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Abstract: Bayesian cognitive science constructs detailed mathematical models of perception, 

motor control, and many other psychological domains. The models postulate mental activity that 

approximately conforms to Bayesian norms. Often, the postulated activity is subpersonal. I 

defend a realist stance towards Bayesian cognitive science. Bayesian models vary widely in their 

scientific merit, but many are well-confirmed and explanatorily superior to non-Bayesian 

alternatives. We have good reason to believe that these models are approximately true. I argue 

that realism about Bayesian cognitive science offers significant explanatory advantages over a 

rival instrumentalist view, on which Bayesian models are predictive tools that we should not 

construe even semi-literally. 

 

§1. Bayesian modeling of the mind 

 Bayesian decision theory is a mathematical framework for modeling inference and 

decision-making under uncertain conditions. It has two central notions: subjective probability (or 

credence), which reflects the degree to which an agent believes that a state of affairs obtains; and 

utility, which reflects the degree to which an agent desires an outcome. At the heart of the  

framework lie norms governing credence and utility: 

- The probability calculus axioms constrain how to allocate credence at any moment. 

- Conditionalization dictates how to reallocate credence in light of new evidence. 
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- Expected utility maximization dictates what the agent should do in light of her current 

credences and utilities: namely, choose the action that maximizes expected utility. 

The Bayesian framework has proved remarkably fruitful within a wide range of disciplines, 

including statistics (Berger, 1993), philosophy (Earman, 1992), physics (Trotta, 2008), artificial 

intelligence (Thrun, Burgard, and Fox, 2006), and medical science (Ashby, 2006). 

The Bayesian framework attained its modern form in the work of Ramsey (1931) and de 

Finetti (1937/1980), who conceived of it in normative terms. The goal was to capture how agents 

should proceed. Subsequent researchers have often deployed the Bayesian framework for 

descriptive ends (e.g. Arrow, 1971; Luce and Suppes, 1965), maintaining that it helps us describe 

actual humans in an idealized way. There are longstanding debates about how well it serves this 

purpose (Kahneman and Tversky, 1979). 

 The debate has recently been transformed by the advent of Bayesian cognitive science, 

which constructs detailed Bayesian models of perception (Knill and Richards, 1996), motor 

control (Wolpert, 2007), causal reasoning (Gopnik, et al., 2004), social cognition (Baker and 

Tenenbaum, 2014), intuitive physics (Battaglia, Hamrock and Tenenbaum, 2013; Sanborn, 

Masinghka, and Griffiths, 2013), human and nonhuman navigation (Madl et al., 2014; 

Petzschner and Glasauer, 2011), natural language parsing (Levy, Reali, and Griffiths, 2009), 

and many other psychological domains. Bayesian modeling postulates mental activity that 

approximately conforms to Bayesian norms. Often, the postulated activity is subpersonal: 

executed by a mental subsystem rather than the individual herself. For example, Bayesian 

perceptual psychology treats the perceptual system as executing a Bayesian inference from 

proximal sensory stimulations (such as retinal stimulations) to perceptual estimates of shape, 

size, color, and other distal conditions. The inferences are not consciously accessible. No amount 
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of introspection or soul-searching will reveal the credences or credal transitions instantiated by 

one’s perceptual system. The emerging picture is that unconscious Bayesian inference underlies 

many core mental phenomena, including perception. 

 Bayesian cognitive science elicits diverse critical reactions. Critics charge that it gives no 

insight into neural implementation mechanisms and so is unexplanatory (Jones and Love, 2011;  

Herschbach and Bechtel, 2011), or that it is vacuous because it can fit any dataset through artful 

setting of parameters (Bowers and Davis, 2012; Glymour, 2011), or that its putative explanations 

are flawed because they do not specify how initial credences arise (Orlandi, 2014), or that it does 

not accurately describe how the mind works even though it fits some experimental results 

(Block, 2018; Colombo and Seriès, 2012; Glymour, 2011), or that many mental phenomena 

violate Bayesian norms (Colombo, Elkin, and Hartmann, forthcoming). All these critics deny 

that we have good reason to postulate unconscious Bayesian inferences. 

 I favor a different line. Bayesian models vary widely in their scientific merit, but many 

strike me as non-vacuous, well-confirmed, and explanatorily superior to non-Bayesian 

alternatives. We have good reason to believe that these models are approximately true. As you 

can see, I favor a realist viewpoint towards Bayesian modeling of the mind. I have defended my 

realist viewpoint in previous writings (Rescorla, 2015a; Rescorla 2016a). Here I will clarify what 

the realist viewpoint involves, and I will bolster my earlier defenses of it. §2 reviews basic 

aspects of Bayesian perceptual psychology. §3 broadens attention to Bayesian modeling beyond 

perception. §§4-5 clarifies the goals and methods of Bayesian cognitive science. §6 rebuts some 

widely discussed objections to Bayesian modeling. §§7-9 favorably compare my realist 

perspective with an instrumentalist view on which Bayesian models are predictive tools that we 

should not construe even semi-literally. 
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§2. Perception as unconscious Bayesian inference 

 The phrase “unconscious inference” traces back to Helmholtz (1867), who highlighted an 

underdetermination problem endemic to perception. The perceptual system cannot directly 

access conditions in the distal environment. It has direct access only to proximal sensory 

stimulations, which underdetermine their distal causes. How does perception solve this 

underdetermination problem? How does it estimate distal conditions based upon proximal 

sensory input? Helmholtz hypothesized that proximal stimulations trigger an unconscious 

inference regarding the most likely distal cause of the stimulations. Bayesian perceptual 

psychology builds upon Helmholtz’s approach, postulating an unconscious Bayesian inference 

from proximal stimulations to perceptual estimates (Knill and Richards, 1996; Rescorla, 2015a). 

A Bayesian perceptual model features a hypothesis space, where each hypothesis h 

concerns some aspect of the distal environment. h might concern shape, size, color, etc. The 

prior probability p(h) is the initial credence assigned to h. The prior likelihood p(e | h) is the 

conditional credence in proximal sensory input e given h. Upon receiving input e, the perceptual 

system reallocates credence over the hypothesis space in accord with Conditionalization, 

computing the posterior probability p(h | e): the conditional credence in h given e. Bayes’s 

Theorem states that 

p(h | e) = η p(h) p(e | h), 

where η is a normalizing constant to ensure that probabilities sum to 1. Based upon the posterior, 

the perceptual system selects a privileged estimate ĥ  of distal conditions. Usually, although not 

always, ĥ  is selected through expected utility maximization, where the utility function reflects 

the cost of an incorrect perceptual estimate. The selected estimate ĥ  informs the final percept. 
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 Bayesian perceptual psychology has produced numerous well-confirmed models of 

perceptual processing. An acclaimed example is the motion perception model offered by Weiss, 

Simoncelli, and Adelson (2002). The model assumes a “slow motion” prior, i.e. a prior 

probability that favors slow distal speeds. One notable feature of the model is that, when 

stimulus contrast is low, computation of the posterior assigns higher weight to the slow motion 

prior, resulting in a slower speed estimate. This explains the well-known Thompson effect: 

perceived speed is slower when stimulus contrast is low (Thompson, 1982). The model explains 

a range of additional motion illusions that had previously resisted explanation within a single 

unified framework. 

 Another good example is the object-tracking model offered by Kwon, Tadin, and Knill 

(2015). The model applies when a perceiver visually tracks an object covered with a textured 

pattern (e.g. a soccer ball) that rotates as it moves through space. The model divides time into 

discrete stages separated by interval t. At time t, the perceptual system receives retinal input et 

and on that basis estimates three distal variables: xt, the object’s position at time t; obj

tv , the 

object’s translational velocity at time t; and pattern

tv , pattern motion within the object. To form 

these estimates, the perceptual system employs priors that treat objects as likely to decelerate 

over time. This generalizes the slow motion prior from (Weiss, Simoncelli, and Adelson, 2002). 

The priors also treat object motion as more likely than pattern motion. Finally, the priors 

enshrine reasonable assumptions about environmental dynamics, such as that 

(*) xt = xt-1 + t  obj

tv 1 , 

and about the interface between perceiver and environment. At time t, the perceptual system 

computes the posterior 

 p(xt, 
obj

tv , pattern

tv  | e1, e2, …, et) 
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and selects privileged estimates tx̂ , obj

tv̂ , and pattern

tv̂ . The posterior at t and retinal input et+1 

jointly determine the posterior at t+1: 

 p(xt+1, 
obj

tv 1 , pattern

tv 1  | e1, e2, … , et+1). 

The result is a sequence of posteriors, each based on its predecessor and on current retinal input. 

  The object-tracking model explains an impressive range of phenomena. Consider 

motion-induced position shift (MIPS): a stimulus with a moving pattern appears shifted in the 

direction of pattern motion. A video of a typical MIPS stimulus is available online.
1
 According 

to the Bayesian model, MIPS reflects the perceptual system’s attempt at disambiguating 

inherently ambiguous retinal input. Retinal texture motion is jointly caused by translational 

velocity obj

tv  and pattern motion pattern

tv . The perceptual system must disentangle how much 

retinal texture motion is due to obj

tv  and how much to pattern

tv . When stimuli appear in the center 

of the visual field, position estimates have low uncertainty and the visual system estimates obj

tv  

and pattern

tv  quite accurately. When stimuli appear in the periphery of the visual field, position 

estimates are relatively uncertain. Accordingly, the Bayesian model leans heavily upon its prior 

bias in favor of object motion, attributing retinal texture motion largely to obj

tv  rather than pattern

tv . 

The dynamical assumption (*) then enforces a change in estimated position toward the direction 

of perceived motion: the MIPS effect. An immediate consequence is that MIPS magnitude 

should negatively correlate with perceived pattern speed. Kwon, Tadin, and Knill (2015) 

confirmed this prediction, manipulating positional uncertainty both by blurring the stimulus and 

by moving its position in the visual field. The model also explains peripheral slowing: perceived 

                                                 
1
 http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1500361112/video-1. 

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1500361112/video-1
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pattern motion becomes slower as the stimulus moves towards the periphery, because the prior 

bias favoring object motion over pattern motion dominates.
2
 

 The object-tracking model has ten free parameters, reflecting detailed assumptions about 

sensory noise and environmental dynamics. Kwon, Tadin, and Knill (2015) used the MIPS 

stimulus to fit the free parameters to experimental data for individual subjects. The results 

matched the data quite well. Remarkably, the results also matched data for several additional 

motion illusions. Videos of these illusions are available online.
3
 I highly recommend that you 

watch all the videos. The key point here is that parameters derived from video 1 yield extremely 

accurate predictions for videos 2-6. A single model with a single set of parameters derived from 

video 1 accommodates the data for all 6 videos. This provides strong support for the object-

tracking model. It shows that the model has the unifying power we expect from good 

explanations. 

 Over the past century, researchers have explored many alternative frameworks for 

explaining perception. The alternative frameworks are not nearly as explanatorily powerful as 

Bayesian perceptual psychology. That is why the Bayesian paradigm dominates contemporary 

scientific research into perception. 

 

§3. Beyond perception 

 Inspired by the success of Bayesian perceptual psychology, cognitive scientists have 

offered Bayesian models for many other psychological domains, including the domains listed in 

§1 and many others besides. 

                                                 
2
 For a video of peripheral slowing, modify the URL from note 1 by replacing “video-1” with “video-2”.   

3
 For the additional four videos, modify the URL from note 1 by replacing “video-1” with “video-3”, “video-4,” 

“video-5”, or “video-6”. 
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Outside perceptual psychology, the most impressive Bayesian models lie within 

sensorimotor psychology: the study of how we control our bodies to achieve our goals. Suppose I 

resolve to lift some cup to my mouth. For me to achieve this goal, my motor system must 

estimate the cup’s size, location, and shape, along with the current configuration of my motor 

organs. The motor system deploys these estimates to select motor commands that promote my 

goal. On a Bayesian approach, motor commands are selected through expected utility 

maximization. The utility function rewards achievement of my goal (e.g. lifting the cup to my 

mouth) and penalizes energetic expenditure. Expectations are computed relative to current 

credences, which are sequentially updated based upon sensory input and efference copy of motor 

commands. Models of this kind have proved explanatorily successful (Todorov and Jordan, 

2002; Wolpert, 2007; Wolpert and Landy, 2012; Rescorla, 2016a). 

 Beyond perception and motor control, matters become less straightforward. In my 

opinion, other areas of Bayesian cognitive science do not match Bayesian perceptual psychology 

and Bayesian sensorimotor psychology in explanatory power. However, Bayesian models in 

some other areas have been fairly successful. A good example is Bayesian modeling of intuitive 

physics (Battaglia, Hamrock and Tennenbaum, 2013). Bayesian models successfully predict 

intuitive physical judgments in a range of scenarios, such as judgments about whether a pile of 

objects will collapse. Sanborn, Masinghka, and Griffiths (2013) show that the Bayesian approach 

compares favorably with rival non-Bayesian models of intuitive physics. 

 Like most scientific research programs, Bayesian cognitive science varies in its 

achievements. Some Bayesian models are highly explanatory, others less so. We must evaluate 

individual models on a case-by-case basis. 
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§4. Goals and methods of Bayesian cognitive science 

In a widely discussed critique of Bayesian cognitive science, Jones and Love (2011, p. 

170) write: “the primary goal of much Bayesian cognitive modeling has been to demonstrate that 

human behavior in some task is rational with respect to a particular choice of Bayesian model.” 

They coin the name Bayesian fundamentalism for this research agenda. They offer a series of 

arguments against Bayesian fundamentalism. 

 Jones and Love’s critique has elicited numerous rejoinders (e.g. Chater, et al., 2011). The 

rejoinders amply demonstrate that few if any practicing scientists endorse Bayesian 

fundamentalism. Jones and Love are attacking a strawman position. Bayesian cognitive scientists 

do not aim to show that all or most mental processing conforms to Bayesian norms. They aim to 

construct well-confirmed explanations of mental and behavioral outcomes. They regard idealized 

Bayesian modeling as a good starting point for constructing such explanations. Ultimately, one 

must test each Bayesian model against the data. In some cases, actual performance may deviate 

slightly or dramatically from the model. 

More explicitly, Bayesian cognitive scientists pursue the following methodology when 

studying a psychological task: 

(i) Use Bayesian decision theory to articulate a normative model of the task. The model 

describes how an idealized Bayesian system would execute the task. In general, the 

model will contain various free parameters. For example, the Bayesian object-

tracking model contains ten free parameters. 

(ii) Fit the normative model as well as possible to the data by specifying its free 

parameters. Kwon, Tadin, and Knill (2015) fit the object-tracking model to the data 

from video 1 by specifying all free parameters. 



10 

 

(iii) Examine how well the model with all details specified fits actual performance. The 

object-tracking model with free parameters specified was an excellent fit for the data 

for video 1 and also for the additional videos 2-6. 

The core methodology is to articulate a normative model and then fit any free parameters to the 

experimental data. The model serves as a benchmark. The goal is to evaluate how well actual 

psychological processing conforms to the benchmark. Human performance often, although not 

always, conforms quite well. 

This norms-based methodology implicitly presupposes some degree of baseline 

approximate conformity to Bayesian norms. If mental activity never remotely conformed to 

Bayesian norms, or if it approximately conformed only in exceptional circumstances, then 

constructing idealized Bayesian models would not be a good use of scientific resources. Thus, 

Bayesian cognitive science enshrines a methodological commitment to some baseline level of 

approximate conformity.
4
 Researchers who pursue Bayesian modeling presuppose that at least 

some mental processes at least approximately conform to Bayesian norms. Clearly, that 

methodological commitment falls far short of Bayesian fundamentalism as defined by Jones and 

Love. One can adopt (i)-(iii) as a fruitful methodology without aiming to establish that all, many, 

or any mental processes conform to Bayesian norms. 

The norms-based methodology has been amply vindicated over the past few decades. It 

has produced successful explanations for numerous mental phenomena, especially perceptual 

and motor phenomena. 

                                                 
4
 In (Rescorla, 2016a), I described the methodological commitment as a “working hypothesis.” That description 

tallies with the language one finds among some practicing Bayesian cognitive scientists (e.g. Stocker, 2018). 

Overall, though, I think that the phrase “methodological commitment” more accurately captures how Bayesian 

cognitive science operates. 
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The norms-based methodology does not necessitate doctrinal commitment to any 

putative law or generalization along the following lines: 

 Perceptual activity approximately conforms to Bayesian norms, ceteris paribus. 

 More perceptual processes approximately conform to Bayesian norms than do not. 

 Mental activity approximately conforms to Bayesian norms, ceteris paribus. 

 More mental processes approximately conform to Bayesian norms than do not. 

For example, Bayesian perceptual models do not contain, presuppose, or entail any doctrine to 

the effect that most perceptual processes approximately conform to Bayesian norms. A 

methodological presupposition of baseline conformity underlies how Bayesian perceptual 

psychologists search for successful models, but no such presupposition figures in the resulting 

models. No theory espoused by Bayesian perceptual psychologists asserts baseline conformity to 

Bayesian norms as part of its content. An analogous diagnosis applies to other areas of Bayesian 

cognitive science. The science supplies Bayesian models of specific mental phenomena, not 

general pronouncements about the scope of Bayesian modeling. One can hold that certain mental 

processes approximately conform to Bayesian norms while conceding that other mental 

processes, perhaps many other mental processes, dramatically violate Bayesian norms. 

The norms-based methodology raises several questions. Why has the methodology 

proved so successful? Are there a priori reasons to expect that the methodology would succeed, 

or did things simply turn out that way? Why might the methodology prove more successful when 

applied to some psychological domains (e.g. perception) than others (e.g. high-level reasoning)? 

In what way, if any, do evolutionary or developmental pressures impel certain psychological 

systems to conform at least approximately to Bayesian norms? These questions deserve sustained 

investigation. They connect with topics of longstanding philosophical interest, such as the 
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relation between psychological description and normative evaluation (Davidson, 1980). There is 

room here for productive interchange between science and philosophy. Unfortunately, 

overemphasis on strawman positions such as Bayesian fundamentalism has tended to derail 

recent discussion. More fruitful inquiry should begin by accurately gauging the methodological 

and doctrinal commitments of Bayesian cognitive science. 

 

§5. Implementing Bayesian inference 

 Bayesian models typically prescind from neural implementation details. The models posit 

credal states (assignments of subjective probabilities to hypotheses) and credal transitions 

(mental transitions among credal states). They do not say how the brain encodes credal states. 

Nor do they identify neural processes or mental computations that underlie credal transitions. A 

major research program in contemporary neuroscience aims to illuminate the neural basis of 

Bayesian inference (Pouget, et al., 2013). This research program has generated several 

interesting proposals about how neural tissue might implement credal states and transitions, but 

so far no proposal has emerged as well-confirmed. 

 Although we do not know how the brain implements credal states and transitions, we 

know quite a lot about possible ways that possible physical systems can implement credal states 

and transitions. As I will now discuss, Bayesian cognitive science draws upon this knowledge to 

refine the norms-based methodology presented in §4. 

In principle, there are many different ways that a physical system can implement credal 

states. Here are three possible implementation strategies: 
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- Explicit enumeration of probabilities. A physical system can explicitly enumerate the 

credence assigned to each hypothesis. This implementation scheme is not feasible 

when the hypothesis space is infinite.  

- Parametric encoding of a probability distribution. For example, a physical system 

can encode a Gaussian distribution by recording the distribution’s mean and its 

variance. A parametric encoding scheme is only feasible for probability distributions, 

such as Gaussians, that are encodable through finitely many parameters. Most 

probability distributions are not finitely encodable. 

- Sampling. Imagine a physical system that draws finitely many samples from the 

hypothesis space. For any hypothesis h, there is an objective probability q(h) that the 

system will draw h. Call q(h) a sampling probability. As several researchers have 

proposed (Fiser, et al., 2010; Icard, 2016; Sanborn and Chater, 2016), sampling 

probabilities can serve as subjective probabilities. Drawing hypotheses with a certain 

objective probability is one way of assigning credences to them. The system can 

implicitly encode a probability distribution via sampling probabilities.
5
 

Parametric and sampling encodings both figure prominently in scientific applications of the 

Bayesian framework, such as within robotics (Thrun, Burgard, and Fox, 2006). 

 One might ask why these diverse physical implementations all count as credal states. 

What do the implementations have in common, such that they count as ways of attaching 

subjective probabilities to hypotheses? Answering that question would require answering a deep 

question: what is it to attach a subjective probability to a hypothesis? Unfortunately, no one 

knows the answer to the deep question. A large literature addresses the nature of credal states 

                                                 
5
 My formulations here and in my subsequent remarks about sampling require minor emendation when the 

hypothesis space is continuous, but not in any way that affects the overall thrust. 



14 

 

(Erikkson and Hájek, 2007), but the literature has yielded disappointing results.
6
 Any good 

answer to the deep question must take as a starting point that there are diverse ways to instantiate 

credal states, including parametric and sampling encodings. All neuroscientific research into 

neural implementation of Bayesian inference begins from this starting point. 

 When studying how the brain implements credal states and transitions, we must grapple 

with the intractability of Bayesian computation (van Rooij et al., 2019). A computation is 

tractable if it can be implemented by a physical system with limited memory and computing 

time.
7
 In certain special cases, computing the posterior from the priors is a tractable task. For 

example, if the prior probability and the prior likelihoods are Gaussian, then the posterior will 

also be Gaussian, and its mean and variance are easily computable. In general, though, 

computing the posterior from the priors is an intractable task. Consider again Bayes’s Theorem: 

 p(h | e) = η p(h) p(e | h). 

Multiplying together p(h) and p(e | h) is easy. But computing the normalizing constant η requires 

summation (or integration) over the hypothesis space, which is in general an intractable task. 

Expected utility calculations are also in general intractable. The intractability of Bayesian 

computation poses a significant problem for Bayesian cognitive science, because the brain can 

only implement tractable computations. 

 Bayesians across a range of disciplines have intensively studied how a physical system 

with limited computational resources can approximately execute intractable Bayesian 

                                                 
6
 Most discussants tie credal states to personal-level psychological capacities. For example, de Finetti (1937/1980) 

cites the gambling odds that an agent would accept, while Davidson (1980) explores how an idealized interpreter 

would measure an agent’s credences based upon the agent’s linguistically-revealed preferences. Both strategies tie 

credences to sophisticated personal-level activities, such as gambling or linguistic communication. For that reason, 

they do not directly apply to the credal states studied within most of Bayesian cognitive science. In particular, the 

credal states postulated by Bayesian perceptual psychology are subpersonal. The person cannot access them. They 

do not serve as fodder for gambling, linguistic communication, or other sophisticated personal-level activities. 
7
 Computational complexity theory studies the distinction between tractable and intractable computation. For 

discussion of computational complexity theory and its relation to cognitive science, see (van Rooij et al., 2019). 
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computations. Computer scientists, engineers, and statisticians offer various schemes for 

approximating idealized Bayesian computations in tractable fashion. Cognitive scientists enlist 

these schemes to construct psychological models (Sanborn, 2017). The approximation schemes 

employed within Bayesian cognitive science generally fall into two main categories: 

- Variational algorithms approximate the posterior using a probability distribution 

drawn from a nicely behaved family (e.g. Gaussian distributions). The basic idea is to 

pick the distribution from this family that is “closest” to the actual posterior. Picking 

the “closest” distribution from a nicely behaved family is often a much more tractable 

task than computing the actual posterior. The literature offers various measures for 

“closeness” of probability distributions. 

- Sampling algorithms approximate the posterior by drawing finitely many samples 

from the hypothesis space. Rather than compute the actual posterior, the system 

responds to new evidence by altering its sampling probabilities in accord with the 

sampling algorithm. The new sampling probabilities serve as the system’s new 

subjective probabilities. 

Variational and sampling approximations both feature credal transitions that violate 

Conditionalization but that approximately satisfy it: 

- Variational approximation. Suppose that a system begins with prior p(h) and that the 

ideal Bayesian response to input e is to compute a posterior p(h | e). Suppose that the 

system instead computes some probability distribution q(h) drawn from a “nice” 

family of distributions, such as Gaussians. By updating credences to q(h) rather than 

p(h | e), the system violates Conditionalization. However, when the variational 

approximation algorithm is well-chosen, q(h) will be quite “close” to p(h | e). 
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- Sampling approximation. Suppose that the system begins with prior p(h) and then 

responds to input e by instantiating a sampling probability q(h) over the hypothesis 

space, as dictated by some sampling algorithm. q(h) serves as the new credence 

assigned to hypothesis h. By updating credences to q(h) rather than p(h | e), the 

system violates Conditionalization. However, when the sampling algorithm is well-

chosen, q(h) will approximate p(h | e). More precisely, the objective probability q(h) 

that the system samples h becomes (roughly) proportional to p(h | e) as the number of 

samples increases. In that sense, the approximation asymptotically approaches the 

posterior as the number of samples approaches infinity. 

In both cases, credal transitions roughly conform to Conditionalization. The result is a new 

credal state that approximately, although not exactly, matches the posterior. This new credal state 

can inform subsequent approximate Bayesian computation, including both inference and 

decision-making. For example, in the case of sampling algorithms, the system can approximate 

expected utility maximization by computing over the samples rather than the actual posterior. 

 Bayesian cognitive scientists deploy variational and sampling approximation schemes to 

study the mind. They thereby emend the norms-based methodology (i)-(iii) isolated in §4. They 

begin with a normative model of the psychological task, and they supplement the model with a 

second model that tractably approximates it. They then try to fit the second model to the data as 

well as possible by fixing any free parameters. The goal is to evaluate how well actual human 

performance conforms to the tractable approximation (Griffiths, Vul, and Sanborn, 2012). 

This revised methodology has achieved notable successes. Sampling algorithms look 

especially promising (Sanborn and Chater, 2016).
8
 To illustrate, consider binocular rivalry. 

                                                 
8
 In a series of publications (e.g. Friston and Stephan, 2007), Friston and collaborators pursue a version of the 

variational approximation scheme. Throughout his voluminous writings, Friston provides virtually no serious 
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When conflicting images are presented to the two eyes, the usual result is that the percept toggles 

between the images. Gershman, Vul, and Tenenbaum (2012) suggest that binocular rivalry 

results from a sampling approximation to Bayesian inference. Their main idea is that the 

perceptual system estimates whether stimulation of some retinal patch reflects distal conditions 

or whether it should be discarded as an outlier (e.g. it should be discarded if the retinal patch is 

damaged, or if an occluder blocks that portion of one’s visual field). They delineate a 

computationally intractable Bayesian model that estimates distal conditions via an outlier 

estimation process. They also present a sampling approximation to the intractable model. 

According to the sampling approximation, the perceptual system draws hypotheses with 

objective probability approximately proportional to the posterior. When the two eyes receive 

conflicting images, multiple hypotheses have relatively high posterior probability. As a result, 

the percept fluctuates even though retinal stimulation does not change. Gershman, Vul, and 

Tenenbaum show that their model can explain a variety of phenomena, such as the distribution of 

time intervals between perceptual switches. The model, which is much more explanatorily 

powerful than alternative models of binocular rivalry, nicely illustrates the potential payoff from 

approximation schemes for idealized Bayesian inference. 

 

§6. Objections to Bayesian modeling 

 Bayesian cognitive science has elicited many objections. This section addresses some 

popular objections, focusing especially on their force against Bayesian perceptual psychology. 

 

§6.1 Violation of Bayesian norms 

                                                                                                                                                             
empirical support for his favored version of the variational scheme. Clark (2015) and Hohwy (2014) enthusiastically 

promote Friston’s approach while neglecting much better confirmed sampling approximations. 
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 A persistent criticism of Bayesian modeling is that human subjects often violate Bayesian 

norms. Over a series of enormously influential publications, Kahneman and Tversky argued that 

personal-level reasoning routinely flouts the probability calculus axioms and that personal-level 

decision-making routinely flouts expected utility maximization (e.g. Kahneman and Tversky, 

1979; Tversky and Kahneman, 1983). Some researchers hold that subpersonal mental activity 

also routinely violates Bayesian norms. For example, Morales et al. (2015) present experimental 

evidence that perceptual processing can violate Conditionalization when the perceiver does not 

fully attend to the stimulus. Colombo, Elkin, and Hartmann (forthcoming) and Rahnev and 

Denison (2018) adduce further perceptual phenomena that they deem anti-Bayesian.
9
 

 I respond that Bayesian cognitive science does not regard Bayesian norms as anything 

like universal psychological laws. The goal is not to establish that all mental processes conform 

to Bayesian norms. The goal is to investigate the extent to which various mental processes 

conform to Bayesian norms and, in cases where they closely conform, to construct good 

explanations on that basis. Bayesian cognitive scientists can happily say that some mental 

processes conform to Bayesian norms while others do not. Bayesian perceptual psychologists 

can happily say that some perceptual processes conform to Bayesian norms while others do not. 

Of course, if it turned out that no mental activity conformed even approximately to 

Bayesian norms, then Bayesian modeling of the mind would not be an empirically fruitful 

enterprise. However, many mental processes conform quite well. This is especially true of 

                                                 
9
 There is some evidence that the Thompson effect can reverse at high speeds (Thompson, Brooks, and Hammett, 

2006): in other words, that fast-moving stimuli can appear to move even faster at low contrast. This reversed 

Thompson effect is inconsistent with the (Weiss, Simoncelli, and Adelson, 2002) model and with other standard 

Bayesian models of motion perception. However, the reversed Thompson effect does not replicate very reliably 

(Sotiropoulos, Seitz, and Seriès, 2014). Moreover, Bayesians could in principle accommodate the effect by suitably 

altering the prior (Stocker and Simoncelli, 2006). Thus, it is an open question how much of a challenge the reversed 

Thompson effect poses to Bayesian modeling of perception. 
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perception, where human performance closely approximates the Bayesian ideal across a wide 

range of cases and circumstances (Shen and Ma, 2016). 

 In some cases, allegations that a mental phenomenon violates Bayesian norms have 

turned out to be ill-founded. Consider the size-weight illusion: when you lift two objects of equal 

weight but different size, the smaller object seems larger. At first, the size-weight illusion looks 

like an anti-Bayesian effect, because it flouts a prior expectation that larger objects are heavier. 

Colombo, Elkin, and Hartmann (forthcoming) and Rahnev and Denison (2018) cite the illusion 

as evidence against a Bayesian approach to perception. But Peters, Ma, and Shams (2016) show 

that the illusion naturally arises from a Bayesian model that estimates relative densities. As this 

example illustrates, the Bayesian framework has repeatedly shown itself flexible enough to 

accommodate apparent anomalies. By adopting a sufficiently sophisticated Bayesian model, it 

often turns out to be possible for Bayesians to accommodate perceptual phenomena that initially 

look anti-Bayesian (Wei and Stocker, 2015). In similar fashion, many of the perceptual 

phenomena catalogued by Rahnev and Denison (2018) may eventually prove explicable by 

sufficiently sophisticated Bayesian models (Stocker, 2018).
10

 

 Even when a mental process dramatically violates Bayesian norms, Bayesian modeling 

may shed light upon it (Griffiths et al., 2012). In many cases, we can explain anti-Bayesian 

phenomena by pursuing the emended methodology sketched in §5: construct an idealized 

Bayesian model along with a tractable approximation to the idealized Bayesian model; evaluate 

how well the tractable approximation fits actual human performance. For example, human 

                                                 
10

 Anderson, O’Vari, and Barth (2011) discuss a motion stimulus that causes a percept as of a highly improbable 

illusory contour. They claim that the contour illusion is anti-Bayesian, on the grounds that a Bayesian perceptual 

system should not select a highly improbable hypothesis. Colombo, Elkin, and Hartmann (forthcoming) and Rahnev 

and Denison (2018) concur. However, there are Bayesian models that allow one to select a highly improbable 

hypothesis, so the contour illusion taken on its own has little force against the Bayesian program (Fleming, 2011). 

That being said, the illusion is an intriguing one, and it merits closer study by Bayesian perceptual psychologists. 
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cognition often exhibits order effects: the order in which evidence is received impacts judgment. 

Order effects violate Bayesian norms. Nevertheless, Sanborn et al. (2010) use a sampling 

approximation model to explain order effects arising in categorization. Similarly, Levy, Reali, 

and Griffiths (2009) use a sampling approximation model to explain non-ideal parsing of 

“garden path” syntactic structures. In both examples, and in many others, the idealized Bayesian 

model figures crucially as a basis for the tractable approximation model and a benchmark against 

which we can compare human performance. Human performance deviates from the benchmark 

due to limited computational resources. 

 

§6.2 Falsifiability 

 Many critics complain that the Bayesian framework is vacuous or unfalsifiable (Bowers 

and Davis, 2012; Glymour, 2011). The framework allows us to postulate any priors we like, so 

one may greet an apparently anti-Bayesian phenomenon by insisting that suitably different priors 

would accommodate the phenomenon. This immunity to falsification may seem highly suspect. 

As Anderson, O’Vari, and Barth (2011, p. 495) put it: “The set of Bayesian models is infinite; at 

most, only a particular combination of priors, likelihoods, and utility functions can be rejected. 

This renders the perception as Bayesian inference claim untestable at best, and to the extent that 

it is always possible to find some combination of priors, likelihood, and utility that can generate 

any data set, it becomes meaningless.” 

 I reply that worries about falsifiability rest upon a problematic conception of scientific 

theory choice. Kuhn (1962) argues convincingly that mature scientific theorizing usually 

operates within a paradigm, such as heliocentric astronomy or evolution by natural selection. 

The paradigm includes commitments so general or abstract that they resist direct empirical test. 
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For example, Newton’s three laws taken on their own have little if any empirical content. They 

are not “testable” or “falsifiable.” Only when one supplements them with additional principles, 

such as the law of universal gravitation, does experimental testing become possible. Scientists 

accept a scientific paradigm not because they have directly tested it but rather because it has 

proved strikingly successful in explaining certain phenomena. Scientists then develop the 

paradigm so as to bring it into better contact with data. In many cases, the paradigm eventually 

proves able to explain anomalies that it initially struggled to accommodate (e.g. it took sixty 

years for Newtonian physics to explain the observed motion of the moon’s apogee). If enough 

recalcitrant anomalies accumulate, then scientists may ultimately replace the paradigm with a 

new one --- as when physicists replaced Newtonian physics with relativity theory. 

The progress of Bayesian cognitive science fits the foregoing Kuhnian template. 

Researchers work within the framework sketched in §§4-5. They accept the framework because 

it has achieved striking explanatory successes (e.g. the motion estimation model). They develop 

the framework by constructing models of specific mental phenomena, including apparently anti-

Bayesian phenomena such as the size-weight illusion. The individual models are empirically 

tested. The framework itself is not amenable to direct empirical testing (Griffiths, et al., 2012), 

any more than Newton’s laws are amenable to direct empirical testing. If enough recalcitrant 

anomalies accumulate, another framework may ultimately prove more attractive.
11

 So far, the 

Bayesian program has fared quite well in handling apparent anomalies. 

                                                 
11

 Colombo, Elkin, and Hartmann (forthcoming) observe that there are other mathematical frameworks besides 

Bayesian decision theory for modeling inference and decision-making under uncertainty. They suggest that 

cognitive scientists should explore these alternative frameworks as theories of mental activity. At present, though, 

no alternative framework has achieved anything approaching the massive success of the Bayesian framework, 

especially as applied to perception and motor control. That situation might of course change, but current evidence in 

the perceptual and motor domains strongly favors the Bayesian framework. 
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 Worries about falsifiability are particularly inapt as applied to Bayesian cognitive 

science, whose core commitments are methodological rather than doctrinal. The core 

methodology is to assess how well mental activity conforms to Bayesian norms. The science 

does not incorporate general laws to the effect that all or most mental activity is Bayesian. In 

particular, Bayesian perceptual psychology does not incorporate any general law to the effect 

that all perceptual processing is unconscious Bayesian inference. The science only incorporates a 

methodological commitment to constructing and testing Bayesian models of mental activity. This 

commitment is not the sort of thing that one can “test” through direct confrontation with 

empirical evidence. The only meaningful “test” of the commitment is whether it produces 

explanatorily fruitful individual models. To date, it has passed that test most impressively. 

 

§6.3 Ad hoc priors 

 Another worry about Bayesian modeling is that priors are chosen in ad hoc fashion 

(Glymour, 2011; Jones and Love, 2011). The Bayesian framework allows us to select any priors 

we please. The extreme flexibility makes Bayesian modeling look to some critics more like an 

exercise in curve-fitting than a source of genuine explanations. 

This complaint may apply to some Bayesian modeling, but it does not apply to Bayesian 

perceptual psychology. In typical Bayesian perceptual models, the general form of the priors is 

well-motivated by environmental statistics or established psychophysics. That general form 

usually suffices for qualitatively accurate predictions. Of course, quantitative accuracy requires 

curve-fitting. However, parameters fit to one task often generalize to other tasks. In the object-

tracking model, for example, parameters fit to individual performance for video 1 also match 

performance for videos 2-6. I submit that Bayesian perceptual psychology offers genuine 
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explanations, not just ad hoc redescriptions of the data. Similar points apply to Bayesian 

sensorimotor psychology and at least some other areas of Bayesian cognitive science. 

 

§6.4 Where do priors and hypotheses come from? 

 A common criticism of Bayesian models is that they postulate priors without explaining 

how the priors arise (Orlandi, 2014, p. 91). A related criticism is that Bayesian models postulate 

a hypothesis space over which priors are defined, rather than explaining how the hypothesis 

space is chosen (Orlandi, 2014, p. 91; Orlandi, 2016). 

Both criticisms conflate incomplete theories with unexplanatory theories. Explanation 

must begin somewhere. 19th century chemists explained numerous properties of molecules by 

postulating that atoms form chemical bonds, but they did not know how chemical bonds arise. 

Darwin explained speciation and the observed fossil record by postulating evolution through 

natural selection, but the mechanisms underlying heredity remained mysterious to him. In each 

case, the explanation was incomplete and widely recognized as such. In each case, the 

incompleteness served as an impetus for future research. In each case, further developments 

helped fill the explanatory gap. In each case, the incomplete theory already offered powerful 

explanations. The same goes for Bayesian cognitive science. A Bayesian model presupposes 

priors and a hypothesis space, so its explanations are incomplete. Future research should try to 

fill the gap. Even in its present incomplete state, the Bayesian framework already offers powerful 

explanations of many psychological phenomena. 

Orlandi (2016, p. 335) writes: “If we are seeking to explain how we derive a single 

percept from underdetermined stimuli, then we cannot leave aside the question of how the 

hypothesis space is limited. This would amount to trading the original mystery with a new, 
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similar mystery.” In most cases, it not so mysterious why a given hypothesis space is operative. 

In the object-tracking model, for example, the perceptual system seeks to estimate three 

variables: xt (position), obj

tv  (translational velocity), and pattern

tv  (pattern motion). Accordingly, it 

employs a hypothesis space composed of all possible values for xt, 
obj

tv , and pattern

tv . No other 

hypothesis space would be as appropriate, given the estimation task in which the perceptual 

system is engaged. One might ask why the perceptual system engages in that particular 

estimation task. One might also ask how the perceptual system is able to represent xt, 
obj

tv , and 

pattern

tv  in the first place. These are interesting questions. Answering them would require 

significant progress within both philosophy and psychology regarding the phylogeny, ontogeny, 

and metaphysics of perceptual representation. Even absent such progress, the Bayesian model 

taken on its own already illuminates perceptual object-tracking. It isolates crucial explanantia 

(the priors) and specifies how they causally influence estimation of xt, 
obj

tv , and pattern

tv . 

  

§6.5 Mechanisms 

 Bayesian models do not say how the brain encodes priors. They do not identify neural 

processes or mental computations that underlie (approximate) Bayesian inference. Thus, 

Bayesian modeling does not address the mechanisms through which the brain implements credal 

states and transitions. Some critics argue on that basis that Bayesian models do not provide good 

explanations (Jones and Love, 2011; Herschbach and Bechtel, 2011). 

 This criticism assumes that good explanations must reveal mechanisms that produce the 

explanandum. Scientific practice offers numerous counterexamples: successful scientific 

explanations that are not remotely mechanistic (Rescorla, 2018). For example, the ideal gas law 

helps us explain the pressure exerted by a gas upon a container by isolating causally relevant 
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factors (volume, number of moles of the gas, and temperature) and describing in systematic 

terms how those factors causally influence temperature. The ideal gas law does not specify 

underlying physical mechanisms, yet even so it is explanatory. It provides a non-mechanistic 

causal explanation of temperature. Similarly, a Bayesian perceptual model isolates causally 

relevant factors (the priors) and describes in systematic terms how they influence the percept. 

The model does not specify underlying neural mechanisms through which the priors influence 

the percept. Nevertheless, it is explanatory. It provides a non-mechanistic causal explanation of 

perceptual estimation (Rescorla, 2018).
12

 

 I acknowledge that mechanistic details often improve a scientific explanation. For 

example, statistical mechanics improves upon the ideal gas law by describing a gas in 

mechanistic terms as a collection of tiny interacting particles. Cognitive scientists hope to 

improve Bayesian modeling by identifying neural implementation mechanisms for credal states 

and transitions (Pouget, et al., 2013). A satisfying theory of neural implementation mechanisms 

would doubtless enhance the explanatory power of non-mechanistic Bayesian models. Even 

lacking mechanistic details, many non-mechanistic Bayesian models are already well-confirmed 

and highly explanatory. 

 

§7. Realism versus instrumentalism about Bayesian cognitive science 

I have argued that many Bayesian models yield satisfying explanations. I will now argue 

that we should regard these models as approximately true. Thus, I will be defending a realist 

perspective on Bayesian cognitive science. This section introduces realism along with a 
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 See (Woodward, 2003; Woodward, 2018) for general discussion of causal explanation, including non-mechanistic 

causal explanation. 
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competing instrumentalist approach. §8 critiques some prominent anti-realist arguments. §9 

highlights key explanatory advantages that realism offers over instrumentalism. 

I presuppose a broadly scientific realist viewpoint. Scientific realism has been a central 

topic within philosophy of science for decades, coming in many versions with many arguments 

pro and con (Chakravartty, 2017). The intuitive idea behind most versions is that explanatory 

success is a prima facie guide to truth or approximate truth. Scientific realists recommend some 

kind of positive attitude towards the approximate truth of explanatorily successful scientific 

theories. My discussion will not hinge upon how exactly one formulates scientific realism. 

 Scientific realism entails that, when a Bayesian model of a mental process is 

explanatorily successful, we have reason to regard the model as approximately true. 

Approximate truth of the model requires that there exist credal states roughly like those 

described by the model and that mental activity transit between those states roughly as described 

by the model. For example, a Bayesian perceptual model posits credal states that causally 

interact with one another and with sensory inputs, yielding perceptual estimates. The Bayesian 

motion estimation model posits three credal states: a prior probability, a prior likelihood, and a 

posterior. The Bayesian object-tracking model posits a sequence of credal states p(xt, 
obj

tv , pattern

tv  

| e1, e2, …, et), computed in response to sequential sensory input. These two models are 

explanatorily successful, and they invoke credal states and transitions in an essential way. 

Assuming a scientific realist viewpoint, we have strong reason to believe that the models are 

approximately true. Thus, we have strong reason to believe that motion estimation and object-

tracking deploy credal states that interact in approximate accord with Bayesian norms. 

 My realism is a realism about specific Bayesian models. Realists about Bayesian 

cognitive science do not undertake a commitment to endorsing all Bayesian models of the mind, 
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any more than scientific realists undertake a commitment to endorsing all scientific theories. One 

must examine the details of a particular Bayesian model to see whether the model is well-

confirmed. One must evaluate how it compares with rival models, whether its predictive 

successes are attributable entirely to curve-fitting, and so on. When a model passes successfully 

through this confirmatory crucible, we have reason to accept it as at least approximately true. 

Some but not all Bayesian models pass the test. 

 My realist perspective extends straightforwardly to psychological models that 

approximate idealized Bayesian inference through tractable computations. When such a model is 

explanatorily powerful, we have reason to regard it as at least approximately true. For example, 

the empirical success of the binocular rivalry model provides good reason to believe that 

perception instantiates computations at least roughly like those posited by the model. 

 A realist approach to Bayesian cognitive science contrasts with an instrumentalist 

approach, on which Bayesian models are predictively useful devices that do not accurately depict 

psychological reality. Colombo and Seriès (2012, p. 714) endorse instrumentalism: “Bayesian 

models should be understood as no more than toolboxes for making predictions and 

systematizing data.” Block (2018, p. 6) agrees: “the best attitude towards the Bayesian formalism 

is an ‘as if’ or instrumentalist attitude.” Block focuses on perception. He urges that, even when 

the perceptual system transits from proximal input to percept as if executing a Bayesian 

inference, we should not conclude that it actually executes a Bayesian inference. Orlandi (2014) 

also develops a broadly instrumentalist view of Bayesian perceptual psychology. She says that, 

when perceptual psychologists talk about “priors,” we should not interpret this talk too literally. 

We should not posit causally efficacious credal states. We should instead view priors as “biases” 

or “simple constraints” that are “wired” into the perceptual system (pp. 82-83). 
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 In my opinion, instrumentalism about Bayesian cognitive science is no more plausible 

than instrumentalism regarding physics, chemistry, biology, or any other successful science. Just 

as the explanatory success of physics provides evidence for gravity, or the explanatory success of 

chemistry provides evidence for the chemical bond, or the explanatory success of biology 

provides evidence for evolution by natural selection, so does the explanatory success of Bayesian 

cognitive science provide evidence for credal states and transitions across a range of 

psychological domains. In particular, the striking explanatory success of Bayesian perceptual 

psychology provides strong evidence for subpersonal credal states figuring in perception. The 

rest of the paper defends this realist viewpoint.
13

 

 

§8. Arguments against realism 

 The literature offers numerous arguments against realism regarding Bayesian cognitive 

science. Many arguments, including those critiqued in §6, question the scientific value of 

Bayesian modeling. Other arguments, some of which I will now address, concede that Bayesian 

cognitive science has scientific value but deny that we should accept Bayesian models as even 

approximately true. 

 

§8.1 Idealization and approximate truth 

 Colombo and Seriès (2012) motivate instrumentalism by observing that Bayesian models 

often incorporate false idealizing assumptions. For example, the Bayesian motion estimation 
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 Dennett (1987) develops a broadly instrumentalist approach to psychological explanation. According to Dennett, 

psychological explanation involves taking the “intentional stance” towards a subject, without any commitment 

regarding the subject’s actual mental states. Dennett applies his instrumentalist approach both to personal-level and 

subpersonal psychological explanation. Hornsby (2000) and McDowell (1994) agree with Dennett regarding the 

subpersonal level, but they favor a more realist approach to the personal level. See (Rescorla, 2016a) for critical 

discussion of Dennett. 
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model posits Gaussian priors. Gaussian priors are convenient because they enable us to derive an 

elegant closed-form expression for the posterior. However, there is strong evidence that the 

velocity prior has “heavier tails” than a Gaussian (Stocker and Simoncelli, 2006). More 

generally, Bayesian cognitive scientists often select a prior for mathematical convenience rather 

than psychological realism. If a Bayesian model avowedly incorporates false idealizing 

assumptions, how can we construe the model as literally true? 

 To evaluate this argument, note first that false idealization assumptions are pervasive 

throughout science. The real world is complex. When modeling it, scientists deliberately 

introduce simplifying distortions so as to achieve mathematical or analytic tractability. A 

physicist might assume a frictionless plane; a population geneticist might assume an infinitely 

large population; and so on. Successful theories routinely incorporate idealizing assumptions 

known to be false or even impossible. McMullin (1985) calls these assumptions Galilean 

idealizations. Scientists introduce Galilean idealizations quite self-consciously, hoping that 

future research will yield more accurate models. To use Weisberg’s (2007) example: quantum 

chemistry at first gave only highly approximate descriptions of wave functions for virtually all 

molecules, but with time it gave much more accurate descriptions. Scientific disciplines often 

take idealized models as a starting point and then gradually produce more accurate models by 

eliminating or reducing Galilean idealization. 

 Scientific realists accommodate Galilean idealization by invoking approximate truth. A 

scientific theory that incorporates false idealizing assumptions is not true, but it may be 

approximately true. When a theory is explanatorily successful, realists hold that we have prima 

facie reason to believe that it is approximately although not perhaps literally true. Subsequent 

research aims to discover a more accurate theory. 
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 The same goes for Bayesian cognitive science. When a Bayesian model incorrectly 

postulates a Gaussian prior, this is (and is typically advertised as) a deliberate distortion 

introduced to simplify calculation and analysis. A model that incorporates an incorrect prior 

cannot be literally true. If the model exhibits striking empirical success, then we have strong 

reason to believe that it is approximately true. Scientists can improve upon the model by 

describing the actual prior more accurately, as Stocker and Simoncelli (2006) did for the velocity 

prior.
14

 A similar progression has transpired within Bayesian modeling of sensory cue 

combination, which initially postulated idealized Gaussian priors and subsequently identified 

less idealized priors (Trommershäuser, Körding, and Landy, 2011; Rescorla, forthcoming). Thus, 

scientific realists can accommodate Galilean idealization within Bayesian perceptual psychology 

in the same way that they accommodate Galilean idealization within other scientific disciplines. 

 One might challenge the realist appeal to approximate truth. No one has ever explained in 

general, satisfying terms what it is for a theory to be “approximately true.” However, this worry 

seems no more troublesome for Bayesian cognitive science than for any other science. I submit 

that Galilean idealization poses no greater a challenge to realists about Bayesian cognitive 

science than it does to scientific realists more generally. As already noted, the present paper 

assumes a broadly scientific realist viewpoint. 

 

§8.2 Explicit enumeration of credences? 

 Block (2018) critiques realism about Bayesian perceptual psychology. He discusses a 

version of realism on which “priors and likelihoods (and utilities)… are represented explicitly in 
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 Sotiropoulos, Seitz, and Seriès (2014) revise the (Stocker and Simoncelli, 2006) model to include a pre-processing 

step that models speed tuning in the visual cortex. This pre-processing step influences the stimulus measurement e 

that serves as input to Bayesian computation. The resulting model fits experimentally observed interactions between 

speed and contrast quite well. 
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perceptual systems” (p. 8). Block notes that there are many ways to implement or approximately 

implement a Bayesian model besides explicit enumeration of probabilities. He mentions 

sampling as one alternative implementation strategy. He says that we have no reason to favor an 

explicit encoding scheme over a sampling implementation. He concludes that we should adopt an 

instrumentalist rather than a realist construal of Bayesian perceptual psychology. 

 I agree with Block that we have no reason to postulate explicit enumeration of 

probabilities by the perceptual system. In most perceptual tasks, the distal variable being 

estimated has infinitely many possible values. The hypothesis space is infinite, so explicit 

enumeration of credences is not an option. It is unlikely that explicit enumeration of probabilities 

plays an important role in perception or in any almost any other psychological domain.
15

 

 I dispute Block’s suggestion that these observations undermine a realist construal of 

Bayesian modeling. Realists about Bayesian perceptual psychology claim that the perceptual 

system instantiates credal states and that, in certain cases, transitions among those states conform 

approximately to Bayesian norms. Realists do not claim that the perceptual system explicitly 

enumerates credences. Realism allows that the perceptual system may employ a parametric 

encoding, a sampling encoding, or some other encoding. In rejecting explicit enumeration of 

credences, Block is not rejecting realism.
16

 

 In one passage, Block hints that genuine Bayesian inference requires explicit enumeration 

of probabilities. He writes (p. 7): 
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 Orlandi (2016, p. 334, p. 336) suggests that the perceptual system must somehow limit the hypothesis space so as 

to render it finite. I see no need for any such finitary limitation. A physical system can allocate credence over an 

infinite (indeed, uncountably infinite) hypothesis space. For example, it can parametrically encode a Gaussian 

distribution. This is how numerous models from Bayesian perceptual psychology work, including the Bayesian 

object-tracking model. Few models in Bayesian perceptual psychology feature a finite hypothesis space, aside from 

tinker-toy models deployed for heuristic purposes by introductory expositions. 
16

 Block attributes to me “a realist version of Bayesianism in which priors are explicitly represented” (p. 8). I do not 

endorse the attributed view either in the two papers that he cites, (Rescorla, 2015a; 2015b), or in any other work. 

Several of my previous writings have extensively discussed sampling implementation of credal states (Rescorla, 

2009; Rescorla, 2012). 
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What would show that something that deserves to be called Bayesian inference actually 

occurs in perception? In the most straightforward implementation, there would have to be 

perceptual representations of prior probabilities for alternative hypotheses, perceptual 

representations of likelihoods and some process that involves something that could be 

described as multiplication of these values. 

The “most straightforward implementation” emphasized by Block plays virtually no role in 

scientific applications of Bayesian decision theory, because virtually all scientific applications 

feature an infinite hypothesis space. A physical system can execute Bayesian inferences even 

though it does not employ anything resembling Block’s “most straightforward implementation.” 

When priors are Gaussian, for example, the system can conform to Conditionalization by 

updating the mean and variance of the probability distribution. Such a system does not explicitly 

enumerate probabilities, let alone multiply probabilities together. 

 Block’s discussion rests upon an overly narrow conception of what it is for a physical 

system to instantiate credal states. The discussion saddles realists with an implausible 

commitment (explicit enumeration of credences) that they do not and should not accept. 

 

§8.3 Approximate Bayesian inference 

 Block claims that computational intractability poses a challenge to realism about 

Bayesian modeling (p. 8): “A major problem with realist theories in which Bayesian inference 

literally takes place in the brain is that the kind of Bayesian computations that would have to be 

done are known to be computationally intractable… So, any realist version of Bayesianism will 

have to tell us what exactly is supposed to be involved in the computations.” 
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I disagree. Realists about a scientific theory need not specify exactly how the theory 

applies to specific cases. Realists about evolution by natural selection are not obliged to say how 

exactly a given species evolved. Realists about Bayesian cognitive science are not obliged to say 

how exactly a given mental process approximately implements Bayesian computation. In each 

case, it is scientific progress to discover as many details as possible. Even absent the desired 

progress, one can maintain a well-justified realist attitude towards the theory’s key elements. 

One need not know how exactly an organism evolved through natural selection to believe with 

strong justification that it did so. One need not know exactly how the perceptual system 

approximately implements Bayesian inference to believe with strong justification that it does so. 

 Still, it may seem that any appeal to approximate Bayesian inference blurs the border 

between realism and instrumentalism, perhaps even draining realism of all content. If mental 

activity implements a tractable approximation rather than an idealized Bayesian model, then in 

what sense does the activity count as Bayesian? Once realists concede that mental activity 

violates Bayesian norms, what distinguishes their position from the instrumentalist view that 

mental activity proceeds as if it executes Bayesian inferences? In Block’s words (2018, p. 8): 

“[W]hat is the difference between approximate implementation of Bayesian inference and 

behaving roughly as if Bayesian inference is being implemented…? Until this question is 

answered, the jury is out on the dispute between realist and anti-realist views.” 

 I respond that there is a huge difference between systems that approximately implement 

Bayesian inference and systems that merely behave as if they do. A system of the former type 

instantiates credal states that interact in rough conformity to Bayesian norms. A system of the 

latter type may simulate a system of the former type, but it does not instantiate credal states that 

interact in approximate accord with Bayesian norms. For example, Maloney and Mamassian 
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(2009) note that a physical system can simulate certain simple Bayesian perceptual inferences by 

using a look-up table, without executing anything like a mental transition among credal states. 

The system merely looks up what perceptual estimate it should output in response to a given 

sensory input. Such a system does not approximately implement a Bayesian inference. It does 

not even instantiate credal states. 

 Any Bayesian model describes a mapping from inputs to outputs. For example, a 

Bayesian perceptual model describes a mapping from proximal sensory inputs to perceptual 

estimates.
17

 A Bayesian model posits credal states that mediate the mapping from inputs to 

outputs. The simplest models posit three mediating credal states: 

 the prior probability p(h) 

 the prior likelihood p(e | h) 

 a credal state q(h) that results from the prior probability, the prior likelihood, and input e. 

In an idealized Bayesian model, q(h) is the posterior p(h | e). In an approximation model, q(h) 

may only approximate p(h | e). From a realist perspective, the credal states p(h), p(e | h), and q(h) 

are genuine mental states that causally impact the transition from inputs into outputs. The two 

priors combined with input e cause credal state q(h), which in turn causes a “decision,” such as 

selection of a privileged hypothesis ĥ  (in the case of perceptual estimation) or selection of a 

motor command (in the case of motor control). Thus, input-output mappings are mediated by a 

causal structure that conforms approximately to Bayesian norms. Some Bayesian models, such as 

the object-tracking model, describe a richer causal structure that embeds additional credal states. 

 Instrumentalists are neutral about the causal structure that mediates between inputs and 

outputs. From an instrumentalist perspective, input-output mappings might just as well be 
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 The mapping may be stochastic rather than deterministic. Due to sensory noise, the same proximal input does not 

yield the same perceptual estimate on each occasion. There are various ways for Bayesian models to capture 

stochastic variation, such as incorporating a noise term that corrupts expected utility maximization. 
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mediated by a look-up table. So realists are far more committal than instrumentalists about the 

mental processes that mediate between inputs and outputs. 

 The concept of “approximation” is vague. No doubt there are borderline cases: cases 

where it is indeterminate whether a system “approximately implements” Bayesian inference. In 

practice, most naturally arising cases fall determinately on one or another side of the border. 

Variational and sampling schemes are clear-cut cases of approximate Bayesian inference. A 

look-up table is a clear-cut case in which approximate Bayesian inference does not occur. 

Realists contend that some mental activity falls on the approximate Bayesian inference side of 

the border. Instrumentalists say that we have no reason to think so. This is substantive and well-

defined disagreement, even though it hinges upon a vague concept. Many useful concepts are 

vague (Williamson, 1994). The vagueness of “approximation” does not forestall constructive 

debate between realists and instrumentalists. 

 

§8.4 Scientific practice 

 Block (2018, p. 8) cites scientific practice to support his instrumentalist construal of 

Bayesian modeling. He notes that some Bayesian cognitive scientists claim only to be addressing 

input-output mappings, without any commitment as to the causal structure that mediates between 

inputs and outputs. These researchers offer a Bayesian model as an ideal solution to a problem 

faced by the mind, such as estimating distal conditions based on proximal sensory input, or 

parsing an utterance’s syntactic structure, or choosing a motor command that promotes one’s 

goals. The researchers aim to assess how closely humans match the ideal solution, not to 

discover how humans actually solve the problem. Why should we regard a Bayesian model as 

approximately true when its own creators decline to do so? 
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 I reply that the dispute between realism and instrumentalism is not about what scientists 

believe, any more than the dispute between Platonism and nominalism regarding mathematical 

entities is about what mathematicians believe. The dispute is about what we have reason to 

believe. Some practicing Bayesian cognitive scientists are indeed agnostic about the postulates of 

their own models, just as some mathematicians are agnostic about whether mathematical entities 

exist. In neither case does the agnosticism militate against a realist construal. The issue is 

whether agnosticism is well-grounded, not whether any practitioners partake in it. 

 In any event, Block neglects important aspects of current scientific practice that fit much 

better with a realist construal than with an instrumentalist construal. As noted in §5, a major 

strand in current neuroscience is the search for neural mechanisms that approximately implement 

Bayesian inference. This search presupposes a realist perspective on credal states and transitions. 

It presupposes that credal states posited by Bayesian models are genuine mental states 

instantiated by the brain, not just useful fictions. Investigating how priors are realized in the 

brain would be a fool’s errand if there were no priors. Instrumentalists must reject as misguided 

all ongoing research into neural mechanisms of approximate Bayesian inference. 

 

§9. Explanatory advantages of realism 

I contend that realism offers key explanatory advantages over instrumentalism. I focus on 

perception, but my arguments generalize to explanatorily successful Bayesian models of non-

perceptual domains. I offer two arguments: the argument from altered priors and the argument 

from iterated inference. 

The argument from altered priors proceeds from the observation that priors can change in 

response to sensory input. For example, Sotiropoulos, Seitz, and Seriès (2011) investigated 
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whether one can alter the slow motion prior employed during motion estimation. They repeatedly 

exposed subjects to fast-moving stimuli. In response to this experimental manipulation, the 

velocity prior shifted so as to favor faster speeds. Motion estimation changed accordingly: the 

same stimulus looked to be moving faster after the manipulation than it did before the 

manipulation. As a general matter, one can experimentally manipulate both prior probabilities 

(Adams, Graf, and Ernst, 2004; Ernst, 2007) and prior likelihoods (Sato and Kording, 2014; 

Sato, Toyoizumi, and Aihara, 2007; Seydell, Knill, Trommershäuser, 2010) deployed by the 

perceptual system.
18

 

When priors change, there is a change in the mapping from proximal sensory inputs to 

perceptual estimates. Realists can offer a principled explanation for why the mapping changes as 

it does. If the perceptual system approximately executes a Bayesian inference based upon prior 

p(h), then changing the prior from p(h) to p*(h) will cause approximate execution of a Bayesian 

inference based upon p*(h). The original prior p(h) induces one mapping  from sensory inputs 

to perceptual estimates, while the new prior p*(h) induces a different mapping *. Realists can 

describe in systematic terms how different environmental statistics yield different priors and 

thereby induce different mappings from sensory inputs to perceptual estimates. 

Instrumentalists cannot offer nearly so satisfying an explanation. The fact that a system 

behaves as if executing a Bayesian inference from prior p(h) gives no reason expect that any 

given experimental manipulation would cause the system to behave as if executing a Bayesian 

inference from some other prior p*(h). From an instrumentalist perspective, there is no reason 

why a given experimental manipulation should cause mapping * to replace mapping . 

Instrumentalists can augment their theory by stipulating that the experimental manipulation 

                                                 
18

 In (Rescorla, 2015b), I mistakenly claimed that (Beierholm, Quartz, and Shams, 2009) is an example where the 

prior likelihood changes. 



38 

 

causes mapping * to replace mapping . Clearly, though, the augmented theory does not 

explain in a principled way why  changes as it does. Similarly, Orlandi can say that the 

perceptual system is “wired” one way and then becomes “wired” a different way in response to 

changing environmental statistics, but her account yields no principled explanation for why one 

“wiring” replaces another (Rescorla, 2015b). 

Here we see a stark contrast between realist and instrumentalist construals of Bayesian 

modeling. From a realist perspective, priors are genuine, causally efficacious mental states. We 

can say what would happen if we were to hold one mental state fixed while varying another --- 

e.g. if we were to hold the prior likelihood fixed while varying the prior probability. We thereby 

explain why certain experimental manipulations impact perceptual processing as they do. 

Instrumentalists cannot offer a comparably satisfying explanation, because they deny that the 

Bayesian model describes genuine mental states that causally influence perceptual processing. 

Instrumentalists hold that talk about priors is simply a way of summarizing the mapping from 

proximal inputs to perceptual estimates. Because they invest the Bayesian model with no 

psychological reality beyond the mapping  itself, they have no theoretical resources to explain 

why certain experimental manipulations change the mapping one way rather than another. 

 So goes the argument from altered priors. I offered a version of the argument in 

(Rescorla, 2015a; 2015b). Block responds: 

I find this argument unconvincing because whatever it is about the computations of a 

system that simulates the effect of represented priors… might also be able to simulate the 

effect of change of priors. Without a comparison of different mechanisms that can 

accomplish the same goal, the argument for realism is weak. 
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Block mentions sampling as an example of how a system might “simulate the effect of change of 

priors.” However, we saw in §8 that sampling is consistent with a realist construal of Bayesian 

modeling. Sampling algorithms studied in cognitive science do not simulate approximate 

Bayesian inference. They implement approximate Bayesian inference. A sampling 

implementation does not just “simulate the effect of change of priors.” The system instantiates 

priors, and those priors can change in response to suitable experimental manipulations, yielding a 

different mapping from sensory inputs to perceptual estimates. Sampling is an illustration of my 

argument, not a counterexample to it. 

 In principle, a system that simulates Bayesian inference from prior p(h) might respond to 

certain experimental manipulations by simulating Bayesian inference from a new prior p*(h). 

But a system that simulates Bayesian inference from prior p(h) need not so respond. 

Instrumentalists must offer a principled explanation for why the mapping  changes as it does. 

Maybe they will eventually do so. Maybe they will eventually provide a compelling alternative 

to the realist explanation. However, it is true of virtually any explanation that we may eventually 

discover a compelling alternative explanation. One does not undermine an abductive inference 

by noting the mere possibility that a compelling alternative explanation may someday emerge. 

As an especially vivid illustration of the argument from altered priors, consider an 

experiment performed by Adams, Graf, and Ernst (2004). The experiment targets perceptual 

estimation of shape based upon shading cues. In typical humans, shape estimation relies upon a 

prior probability over possible directions for the light source. The prior assigns a relatively high 

probability to lighting directions that are overhead and slightly to the left. Adams, Graf, and 

Ernst (2004) manipulated the light-from-overhead prior by exposing subjects to deviant visual-

haptic stimuli indicating a shifted direction for the light source. The prior changed accordingly, 
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inducing an altered mapping from shading cues to shape-estimates. Moreover, the very same 

experimental manipulation altered performance in a separate perceptual task that required 

subjects to estimate which side of an oriented bar was lighter than the other. 

Why does an experimental manipulation in one task (shape estimation) affect 

performance in a separate task (lightness estimation)? From a realist perspective, the answer is 

straightforward: both tasks deploy a common light-from-overhead prior; the experimental 

manipulation affects performance in both tasks by altering that prior. Instrumentalists seem 

unable to offer a comparably satisfying explanation. From an instrumentalist viewpoint, there is 

no reason to expect that an experimental manipulation of the mapping from sensory inputs to 

shape-estimates will also change the mapping from sensory inputs to lightness-estimates. For 

example, imagine a system that simulates Bayesian shape estimation using a look-up table and 

that simulates Bayesian lightness estimation using a separate look-up table. Let us stipulate that 

the system can respond to experimental manipulations in a perceptual task by altering the 

appropriate look-up table: e.g. it responds to deviant stimuli in the shape estimation task by 

altering the look-up table used for shape estimation. Let us stipulate that the system will change 

the mapping from shading cues to shape-estimates so as to simulate a change in the light-from-

overhead prior. Our stipulations do not entail that the system also changes the look-up table used 

for lightness estimation. There is no principled reason to expect that a change in the look-up 

table used for shape estimation will correlate with a change in the look-up table used for 

lightness estimation. More generally, there is no principled reason why a system that simulates a 

changed prior in the shape estimation task should also simulate a changed prior in the lightness 

estimation task. Thus, realism offers a satisfying explanation where instrumentalism does not. 
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The argument from iterated inference is similar to the argument from altered priors, but it 

only applies to a restricted range of Bayesian models. It applies to models, such as the object-

tracking model, that postulate sequential Bayesian inferences based upon evolving credal states. 

The object-tracking model postulates a sequence of credal states p(xt, 
obj

tv , pattern

tv  | e1, e2, 

…, et), yielding perceptual estimates tx̂ , obj

tv̂ , and pattern

tv̂ . Credal state p(xt, 
obj

tv , pattern

tv  | e1, e2, 

…, et) and sensory input et+1 jointly determine the next credal state p(xt+1, 
obj

tv 1 , pattern

tv 1  | e1, e2, … 

, et+1). Thus, the model postulates sequential credal states that interact with sensory input to 

influence perceptual estimation. Each credal state p(xt, 
obj

tv , pattern

tv  | e1, e2, …, et) induces a 

mapping t+1 from sensory input et+1 to perceptual estimates 1
ˆ
tx , obj

tv 1
ˆ
 , and pattern

tv 1
ˆ
 . Intuitively: 

the system’s current credences regarding position and motion determine how it will estimate 

position and motion based upon the next sensory input it receives. A different credal state p*(xt, 

obj

tv , pattern

tv  | e1, e2, …, et) would induce a different mapping t+1
*
. If we interpret the model 

realistically, we can explain in a systematic way why mapping t+1 rather than mapping t+1
* 

occurs. We regard the sequence of mappings 1, 2, …, t, … as resulting from a fixed Bayesian 

estimator that updates credences based upon sensory inputs e1, e2, …, et, … We can say that the 

sequence 1, 2, …, t, … reflects a sequence of causally relevant credal states governed by a 

fixed Bayesian dynamics. Instrumentalists offer no comparable explanation. They cannot explain 

why, when the mapping at t is t, the mapping at t+1 is t+1 rather than t+1
*
. From an 

instrumentalist perspective, one sequence of mappings is no more to be expected than any other. 

Realists can offer a principled explanation for the sequence of mappings. Instrumentalists cannot. 

 It is not helpful to gloss credal states in terms of biases, constraints, wirings, or other 

similar locutions. There is of course a sense in which the perceptual system during the object-
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tracking task is wired one way at t (corresponding to mapping t) and then becomes wired a 

different way at t+1 (corresponding to mapping t+1). However, the “wiring” at t reflects a 

fleeting credal state that occurs at t and loses psychological relevance shortly thereafter. The 

“wiring” does not belong to the fixed architecture of perceptual processing. Sequential 

perceptual estimates tx̂ , obj

tv̂ , and pattern

tv̂  derive from an underlying sequence of credal states 

p(xt, 
obj

tv , pattern

tv  | e1, e2, …, et). Talk about biases, constraints, and wirings obscures this 

underlying causal structure. By acknowledging the causal structure, we reap explanatory 

dividends that appear otherwise unavailable. 

 The realist arguments I have provided are not decisive. A committed instrumentalist 

could insist that scientific theories are not in the business of accurate description and that we 

should construe even the most successful theory as nothing but a useful predictive device. Short 

of embracing a full-blown instrumentalist stance towards all scientific theorizing, I see little 

motivation for an instrumentalist construal of Bayesian perceptual psychology. 

Although this section has focused on perception, my arguments generalize to other well-

confirmed Bayesian models. The argument from altered priors applies whenever priors can 

change. The argument from iterated inference applies to any Bayesian model that postulates a 

sequence of inferences based upon evolving credal states --- such models are especially common 

in Bayesian sensorimotor psychology. Taken together, the two arguments show that realism 

offers notable explanatory advantages over instrumentalism. 

 

§10. Conclusion 

 Helmholtz proposed that unconscious mental processes can resemble familiar conscious 

activities such as inference and decision-making. Bayesian cognitive science vindicates 
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Helmholtz’s proposal through explanatorily powerful, well-confirmed models of perception, 

motor control, and other domains. Bayesian modeling establishes the existence of subpersonal 

mental computations that are inaccessible to consciousness yet that share theoretically crucial 

properties with personal-level credal inference. The computations incorporate transitions among 

credal states. In some cases, the transitions conform closely to the Bayesian ideal. In other cases, 

the transitions tractably approximate the intractable Bayesian ideal. How remarkable that the 

Bayesian paradigm, originally conceived with normative aspirations, has proved such a fertile 

source of empirical insights! 
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