 

 Luckily, we can modify Lewis’s proof to avoid any reliance upon factivity assumptions. 

Consider an agent whose credences P at t1 satisfy the probability calculus axioms and 

who becomes certain at t2 of a proposition E drawn from partition E. The agent has determinate 

dispositions to reallocate credence in light of her newfound certainty in E, yielding a new credal 

allocation CE. We still assume (3), (5), and (6). However, we no longer assume (2) and (4). We 

do not assume that the agent learns the true partition proposition. Intuitively: the agent receives 

some partition proposition E as evidence, but E may not be true. Call any learning scenario of 



16 

 

this kind a generalized Lewis learning scenario. In a generalized Lewis learning scenario, the 

agent may become certain of a partition proposition E even though a different partition 

proposition is true. 

 Having broadened attention to generalized Lewis learning scenarios, we must reconsider 

our treatment of gambling. We still assume that the bookie has a strategy for deciding what bet to 

offer at t2, depending on the partition proposition of which he becomes certain. However, it no 

longer seems appropriate to assume (7). If a bookie learns the true partition proposition but the 

agent has no such luck, then it hardly demonstrates irrationality on the agent’s part if the bookie 

can inflict a sure loss. It now seems appropriate to assume merely that agent and bookie both 

become certain of the same partition proposition E at t2, where E may be false. Under this 

revised conception, a gambling interaction proceeds much as under Lewis’s conception. On both 

conceptions, there is a partition proposition that the agent and the bookie come to invest with 

complete certainty. The key difference is that under our revised conception the agent and bookie 

may be mistaken: the partition proposition may be false. 

 Many possible outcomes ignored by Lewis now require consideration. See Figure 1. 

When assessing what counts as a diachronic Dutch book, Lewis confines attention to outcomes 

where both agents learn the true partition proposition. In terms of Figure 1: he confines attention 

to the diagonal cells. Having broadened attention to generalized Lewis learning scenarios, we 

should consider all cells, not merely diagonal cells. Whereas Lewis demands that a diachronic 

Dutch book inflict a negative net payoff along the diagonal, I instead demand that a diachronic 

Dutch book inflict a negative payoff on all cells. Call a diachronic Dutch book understood 

Lewis’s way a factive diachronic Dutch book. Call a diachronic Dutch book understood my way 

a non-factive diachronic Dutch book. 
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INSERT FIGURE 1 ABOUT HERE 

 

 Suppose that an agent in a generalized Lewis learning scenario violates 

Conditionalization, setting CE(H)  P(H | E) for some proposition H and some partition 

proposition E. As I show in (Rescorla, forthcoming), one can mount a non-factive diachronic 

Dutch book against this agent. Without loss of generality, consider the case where CE(H) < P(H | 

E). Assuming (8), the bookie may proceed as follows. At t1, he offers the conditional bet given 

by Table 11 and the sidebet on E given by Table 12. At t2, both agents become certain of some 

partition proposition E*. No matter the partition proposition of which they become certain, the 

bookie offers the conditional bet given by Table 13. All three bets are acceptable when offered. 

Net payoff, given by Table 14, is everywhere negative. Thus, an agent who employs any update 

rule other than Conditionalization is vulnerable to a sure loss in generalized Lewis learning 

scenarios. 

 

INSERT TABLES 11-14 ABOUT HERE 

 

 Skyrms (1987) proves a converse Dutch book theorem: a conditionalizer whose 

credences conform to the probability calculus axioms is invulnerable to a sure loss in Lewis 

learning scenarios. If you start with credences that satisfy the probability calculus axioms, and if 

you update your credences by conditionalizing on the revealed partition proposition, then no 

diachronic Dutch book can be rigged against you. Skyrms’s theorem easily extends to a converse 

Dutch book theorem for generalized Lewis learning scenarios: a conditionalizer who obeys the 
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probability calculus axioms is immune to a sure loss in generalized Lewis learning scenarios. 

One cannot rig a non-factive Dutch book against a conditionalizer who obeys the probability 

calculus axioms. For a formal statement of the converse non-factive Dutch book theorem, see the 

appendix (§7.1). The converse non-factive theorem and the non-factive Dutch book from the 

previous paragraph jointly establish Conditionalization as the unique credal reallocation strategy 

that avoids non-factive Dutch books in generalized Lewis learning scenarios. 

 

§5. Failing to reflect 

 To assess how non-factive Dutch books bear upon Reflection, we must incorporate 

higher-order credences into a formal model of credal allocation. There is a substantial economics 

literature, initiated by the seminal work of Harsanyi (1967), that pursues formal modeling of 

higher-order credence. The topic has also received some discussion among philosophers (e.g. 

Campbell-Moore, 2015; Gaifman, 1998; Skyrms, 1980), although not as much discussion as one 

might expect given how much attention philosophers have lavished upon Reflection. In the 

appendix (§7.2), I give a relatively simple formal framework that can model a wide range of 

higher-order credences, including the agent’s current credence in the proposition Pnew(H) = r. 

Crucially, the converse non-factive Dutch book theorem persists even after we 

incorporate higher-order credences into the formal model. The theorem has dramatic 

consequences regarding Reflection. Consider a non-reflector who obeys Conditionalization and 

who satisfies the probability calculus axioms. Is she vulnerable to a sure loss in generalized 

Lewis learning scenarios? The converse non-factive Dutch book theorem entails that she is not. 

One cannot rig a non-factive Dutch book against her, even if her initial credences violate 
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Reflection. Hence, a conditionalizer who satisfies the probability calculus axioms is immune to a 

sure loss in generalized Lewis learning scenarios whether or not she satisfies Reflection. 

 We may instructively compare the fate of non-reflectors in Lewis learning scenarios and 

generalized Lewis learning scenarios. If you violate Reflection, then there exist Lewis learning 

scenarios in which you simply cannot conditionalize. More specifically, suppose you set 

 P(H | Pnew(H) = r) = s  r, 

and suppose you participate in a Lewis learning scenario involving a partition that contains the 

proposition Pnew(H) = r. Whatever update rule you employ, the update rule cannot be 

Conditionalization. To see why, suppose that partition proposition Pnew(H) = r is revealed at t2, 

leading you to form new credences Pnew. Then you cannot arrive at your new credence Pnew(H) 

by conditionalizing on the revealed partition proposition Pnew(H) = r. If you were to 

conditionalize on Pnew(H) = r, you would set 

 Pnew(H) = P(H | Pnew(H) = r) = s  r, 

which conflicts with the assumption that Pnew(H) = r. Your credences Pnew must instead result 

from an update rule C such that 

 ))(|()()( rHPHPrHC newrHPnew
===

. 

Any such update rule conflicts with Conditionalization. However exactly you arrive at your new 

credences Pnew in response to learning that Pnew(H) = r, you cannot do so by conditionalizing 

upon partition proposition Pnew(H) = r. 

 The situation is very different once we consider broaden attention from Lewis learning 

scenarios to generalized Lewis learning scenarios. The non-reflector can conditionalize in all 

generalized Lewis learning scenarios. Specifically, she can conditionalize on the partition 

proposition Pnew(H) = r, setting 
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 Pnew(H) = P(H | Pnew(H) = r ) = s  r. 

If she does so, she will have misplaced certainty about her own credences. She will set 

 Pnew(Pnew(H) = r )) = 1 

even though 

 Pnew(H) = s  r. 

See Figure 2. A conditionalizing non-reflector is pushed off the grey cells of Figure 2. van 

Fraassen’s proof works by forcing the non-reflector onto the grey cells, which bars her from 

using Conditionalization as her update rule and thereby exposes her to sure loss.3 

 

INSERT FIGURE 2 ABOUT HERE 

 

 Let us examine in more detail how a conditionalizing non-reflector fares against van 

Fraassen’s bookie in generalized Lewis learning scenarios. As always, I focus without loss of 

generality on the case where P(H | Pnew(H) = r) = s < r. Suppose the non-reflector participates in 

a generalized Lewis learning scenario that includes Pnew(H) = r as a partition proposition. At t1, 

the bookie offers the bets from Tables 1 and 2. At t2, the bookie tries to pursue strategy (1). He 

offers the bet from Table 3 in precisely those situations where he and the non-reflector become 

certain of Pnew(H) = r at t2. So he inadvertently conforms to the following rule: 

(9) If Pnew(Pnew(H) = r)  1, the bookie offers no bet. 

If Pnew(Pnew(H) = r) = 1, the bookie offers the bet with payoffs given by Table 3. 

                                                 
3 van Fraassen (1995) argues that someone who satisfies Conditionalization must also satisfy Reflection. As 

Weisberg (2007) observes, the argument only goes through if we assume that the agent is certain she will 

conditionalize at t2 and is certain she will satisfy Confidence at t2. There is no reason why we should grant van 

Fraassen these assumptions. A rational agent need not be certain that, at some future time, she will conditionalize or 

will satisfy Confidence. The formal framework presented in the appendix shows that a non-reflector who satisfies 

the probability calculus axioms can obey Conditionalization. 
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When Pnew(Pnew(H) = r) = 1, the non-reflector conditionalizes on Pnew(H) = r and sets 

 Pnew(H) = P(H | Pnew(H) = r) = s < r. 

An easy computation shows that the bet from Table 3 is unacceptable at t2 in light of the new 

credence assigned to H. The non-reflector therefore rejects the bet as unacceptable. As a result 

the bet is not enacted at t2 whether or not the non-reflector becomes certain of Pnew(H) = r at t2. 

Net payoff is determined entirely by Tables 1 and 2. In particular, net payoff is 

s + (r – s)[1 – P(Pnew(H) = r)] > 0. 

whenever H & Pnew(H) = r. Thus, van Fraassen’s book does not inflict a sure loss upon the 

conditionalizing non-reflector. 

 To assess van Fraassen’s book in the context of generalized Lewis learning scenarios, I 

have analyzed a rather unusual learning situation: namely, a situation in which the agent 

conditionalizes on the proposition Pnew(H) = r. Becoming certain that your new credence in H is 

r is a strange way of gaining new credences. Agents do not typically conditionalize on second-

order propositions about their own credences. My analysis shows that, even if we allow such 

unusual learning scenarios, van Fraassen’s book does not inflict a sure loss. 

The converse non-factive Dutch book theorem also applies to more typical learning 

scenarios in which agents conditionalize on first-order rather than second-order propositions. The 

theorem establishes a general conclusion that extends beyond van Fraassen’s specific book and 

beyond unusual situations in which agents conditionalize on second-order propositions about 

their own credences. From the theorem, we gain blanket assurance that a conditionalizer who 

conforms to the probability calculus axioms is immune to a sure loss in any generalized Lewis 

learning scenario. This immunity persists even when the agent’s initial credences are deviant or 

ill-advised. It certainly persists when her initial credences violate Reflection. Hence, one should 
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not hope to replace van Fraassen’s book with an alternative book that imposes a sure loss upon 

non-reflectors. The converse non-factive Dutch book theorem tells us that no such book exists. 

Of course, there are many possible learning situations that are not generalized Lewis 

learning scenarios: situations where credal mass redistributes over the partition, with no single 

proposition receiving all probability mass (Jeffrey, 1983); situations involving memory loss or 

the threat of memory loss (Arntzenius, 2003); situations where the agent acquires new concepts 

and thereby comes to entertain previously unavailable propositions (Lewis, 1999); and so on. 

How do non-reflectors fare in such situations? This is an interesting question. We need not 

answer it in order to pinpoint the mistake underlying van Fraassen’s DBA for Reflection. By 

showing that conditionalizing non-reflectors are immune to a sure loss in generalized Lewis 

learning scenarios, I have shown that violations of Reflection per se do not induce vulnerability 

to a sure loss. 

 A crucial asymmetry emerges between Conditionalization and Reflection. Agents who 

employ any update rule other than Conditionalization are vulnerable to a sure loss in generalized 

Lewis learning scenarios, while conditionalizers are immune to that unpleasant prospect. In 

particular, conditionalizing non-reflectors are immune to a sure loss in generalized Lewis 

learning scenarios. Non-reflectors are not (by virtue of being non-reflectors) vulnerable to a sure 

loss in generalized Lewis learning scenarios. Once we consider a suitably broad range of 

learning scenarios, non-reflectors do not look remotely Dutch bookable. I conclude that there can 

be no compelling DBA for Reflection. Whether the DBA for Conditionalization succeeds is a 

trickier question that I am not addressing. My thesis is just that the DBA for Conditionalization 

does not generalize into a compelling argument for Reflection. 
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§6. Weakened reflection principles 

 There are numerous ways one might weaken Reflection by altering its antecedent. My 

analysis from §5 extends to many of these weakened reflection principles, although not all.4 

 Consider the following weakened reflection principle, which Mahtani (2012) articulates 

and then critiques: 

Adapted Reflection: If P(Pnew(H) = r) > 0, and Pnew(Pnew(H) = r) = 1 if Pnew(H) = r, 

and Pnew(Pnew(H)  r) = 1 if Pnew(H)  r, then P(H | Pnew(H) = r) = r.  

As Mahtani emphasizes, Adapted Reflection looks no more plausible than Reflection. 

Counterexamples to Reflection are readily converted into counterexamples to Adapted 

Reflection, by stipulating that the non-reflector becomes certain at t2 as to whether Pnew(H) = r 

and that her certainty is not misplaced. A similar but slightly different principle is:  

Faithful Reflection: If P(Pnew(H) = r) > 0, and Pnew(H) = r iff Pnew(Pnew(H) = r) = 1, 

then P(H | Pnew(H) = r) = r. 

Faithful Reflection also seems quite implausible. 

 Focusing on Faithful Reflection, consider an agent such that P(Pnew(H) = r) > 0, P(H | 

Pnew(H) = r) = s < r, and 

(10) Pnew(H) = r iff Pnew(Pnew(H) = r) = 1. 

Let us assume that the bookie is certain of Pnew(H) = r iff the non-reflector is certain of it. Let us 

also assume that the bookie offers the bets from Tables 1 and 2 at time t1 and implements (9) at 

t2. Under these assumptions, Table 15 gives net payoffs for the overall gambling scenario. The 

                                                 
4 In the extremal case where P(Pnew(H) = r) = 1, Reflection entails a weaker principle that I will call Extremal 

Reflection: If P(Pnew(H) = r) = 1, then P(H) = r. When we assess Extremal Reflection, we can no longer consider a 

generalized Lewis learning scenario that includes Pnew(H) = r as a partition proposition, because partition 

propositions must have prior credence < 1. So §5’s argument does not apply to Extremal Reflection. Nevertheless, 

one can show through kindred reasoning that a conditionalizer who violates Extremal Reflection is not thereby 

vulnerable to a sure loss. For reasons of space, I must leave this claim undefended. 
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grey cells of Table 15 are those where (10) prevails. The final outcome falls in one of the grey 

cells, where payoff is negative. Apparently, then, we can inflict a sure loss on someone who 

violates Faithful Reflection. Does a compelling DBA for Reflection ensue? 

  

INSERT TABLE 15 ABOUT HERE 

 

To see where this reasoning goes astray, let us reflect more carefully upon what counts as 

a “sure loss.” Suppose I have credence .2 that Hesperus is Phosphorus. I therefore accept a bet 

with net payoff –.8 if Hesperus is Phosphorus and .2 if Hesperus is not Phosphorus. As Kripke 

(1980) has shown, it is metaphysically necessary that Hesperus is Phosphorus. Thus, I lose 

money in all metaphysically possible outcomes. Does it follow that I am vulnerable to a sure 

loss? No. From my viewpoint, I am not guaranteed to lose. From my viewpoint, there are 

epistemically possible outcomes where I win.5 When evaluating whether a book guarantees a 

sure loss, we should consider which outcomes are possible from the agent’s perspective. As 

Easwaran (2011, p. 315) puts it, “the notion of ‘guarantee’ here must be subjective.” The 

question is not whether a loss is guaranteed by metaphysical necessity but whether the agent 

regards a loss as guaranteed. 

 We can apply these lessons to Table 15. When we evaluate whether a book inflicts a sure 

loss, we must consider all outcomes that are epistemically possible for the agent at time t1. In the 

present case, there are epistemically possible outcomes where payoff is nonnegative. Credal 

introspection is fallible. Even if we assume that (10) is true, there are possible outcomes where it 

                                                 
5 What is “epistemic possibility”? The literature offers various candidate notions (e.g. Huemer, 2007; Chalmers, 

2012, p. 470). Given the Hesperus-Phosphorus example, any complete treatment of DBAs must grapple with these 

issues. For present purposes, I leave epistemic possibility unelucidated. I think that any reasonable notion of 

epistemic possibility will support my conclusions in the main text.  
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fails. Specifically, there is a possible outcome where ¬H & Pnew(H) = r but Pnew(Pnew(H) = r)  1. 

Assuming that the non-reflector is remotely like us, she recognizes this outcome as possible. 

From her viewpoint, it is a live possibility that she lands in the cell where ¬H & Pnew(H) = r but 

Pnew(Pnew(H) = r)  1. Net payoff is nonnegative in that cell. So the diachronic Dutch book does 

not inflict a sure loss upon her in the appropriate sense of “sure loss.” Even if a loss is 

guaranteed by (10), the non-reflector does not regard it as guaranteed. From her perspective, 

there are possible outcomes where she does not lose. Thus, van Fraassen’s diachronic Dutch 

book does not inflict a sure loss in any appropriate sense of “sure loss” upon someone who 

violates Faithful Reflection. A similar diagnosis applies to Adapted Reflection.6 

 In response, one might weaken Faithful Reflection by building in an assumption that cells 

with nonnegative payoff are not epistemically possible: 

Confident Reflection: If P(Pnew(H) = r) > 0, and Pnew(H) = r iff Pnew(Pnew(H) = r) = 1, and 

it is epistemically necessary that Pnew(H) = r iff Pnew(Pnew(H) = r) = 1, then P(H | Pnew(H) 

= r) = r. 

Here I use 

It is epistemically necessary that p 

as shorthand for 

                                                 
6 Briggs (2009) proposes a suppositional test for differentiating between convincing and unconvincing DBAs. The 

basic idea is that bets reveal irrationality when they inflict a net loss not just in possible worlds where the agent 

accepts the bets but also in certain other possible worlds. Briggs claims that, according to the suppositional test, the 

Dutch book from Lewis’s DBA reveals irrationality but the Dutch book from van Fraassen’s DBA does not reveal 

irrationality. Mahtani (2012) argues convincingly that Briggs’s suppositional test, even if it yields plausible verdicts 

for Conditionalization and Reflection, yields an implausible verdict for Adapted Reflection. As Mahtani emphasizes, 

the suppositional test confines attention to possible worlds where the partition proposition of which the agent 

becomes certain at t2 is true. If the agent violates Adapted Reflection, then the relevant possible worlds fall within 

the grey cells of Table 15, where net payoff is negative. So the suppositional test mistakenly entails that agents who 

violate Adapted Reflection are irrational. Mahtani concludes, and I agree, that Briggs’s suppositional test does not 

successfully differentiate between convincing and unconvincing DBAs. To explain why the DBA for Adapted 

Reflection fails, one must consider the white cells of Table 15, cells which the suppositional test dismisses as 

irrelevant. 



26 

 

 It is not epistemically possible that p, 

and I implicitly relativize these modal operators to an agent at a moment of time. The precise 

content of Confident Reflection depends upon how one elucidates epistemic possibility. Lacking 

further elucidation, it is not evident how Confident Reflection interfaces with formal modeling of 

credence, including the converse non-factive Dutch book theorem presented in the appendix. 

Still, one can mount a strong prima facie case that agents who violate Confident Reflection are 

Dutch bookable. For any such agent, the white cells of Table 15 are not epistemically possible. 

(10) is true in the grey cells of Table 15, false in the white cells. van Fraassen’s diachronic book 

inflicts a net loss in grey cells. So van Fraassen’s diachronic book apparently inflicts a loss upon 

the agent in all epistemically possible outcomes. 

Let us grant, for the sake of argument, that one can mount a compelling DBA for 

Confident Reflection. Would that be worrisome? Speaking for myself, I find Confident 

Reflection fairly anodyne. We are fallible even when it comes our own credences, so any rational 

agent should recognize that (10)’s right-to-left direction may fail. She should also recognize at t1 

that she may remain uncertain at t2 about her own credences, in which case (10)’s left-to-right 

direction fails. Thus, (10) is not epistemically necessary for any agent remotely like us. When 

violations of (10) are epistemically possible for an agent, the agent trivially satisfies Confident 

Reflection. Hence, Confident Reflection is an extremely weak norm. It applies in a non-trivial 

way only to agents who have perfect introspective access to their own credences and who brook 

no possibility that this perfect introspective access will fail. Such agents do not exist. If they did 

exist, they would differ profoundly from us. I therefore doubt that Confident Reflection is subject 

to damning counterexamples of the sort that plague full-blown Reflection.7 

                                                 
7 In the same ballpark as Confident Reflection lies a norm that I will call Complacent Reflection: If P(Pnew(H) = r) > 

0, and Pnew(H) = r iff Pnew(Pnew(H) = r) = 1, and P(Pnew(H) = r iff Pnew(Pnew(H) = r)) = 1, then P(H | Pnew(H) = r) = r. 
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 There are many other weakened reflection principles one might consider. I question 

whether any substantial, well-motivated constraint on the relation between first-order and 

second-order credences in humans or human-like creatures would result.8 Reflection itself is a 

very implausible norm and is widely recognized as such. The reason it has received so much 

attention over the past few decades is that it seems to derive support from an argumentative 

strategy widely deployed to support Conditionalization. I have shown that the argumentative 

strategy, when properly developed, does not actually extend from Conditionalization to 

Reflection. The strategy extends in a convincing way only if we weaken Reflection so much that 

it loses all interesting applicability, as with Confident Reflection. I submit that Reflection and its 

weakened variants are red herrings, serving mainly to divert attention from more fruitful lines of 

inquiry into rational credal allocation.   

 

§7. Appendix: formal modeling of Dutch books and higher-order credence 

 This appendix formalizes and proves key claims from the paper. I am concerned 

throughout with a probability space (, F, P), where  is a set, F is a -field over , and P is a 

probability measure on F. Elements of  are outcomes. Elements of F are events. Heuristically, 

                                                 
Since violations of (10) may be epistemically possible for an agent who violates Complacent Reflection, my analysis 

of Faithful Reflection carries over to Complacent Reflection. But suppose for the sake of argument that one could 

mount a compelling DBA for Complacent Reflection. Would that be so terrible? As Weisberg (2007) notes, it is 

hardly a norm of rationality that one should be certain of (10). On the contrary, certainty in one’s future 

introspective certainty and infallibility seems foolhardy in most circumstances. Even if we were to accept 

Complacent Reflection, it would not follow that an agent should set P(H | Pnew(H) = r) = r. The agent could just as 

well conform to Complacent Reflection by abandoning her certainty in (10). 
8 Pettigrew (forthcoming) gives a non-factive Dutch book argument for two principles that he calls the Weak 

General Reflection Principle and the Strong General Reflection Principle. Weak General Reflection and Strong 

General Reflection both constrain the relation between your present credences and your possible future credences. 

However, neither principle constrains the relation between your present first-order credences and your present 

second-order credences. For that reason, neither principle entails van Fraassen’s original Reflection principle or any 

of the weaker variants I have discussed. Thus, Pettigrew’s position is compatible with mine. 
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one can interpret outcomes as possible worlds and events as sets of possible worlds. I use (, F, 

P) to model an agent’s credences at t1. 

 

§7.1 Dutch books formalized 

 We want to model how the agent updates her credences at t2 in light of new certainties. A 

partition is a countable set E such that 

 
E

E


= 
E

 

 EF    for all EE  

 E  E* =   for all E, E*E  

 0 < P(E) < 1  for all EE. 

Let Δ(F) be the set of probability measures over the measurable space (, F). An update rule for 

(, F, E) is a function C: E → Δ(F) satisfying the condition: 

(11) C(E)(E) = 1. 

I notate C(E) as CE, so that (11) becomes: 

(12) CE(E) = 1. 

(12) reflects our intuitive starting point: CE gives the agent’s credences at t2 in light of her 

newfound certainty in E. 

 The agent faces a bookie who may offer bets at t1 and t2. Multiple bets offered at a given 

time can be combined into a single bet, so we may legitimately assume that the bookie offers a 

single bet at t1 and a single bet at t2. Following standard practice in probability theory, I 

formalize a bet as a random variable. More specifically, a bet is an F-measurable function X:  

→ , where  is the extended real line. X() is the net payoff for outcome . The random 



29 

 

variable whose value is everywhere 0 models a situation where the bookie offers no bet. A bet X 

is acceptable relative to P iff its expected value with respect to P is non-negative:  

 0 XdP . 

Acceptability relative to P formalizes the agent’s acceptability verdicts at t1. At t2, the agent 

acquires credences CE based on her newfound certainty in E. Say that X is acceptable given E iff 

its expected value with respect to CE is non-negative: 

 0EXdC  . 

Acceptability given E formalizes the agent’s acceptability verdicts at t2. 

 The agent and the bookie become certain of the same partition proposition at t2. The 

bookie has a strategy for deciding which bet to offer at t2 depending on this proposition. We 

model the bookie’s strategy using a function Y: E x  →  such that, for all E, Y(E, . ):  → 

 is a random variable. Call any such function a bookie strategy. Notate Y(E, . ) as YE. 

 With these definitions in place, we may formalize Dutch bookability. I introduce two 

formal notions, corresponding respectively to the intuitive notions sure loss in Lewis learning 

scenarios and sure loss in generalized Lewis learning scenarios. A factive Dutch book for (, F, 

P) and update rule C is an ordered pair (X, Y) such that 

(a) X is a bet that is acceptable relative to P. 

(b) Y is a bookie strategy. 

(c) YE is acceptable given E. 

(d) For all EE and all E, X() + YE() < 0.  
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A factive Dutch ensures a net loss in all situations where the agent and the bookie become 

certain of the true partition proposition. A non-factive Dutch book for (, F, P) and update rule 

C is an ordered pair (X, Y) that satisfies (a)-(c) along with 

 (d*) For all EE and all , X() + YE() < 0. 

A non-factive Dutch book ensures a net loss in all situations, even situations where the agent and 

bookie acquire misplaced certainty in a partition proposition. 

  

Factive Dutch Book Theorem for Conditionalization (Lewis): Let (, F, P) be a probability 

space, let E be a partition, and let C be an update rule for (, F, E). If there exists EE such that 

CE  P( . | E), then there exists a factive Dutch book for (, F, P) and C. 

 

Converse Factive Dutch Book Theorem for Conditionalization (Skyrms): Let (, F, P) be a 

probability space, let E be a partition, and let C be an update rule for (, F, E). If CE = P( . | E) 

for all EE, then there does not exist a factive Dutch book for (, F, P) and C. 

 

Non-factive Dutch Book Theorem for Conditionalization: Let (, F, P) be a probability space, 

let E be a partition, and let C be an update rule for (, F, E). If there exists EE such that CE  

P( . | E), then there exists a non-factive Dutch book for (, F, P) and C. 

 

Converse Non-factive Dutch Book Theorem for Conditionalization: Let (, F, P) be a 

probability space, let E be a partition, and let C be an update rule for (, F, E). If CE = P( . | E) 

for all EE, then there does not exist a non-factive Dutch book for (, F, P) and C. 
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 The proof of the third theorem formalizes the Dutch book given by Tables 11-14. A non-

factive Dutch book is a factive Dutch book, so the third theorem entails the first and the second 

theorem entails the fourth. For proof of the second theorem, see (Skyrms, 1987; Rescorla 2018). 

See (Rescorla, forthcoming) for extensive discussion of all four theorems.9 

 

§7.2 Second-order credences formalized 

 To apply §7.1’s theorems to Reflection, we must incorporate higher-order credences into 

our formal model. As Skyrms (1987) suggests, the most natural strategy consistent with modern 

probability theory is to deploy Δ(F): the set of probability measures on (, F). We interpret 

members of Δ(F) as possible credal allocations over F at t2. To define second-order credences 

using Δ(F), we must impose measurable structure upon Δ(F). Luckily, probability theory 

provides us with the needed tools. For any HF, define :H  Δ(F) → [0, 1] by 

 )()( HH  = . 

Let I be the smallest -field over Δ(F) such that, for each HF, the function H  is I-

measurable. (Δ(F), I) is the measurable space of probability measures on (, F). See (Fristedt & 

Gray, 1997, p. 413) for discussion of (Δ(F), I). 

                                                 
9 The converse factive theorem proved by Skyrms (1987) is somewhat weaker than the converse factive theorem 

stated in the main text. Skyrms confines attention to a subclass of bookie strategies: namely, strategies that at t2 offer 

bets on finitely many events drawn from F. (Rescorla, 2018) proves a generalized theorem that extends Skyrms’s 

result to arbitrary bookie strategies Y. The generalized theorem extends Skyrms’s theorem in another respect as well: 

Skyrms’s theorem only covers cases where P(E) > 0, while the generalized theorem covers numerous cases where 

P(E) = 0. The extra coverage is enabled by Kolmogorov’s (1933/1956) theory of conditional probability, which goes 

beyond the ratio formula to analyze conditional probability even when P(E) = 0. In the present paper, I confine 

attention to cases where P(E) > 0, as codified by the assumption that partition propositions have non-zero 

probability. 
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 We want to model the agent’s credences, including first-order credences over events in F, 

second-order credences over first-order credences at t2, and mixed-order credences. (Δ(F), I) 

taken on its own suffices to model second-order credences. For example, the event 

 {: (H) = r} 

can serve as a formal proxy for the proposition that Pnew(H) = r. More generally, the event 

 {: (H)  [a, b]}   a, b     

corresponds to the proposition that a  Pnew(H)  b. 

To model mixed-order credences, we must find some way of bringing events drawn from 

I into contact with events drawn from F. An elegant solution, introduced by Harsanyi’s (1967) 

work on games of incomplete information, is to posit a measurable mapping T:  → Δ(F). This 

posit captures the intuitive idea that the agent’s credence at t2 is itself a random variable that 

depends upon the state of the world. I is generated by the events 

 ],(
1

aH −
−

    HF, a ,  

so that T is measurable iff 

 ],(T
11 aH −
−−

F   for all HF, a . 

Moreover, 

 ],(
1

aH −
−

={: (H) ≤ a}, 

so that 

 ],(
11 aT H −
−−

= {: T()(H) ≤ a}. 

With these points in mind, we take our basic object of study to be a quadruple (, F, P, T), 

where (, F, P) is a probability space and T:  → Δ(F) is such that 

 {: T()(H) ≤ a}F   for all HF, a . 
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Call any such (, F, P, T) a higher-order probability space. See Gaifman (1988) and Samet 

(1999) for discussion of higher-order probability spaces.10 

 Given the use to which I am putting (, F, P, T), it makes sense to introduce some 

clarifying notation. For any HF, let the expression 

 Pnew(H) = r 

serve as a name for the event 

(13) {: T()(H) = r}. 

This notation registers that (13) is our formal proxy for the proposition that the agent’s credence 

in H is r at t2. By assumption, (13) belongs to F. Thus, P is well-defined on (13). In other words, 

there is a unique x such that 

 P(Pnew(H) = r) = x. 

We may also consider events such as 

(14) G  Pnew(H) = r    G, HF. 

Since (14) belongs to F, P is well-defined on (14). As a special case of (14), consider 

 H  Pnew(H) = r    HF. 

Using the ratio formula, the conditional probability P(H | Pnew(H) = r) is well-defined so long as 

P(Pnew(H) = r) > 0. 

The notion of a higher-probability space does not require P(H | Pnew(H) = r) = r. Here is a 

simple example. Let S = {1, 2} and let S be the powerset of S. We specify a probability 

measure over S by specifying the probabilities assigned to {1} and {2}. Let P be the measure 

                                                 
10 Gaifman and Samet both assume formalized versions of Reflection. As I have urged in the main text, Reflection is 

not a rational constraint upon second-order credences. Thus, one should not assume Reflection when developing the 

notion of a higher-order probability space in full generality. 
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that assigns value ¼ to {1} and ¾ to {2}. Notate this measure as ¼, ¾ . Using the same 

notation, define T by: 

T(1) = 0, 1 

T(2) = 1, 0. 

Then (S, S, P, T) is a higher-order probability space. Intuitively, (S, S, P, T) models a situation 

where at t2 the agent becomes certain of the wrong event. Note that 

 P({1} | Pnew({1}) = 1) = P({1} | {: T()({1}) = 1}) = P({1} | {2}) = 0. 

So (S, S, P, T) violates Reflection. One can build far more elaborate higher-order probability 

spaces that illustrate the same point. 

 Given a higher-order probability space (, F, P, T), we can iterate the construction of 

higher-order probabilities. Consider the third-order event: 

 {: T()(Pnew(H) = r) = 1}, 

which given our notational conventions may be notated as 

 Pnew((Pnew(H) = r)) = 1. 

Another notable event is 

 (Pnew(H) = r  Pnew((Pnew(H) = r)) = 1)  (Pnew(H) = r  Pnew((Pnew(H) = r)) = 1)c. 

This event corresponds to proposition (10): 

Pnew(H) = r iff Pnew(Pnew(H) = r) = 1, 

which figures in Faithful Reflection and Confident Reflection. Clearly, one can extend these 

constructions to delineate nth-order credences for any n. 

If we use a higher-order probability space (, F, P, T) to model the agent’s credences at 

t1 regarding her credences at t2, then we cannot simultaneously use it to model her credences at t1 

regarding her credences at other times. Luckily, Harsanyi’s solution extends to many such 
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higher-order credences. One need simply posit appropriate random variables Ti:  → Δ(F). We 

can then use the expanded higher-order probability space (, F, P, T1, T2, T3, …, Tn) to model 

the agent’s credences at t1 regarding her credences at t1 (corresponding to T1), her credences at t1 

regarding her credences at t2 (corresponding to T2), her credences at t1 regarding her credences at 

t3 (corresponding to T3), and so on for other times ti. 

Spaces of the form (, F, P, T1, T2, T3, …, Tn) are widely used in game theory to model 

higher-order credence. Mertens and Zamir (1985) prove that, if we begin with an ordinary 

measurable space (, G) satisfying mild topological conditions, then we can embed (, G) in a  

space (, F, T1, T2, T3, …, Tn) rich enough to model all possible combinations of higher-order 

credence over (, G). Heifetz and Samet (1998) give a somewhat different construction that 

makes no topological assumptions. See also (Meier, 2012). Game theorists typically use these 

formal constructions to model an agent’s credences regarding the credences of other agents 

(Zamir, 2009). As Samet (1999) emphasizes, the constructions can just as well serve to model an 

agent’s credences regarding her own credences.11 

 In what follows, I focus exclusively on credences that can be modeled using a higher-

order probability space (, F, P, T). As I have indicated, this setup already suffices to model 

numerous higher-order credences. 

 

§7.3 Violations of Reflection 

                                                 
11 Campbell-Moore (2015) formalizes higher-order probability using a fixed point construction based on Kripke’s 

(1975) theory of truth. The formalism is rich enough to express certain kinds of self-referential probability, such as 

an interpreted sentence that describes the credence attached by the agent to that very sentence. See (Campbell-

Moore, 2015) for details and for connections to the higher-order probability spaces used in game theory. And see 

(Caie, 2013) for discussion of how self-referential probability relates to Dutch book argumentation. 
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 There are many options for T:  → Δ(F), codifying different ways that the state of the 

world might determine an agent’s credences at t2. If we confine attention to Lewis learning 

scenarios, T must have a very simple form. In a Lewis learning scenario, the agent’s new 

credences are given by an update rule C: E → Δ(F). Each update rule C determines a random 

variable T:  → Δ(F) as follows: 

(15) T() = CE    if E. 

Call T the random variable determined by C. We can proceed as in §7.2, taking (, F, P, T) to be 

the higher-order probability space. Note that the partition E may include events that codify 

higher-order probabilities. Specifically, E may include events of the form Pnew(H) = r. 

 We can now analyze in more formal terms how Conditionalization and Reflection relate 

in Lewis learning scenarios. Let E be a partition, and let C be the update rule defined by 

(16) CE =df P( . | E)     for all EE. 

Let T be the random variable determined by C. Assume that the partition E contains Pnew(H) = r. 

By (15) and (16), 

 T() = P( . | Pnew(H) = r)  if Pnew(H) = r. 

Substituting the official definition of Pnew(H) = r, we have 

 T() = P( . | Pnew(H) = r)  if {: T()(H) = r}, 

so that 

(17) T()(H) = P(H | Pnew(H) = r)  if {: T()(H) = r} 

Pick an arbitrary  such that T()(H) = r, and then (17) entails 

(18) P(H | Pnew(H) = r) = r. 
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Thus, an agent who conditionalizes in Lewis learning scenarios must conform to Reflection. This 

argument formalizes §5’s observation that, in a Lewis learning scenario containing Pnew(H) = r 

as a partition proposition, non-reflectors are pushed onto the diagonal in Figure 2 and so are not 

conditionalizers. Given the factive Dutch book theorem, the following is an immediate 

consequence: 

 

Dutch Book Theorem for Reflection: Let (, F, P) be a probability space, let E be a partition, 

let C be an update rule for (, F, E), and let T be the random variable determined by C. Suppose 

that P(Pnew(H) = r) > 0, P(H | Pnew(H) = r)  r, and Pnew(H) = r  E. Then there exists a factive 

Dutch book for (, F, P) and C. 

 

One could also prove the theorem directly, by formalizing van Fraassen’s Dutch book. 

No comparable theorem is possible for generalized Lewis learning scenarios, thanks to 

the converse non-factive Dutch book theorem. Suppose that P violates Reflection: 

 P(Pnew(H) = r) > 0 & P(H | Pnew(H) = r)  r. 

If C is the update rule defined by (16), then the converse non-factive Dutch book theorem entails 

that there does not exist a non-factive Dutch book for (, F, P) and C. This result formalizes my 

claim from §5 that violations of Reflection do not by themselves induce vulnerability to a sure 

loss in generalized Lewis learning scenarios. There are possible agents who violate Reflection 

yet who are not Dutch bookable.12 

                                                 
12 Suppose the agent becomes certain at t2 of partition proposition E. A non-factive Dutch book must inflict a loss in 

outcomes lying outside Pnew(E) = 1. Formally: (d*) requires X + YE to inflict a loss in all outcomes, not just 

outcomes belonging to Pnew(E) = 1. Why should we consider outcomes lying outside Pnew(E) = 1? After all, such 

outcomes are not possible given that the agent is newly certain of E. My answer is that, from the agent’s point of 

view, those outcomes are epistemically possible both at t1 and t2. At t1, the agent may not know how she would react 
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 Formally, the key difference between the factive and the non-factive case centers on (15). 

In a Lewis learning scenario simpliciter, the agent learns the true partition proposition E and 

forms new credences CE. Thus, her new credences are modeled by the random variable 

determined by C via (15). In a generalized Lewis learning scenario, the true outcome  may 

belong to partition proposition E even while the agent becomes certain of a different partition 

proposition E*. Her new credences are then given by CE* rather than CE, so that the random 

variable determined by C via (15) does not model her new credences. Once we abandon (15), the 

inference from (16) to (18) fails: it becomes possible for a conditionalizer to violate Reflection. 

To illustrate, consider the higher-order probability space (S, S, P, T) from §7.2. As we saw, this 

space violates Reflection. Consider a generalized Lewis learning scenario with partition 

E = {{1}, {2}} 

and update rule C defined by (16). Note that 

 
11 1 1 1 { } 1( )({ }) 0 1 ({ }|{ }) ({ })T P C     =  = = , 

so that (15) fails. This is a simple example where Reflection fails even though the update rule is 

Conditionalization. Much more complicated examples along similar lines are possible. When the 

update rule C is given by (16), the converse non-factive Dutch book theorem shows that there 

does not exist a non-factive Dutch book for (, F, P) and C whether or not P violates Reflection. 

Similar reasoning applies to Adapted Reflection and Faithful Reflection.13 
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Outcome Net Payoff 

H & Pnew(H) = r s – 1 

H & Pnew(H) = r s 

 Pnew(H) ≠ r 0 

 

 

Table 1. Net payoff for the conditional bet offered at t1. 

 

 

 

 

Outcome Net payoff 

Pnew(H) = r (r – s)[1 – P(Pnew(H) = r)]
 
 

Pnew(H) ≠ r (s – r)[P(Pnew(H) = r)] 

 

Table 2. Net payoff for the sidebet offered at t1. 

 

 

 

 

Outcome Net payoff 

H 1 – r 

H  – r 

 

Table 3. Net payoff for the bet offered at t2. 

 

 

 

 

 

Outcome Net Payoff 

H & Pnew(H) = r (s – r)[P(Pnew(H) = r)] 

H & Pnew(H) = r (s – r)[P(Pnew(H) = r)] 

Pnew(H) ≠ r (s – r)[P(Pnew(H) = r)] 

 

Table 4. Net payoff for the bets from Tables 1, 2, and 3, computed under the assumption that the 

third bet is offered iff Pnew(H) = r.  
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Outcome Net payoff 

P(H) = r 1
 

P(H) ≠ r – 1 

 

 

Table 5. Since the agent is certain that P(H) = r, expected value is 1. 

 

  

Outcome Net payoff 

Heads 1
 

Tails – 1 

 

Table 6. A bet on a coin toss. Expected value is 0. 

  

 

Outcome Net Payoff 

H & P(H) = r s – 1 

H & P(H) = r s 

 P(H) ≠ r 0 

 

 

Table 7. Net payoff for the conditional bet on H. 

 

 

 

 

Outcome Net payoff 

P(H) = r (r – s )[1 – P(P(H) = r)]
 
 

P(H) ≠ r (s – r)[P(P(H) = r)] 

 

Table 8. Net payoff for the sidebet on P(H) = r. 

 

 

 

 

Outcome Net payoff 

H 1 – r 

H – r 

 

Table 9. Net payoff for the bet on H offered when P(H) = r. 
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Outcome Net Payoff 

H & P(H) = r (s – r)[P(P(H) = r)]
 

H & P(H) = r (s – r)[P(P(H) = r)]
 

P(H) ≠ r (s – r)[P(P(H) = r)]
 

 

Table 10. Net payoff for the bets from Tables 7, 8, and 9, computed under the assumption that 

the third bet is offered iff P(H) = r.  

 

 

 

Outcome Net payoff 

H & E 1 – P(H | E) 

H & E – P(H | E) 

E 0 

 

Table 11. Net payoff for the conditional bet offered at t1. 

 

  

 

 

Outcome Net payoff 

E [P(H | E) – CE (H)][1 – P(E)]  

E – [P(H | E) – CE (H)]P(E) 

 

Table 12. Sidebet on E offered at t1. 

 

 

 

 

Outcome Net payoff 

H & E CE(H) – 1 

H & E CE(H) 

E 0 

 

Table 13. Net payoff for the conditional bet offered at t2. 

 

  

 

Outcome Net payoff 

H & E P(E)[CE(H) – P(H | E)] 

H & E P(E)[CE(H) – P(H | E)] 

E P(E)[CE(H) – P(H | E)] 

 

Table 14. Net payoff for the bets from Tables 11, 12, and 13. 
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H & Pnew(H) = r (s – 1) + (r – s)[1 – P(Pnew(H) = r)]
 

(s – r)[P(Pnew(H) = r)]
 

H & Pnew(H) = r s + (r – s)[1 – P(Pnew(H) = r)] (s – r)[P(Pnew(H) = r)]
 

H & Pnew(H) ≠ r (s – r)[P(Pnew(H) = r)]
 

(s – r)[P(Pnew(H) = r)] + 1 – r
 

H & Pnew(H) ≠ r (s – r)[P(Pnew(H) = r)] (s – r)[P(Pnew(H) = r)] – r 

 Pnew(Pnew(H) = r) ≠ 1 Pnew(Pnew(H) = r) = 1 

 

 

Table 15. Net payoffs when the non-reflector faces van Fraassen’s bookie under the assumption 

that (10) is true. Rows reflects possible outcomes for the bets offered at t1 and t2. Columns reflect 

whether the agent and bookie become certain of Pnew(H) = r at t2. In the first column, the bookie 

does not become certain of Pnew(H) = r and so does not offer the bet from Table 3. In the second 

column, the bookie becomes certain of Pnew(H) = r and so offers the bet from Table 3; since we 

have assumed (10), it follows that Pnew(H) = r and hence that the non-reflector accepts the bet. 

The table lists payoffs for accepted bets in all possible outcomes. However, only the grey 

outcomes are consistent with (10). 
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Figure 1. The horizontal axis depicts the partition proposition of which the agent becomes 

certain at t2. The vertical axis depicts the true partition proposition. Thus, the horizontal axis 

determines which bet is enacted at t2. In a Lewis learning scenario, only cells along the diagonal 

are possible. In a generalized Lewis learning scenario, all cells are possible. A non-factive Dutch 

book ensures a net loss at every cell. A factive Dutch book only ensures a net loss along the 

diagonal. (The partition E may be countably infinite, in which case Figure 1 only depicts a finite 

portion of the infinitely many possible outcomes.) Reprinted with permission from Springer 

Nature Customer Service Center GmbH: Springer Nature, Erkenntnis, “An Improved Dutch 

Book Theorem for Conditionalization” (Rescorla, forthcoming). 
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Pnew(H) = r    

Pnew(H)  r   

 Pnew (Pnew(H) = r)  1 Pnew (Pnew(H) = r) = 1   

 

 

Figure 2. Rows reflect the agent’s first-order credence in H at t2. Columns reflect whether she is 

certain that Pnew(H) = r at t2. In a Lewis learning scenario that contains Pnew(H) = r as a partition 

proposition, she must fall in one of the grey cells. In a generalized Lewis learning scenario, she 

may fall in one of the white cells. 

 

 

 

 

 

 

 

 


