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Abstract: The perceptual system estimates distal conditions based upon proximal sensory input. 

It typically exploits information from multiple cues across and within modalities: it estimates 

shape based upon visual and haptic cues; it estimates depth based upon convergence, binocular 

disparity, motion parallax, and other visual cues; and so on. Bayesian models illuminate the 

computations through which the perceptual system combines sensory cues. I review key aspects 

of these models. Based on my review, I argue that we should posit co-referring perceptual 

representations corresponding to distinct sensory cues. For example, the perceptual system 

represents a distal size using a representation canonically linked with vision and a distinct 

representation canonically linked with touch. Distinct co-referring perceptual representations 

represent the same denotation, but they do so under different modes of presentation. Bayesian 

cue combination models demonstrate that psychological explanation of perception should attend 

to mode of presentation and not simply to denotation. 

 

§1. Sensory cue combination 

 A familiar picture holds that mental activity involves computation over mental 

representations (Fodor, 1975, 2008; Gallistel and King, 2009; Pylyshyn, 1984). This paper will 

discuss representations that figure in computations executed by the perceptual system. 

My focus is sensory cue combination. The perceptual system estimates distal conditions 

(e.g. shapes, sizes, colors, and locations of distal objects) based upon proximal sensory input 
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(e.g. retinal stimulations, or vibrations in the inner ear, or muscle spindle activity). When 

estimating distal conditions, the perceptual system typically exploits relevant information from 

multiple sensory modalities. If you see a barking dog across the park, then you receive both 

visual and auditory information relevant to the dog’s location. If you look at an apple while 

holding it in your hand, then you receive both visual and haptic information relevant to the 

apple’s shape and size. Multiple relevant cues can also arise within a single sensory modality. 

For example, the visual system estimates depth based upon convergence, binocular disparity, 

monocular linear perspective, motion parallax, occlusion, texture gradients, and other cues. 

Multiple cues pose a challenge to the perceptual system, because they usually conflict if only to a 

slight degree. The perceptual system must resolve conflicts, integrating sensory cues into a 

unified estimate of distal conditions. A striking illustration is ventriloquism, which generates a 

conflict between visual and auditory cues to location. The perceptual system mistakenly resolves 

the conflict in favor of the visual cue (the puppet’s moving lips).
1
 

I want to explore what scientific research into sensory cue combination reveals about 

perceptual representation. My main thesis is that, in many cases, we should posit multiple 

perceptual representations representing a single distal property. For example, the perceptual 

system represents a given distal size using a representation canonically linked with vision and a 

distinct representation canonically linked with touch. Similarly, the perceptual system represents 

a given depth using a representation canonically linked with binocular disparity, a distinct 

representation canonically linked with motion parallax, a distinct representation linked with 

convergence, and so on. In general, the perceptual system represents a single distal property 

using distinct perceptual representations canonically linked with distinct cues. The 

                                                 
1
 O’Callaghan (2012) gives a helpful philosophical introduction to multimodal aspects of perception, including 

ventriloquism and other cross-modal illusions. 
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representations are co-referring, in that they represent a single distal property. We can clarify the 

nature of these co-referring representations by studying their roles within perceptual 

computation, including canonical links to privileged information sources. 

§2 surveys current research into sensory cue combination. §3 defends my main thesis: we 

should posit co-referring perceptual representations corresponding to distinct sensory cues. §4 

compares my position with a similar position espoused centuries ago by Berkeley. §5 elucidates 

perceptual co-reference by deploying Frege’s insights into mental representation. §6 draws 

morals regarding psychological explanation. §7 explores the conditions under which mental 

activity instantiates a given perceptual representation. 

 

§2. Bayesian modeling of cue combination 

 Helmholtz (1867) proposed that perception involves an “unconscious inference” from 

proximal sensory input to estimates of distal conditions. Recently, perceptual psychologists have 

developed Helmholtz’s viewpoint using Bayesian decision theory (Knill and Richards, 1996). On 

a Bayesian approach, the perceptual system encodes a prior probability, which assigns 

probabilities p(h) to hypotheses h regarding distal conditions (e.g. hypotheses regarding the size 

of a perceived object). The perceptual system also encodes a prior likelihood, which assigns a 

conditional probability p(e | h) to sensory input e given hypothesis h (e.g. the probability of 

certain retinal input given that an object has a certain size and depth). Upon receiving input e, the 

perceptual system computes the posterior probability p(h | e), where 

p(h | e) = η p(h) p(e | h). 
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Here η is a normalizing constant to ensure that probabilities sum to 1. From the posterior, the 

perceptual system computes a privileged hypothesis ĥ  (e.g. a privileged estimate of size). In the 

models we will consider, ĥ  is the hypothesis that maximizes the posterior. 

 Researchers have elaborated the Bayesian framework into mathematically precise, well-

confirmed models of numerous perceptual phenomena. The models are extremely idealized, yet 

even so they yield satisfying explanations for many illusions and constancies.
2
 For an overview, 

see (Rescorla, 2015). My goal here is to highlight how the Bayesian paradigm illuminates 

sensory cue combination. 

 

§2.1 Weighted averaging and beyond 

 Suppose you must determine the size of an object while holding it in your hand. Your 

perceptual system forms an estimate based upon both visual and haptic feedback. For simplicity, 

let us assume a relatively “flat” prior probability p(s) over possible sizes. In this case, the optimal 

Bayesian estimate is determined almost entirely by the prior likelihoods p(eV | s) and p(eH | s), 

where eV is visual input and eH is haptic input. Holding eV fixed, we may view p(eV | s) as a 

function of s. Viewed that way, it is called a likelihood function. Let Vŝ  be the value of s that 

maximizes the likelihood function p(eV | s). Define Hŝ  analogously. Assume that the prior 

likelihoods are Gaussians, i.e. normal distributions. Assume also that the perceptual system seeks 

to maximize the posterior probability p(s | eV, eH). Given a few additional assumptions (Landy, 

Banks, and Knill, 2011, p. 9), the posterior p(s | eV, eH) attains its maximum when s has the value 

VHŝ  given by 

                                                 
2
 One notable idealization: current models typically employ an uncountable hypothesis space. Taken at face value, 

any such model presupposes mental capacities to represent uncountably many distinct distal properties. 
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(1) HHVVVH swsws ˆˆˆ  . 

Here wV and wH are weights that reflect the reliability of visual and haptic input --- more 

technically, the variances of the likelihood functions. Thus, VHŝ  is a weighted average of the 

individual size-estimates Vŝ  and Hŝ . The average is weighted towards the more reliable cue. 

Visual input regarding shape is usually more reliable than haptic input, so size-estimates are 

usually weighted towards vision.
3
 

 To test the weighted average model, Ernst and Banks (2002) instructed subjects to 

estimate the height of a ridge given visual input, haptic input, or both. Using virtual reality 

technology, Ernst and Banks brought visual and haptic cues into conflict. They also 

parametrically manipulated the reliability of vision by introducing noise into the visual stimulus. 

Size-estimates conformed quite closely to (1). When visual input was relatively noise-free, vision 

dominated the estimate. As visual input grew noisier, haptic input exerted more influence.
4
 

Researchers have extended the weighted average model to many other cases of cue 

combination between and within modalities, including visual and haptic cues to shape (Helbig 

and Ernst, 2008), visual and auditory cues to location (Alais and Burr, 2004), visual and 

proprioceptive cues to hand location (van Beers, Wolpert, and Haggard, 2002), disparity and 

                                                 
3
 The derivation of (1) from Bayesian first principles presupposes that individual visual and haptic estimates are 

unbiased and that visual and haptic noise are independent. Ernst (2012) discusses normative and empirical 

ramifications of lifting these and other idealizing assumptions. 

4
 The weighted average model predicts that 

2
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2

V  and 
2

H are variances of the individual likelihood functions. A corollary is that the posterior will have 

lower variance than the individual likelihoods. Intuitively: combining separate information channels reduces the 

uncertainty from each channel. The variance prediction is crucial for testing the weighted average model (Rohde, 

van Dam, and Ernst, 2016, p. 7). A system that switches between Vŝ and Hŝ in proportion to the weights wV and wV 

will look on average as if it conforms to (1), even though it does not compute estimates in accord with (1). To 

confirm that a system is really computing the posterior given by the weighted average model, one must confirm both 

(1) and the predicted posterior variance. 



6 

 

texture cues to slant (Knill and Saunders, 2003), and motion and texture cues to depth (Jacobs, 

1999). In each case, experimental data fit the weighted average model. Consider a laboratory 

version of ventriloquism: a light flashes while an auditory stimulus (such as a click) occurs at a 

slightly different location. The auditory stimulus is perceived as located where the light flashes. 

This is because vision is a far more reliable location cue than audition, so that the weighted 

average assigns almost all weight to the visual cue. Alais and Burr (2004) induced “reverse 

ventriloquism” by blurring the visual cue. A blurred cue is an unreliable guide to location. 

Accordingly, perceived location shifted almost entirely towards the auditory stimulus. 

The weighted average model is just a first step towards understanding sensory cue 

combination (Ernst, 2012). One drawback of the model is that it only applies when the 

perceptual system has decided to integrate distinct sensory signals into a unified perceptual 

estimate. There are many cases where integration of sensory signals does not occur and would 

not be advisable. For example, if you see a sleeping dog and hear another dog barking far away, 

then you should not integrate visual and auditory information to form a unified location-estimate. 

Körding et al. (2007) handle this sort of case through a Bayesian causal inference model that 

generalizes the weighted average model. According to the causal inference model, the perceptual 

system estimates whether two sensory signals derive from the same distal source, and it decides 

on that basis whether (or to what extent) to integrate the signals into a single unified estimate. 

The causal inference model is merely one example of how researchers have generalized the 

weighted average model in order to fit a wider range of cases.
5
 

 

                                                 
5
 Another drawback of the weighted average model is that it predicts a weighted average no matter how large the 

conflict between cues. The prediction fails when conflicts are quite large. In such cases, the perceptual system does 

not compute a weighted average but instead relies upon a single favored cue. This phenomenon is called robustness. 

If we generalize the weighted average model by allowing likelihoods to be mixtures of Gaussians rather than simply 

Gaussians, then we can model robust estimation quite successfully in Bayesian terms (Girshick and Banks, 2009). 
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§2.2 The coupling prior 

 When the perceptual system combines sensory signals from different modalities into a 

single unified estimate, it does not typically discard information gleaned from the individual 

signals. Instead, it retains unimodal estimates based upon the individual signals. Depending on 

the requirements of the perceptual task, it can then access either the combined estimate or the 

unimodal estimates. For example, there is strong evidence that the perceptual system typically 

maintains distinct visual size-estimates and haptic size-estimates in addition to a unified visual-

haptic size-estimate (Hillis et al., 2002). Intuitively: an object can look to have a certain size 

even while it feels like it has a different size. 

 Notably, unimodal estimates are influenced by information from other modalities. When 

computing a visual size-estimate, the perceptual system does not simply ignore haptic input. It 

does not compute the visual size-estimate that it would have produced absent any haptic 

feedback. Instead, haptic input biases the visual size-estimate. Even when experimenters instruct 

subjects to ignore haptic input and produce a purely visual size-estimate, haptic input 

significantly biases the visual size-estimate. A similar cross-modal effect arises for visual and 

auditory cues (Roach, Heron, and McGraw, 2006). 

Ernst (2006) explains these cross-modal effects by positing a coupling prior, which 

correlates perceptual estimates associated with different cues. The coupling prior for visual-

haptic size-estimation has the form p(sV, sH), where sV is a visual size-estimate and sH is a haptic 

size-estimate. Intuitively, the coupling prior encodes the probability that a “visual size” and 

“haptic size” co-occur. The perceptual system uses the coupling prior to compute a posterior 

p(sV, sH | eV, eH). It selects privileged visual and haptic size-estimates that maximize the posterior. 

Figure 1 illustrates with three possible coupling priors. In the first column, the coupling prior is 
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flat. As a result, the two cues are handled independently: the visual size-estimate is Vŝ , the value 

that maximizes the likelihood p(sV | eV); and the haptic size-estimate is Hŝ , the value that 

maximizes the likelihood p(sV | eV). In the third column, the coupling prior encodes complete 

certainty as to the correlation between visual size and haptic size. All probability mass is 

concentrated on the diagonal line sV = sH in the two-dimensional space of visual and haptic size-

estimates. Accordingly, I say that the coupling prior is concentrated. A concentrated coupling 

induces complete fusion: the visual estimate and haptic estimate must agree. As Ernst (2007, p. 

4) puts it: 

If the system knows that the visually measured size and the haptically measured size of 

an object are perfectly correlated and it knows the mapping between the measurements, 

then it can infer that they have to be “identical”; hence, it makes no sense to allow for 

two separate “percepts of size” --- one visual and one haptic. The two measurements of 

size should be fused to one percept of object size. 

The second column is intermediate between flat and concentrated, encoding a fuzzy correlation 

between visual and haptic size. Visual and haptic size-estimates fall between estimates induced 

by the flat and the concentrated coupling priors. This is called partial fusion.
6
 

 

INSERT FIGURE 1 ABOUT HERE 

                                                 
6
 Each panel in Figure 1 depicts a function over ordered pairs of real numbers. The real numbers specify visual size-

estimates and haptic size-estimates. Our choice of real numbers reflects some choice of measurement units. Figure 1 

uses units such that a visual estimate of size s corresponds to the same real number as a haptic estimate of the same 

size s. Given this choice of measurement units, the diagonal line sV = sH models scenarios where the visual estimate 

agrees with the haptic estimate. We could have chosen different measurement units, so that those scenarios would be 

modeled by a different diagonal line. What matters for psychological explanation are the underlying size-estimates, 

not the real numbers through which we specify those estimates. The crucial fact about the concentrated coupling 

prior from Figure 1 is that all probability mass is concentrated on a correlation that matches each visual size-

estimate with a haptic size-estimate of the same distal size. It is not explanatorily important that we have chosen 

measurement units so that this correlation corresponds to the line sV = sH. What matters is sameness of estimated 

distal conditions, not sameness of the real numbers through which we theorists specify distal estimates. For more on 

Bayesian perceptual modeling and arbitrary measurement units, see (Rescorla, 2015). 
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In practice, intermodal cues to a single distal variable virtually always induce partial 

rather than complete fusion.
7
 Intramodal cues typically induce complete fusion. For example, the 

perceptual system does not retain separate estimates of slant based upon disparity and texture 

signals (Hillis et al., 2002). Instead, it fuses the signals into a single estimate. The coupling prior 

framework provides a principled basis for explaining the degree to which sensory cues fuse (van 

Dam, Parise, and Ernst, 2014): degree of fusion depends upon where the coupling prior falls in 

the continuum from flat to concentrated. In this spirit, we may posit a fuzzy coupling prior over 

visual and haptic size-estimates, biasing visual and haptic estimation towards the diagonal but 

not all the way. The result is partial fusion, which matches the experimental data for visual and 

haptic size-estimation. Similarly, we may posit a concentrated or near-concentrated coupling 

prior over disparity-based slant-estimates and texture-based slant-estimates, resulting in complete 

or near-complete fusion for disparity and texture cues to slant. 

 In a striking application of the coupling prior framework, Ernst (2007) studied two distal 

variables that are normally uncorrelated: luminance and stiffness. He exposed subjects to deviant 

stimuli where luminance and stiffness were correlated, e.g. a stiffer object was likely to be 

brighter. After an hour-long training session with deviant stimuli, the coupling prior over 

luminance and stiffness changed. It began flat (as in Figure 2’s first column), reflecting the fact 

that luminance and stiffness are normally uncorrelated. By the end of the training session, the 

coupling prior had become fuzzy (as in Figure 2’s second column), inducing partial fusion of 

luminance and stiffness. For example, stiffer objects looked brighter. Ernst’s experiment 

illustrates how the coupling prior rapidly evolves to reflect environmental statistics. A less 

artificial illustration along similar lines is the recent demonstration by Adams, Kerrigan, and 

Graf (2016) that, in typical perceivers, haptic cues influence perceived gloss: objects that feel 

                                                 
7
 An exception: visual and vestibular cues to self-motion completely fuse (Prsa, Gale, and Blanke, 2012). 
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slippery look shinier. Adams, Kerrigan, and Graf (2016) explain this cross-modal effect by 

positing a fuzzy coupling prior over friction-estimates and gloss-estimates. Intuitively: the 

coupling prior treats slippery objects (objects with low friction) as likely to be shinier. 

 Luminance and stiffness are distinct distal variables. Friction and gloss are distinct distal 

variables. In contrast, an object’s size is the same distal variable whether one estimates it visually 

or haptically. Nevertheless, the three cases are not as different as they might seem. From the 

perceptual system’s standpoint, it may be quite unclear whether two cues are cues to a single 

distal variable or distinct distal variables. You and I know that an object’s “visual size” and its 

“haptic size” are one and the same. To the perceptual system, the identity may not be initially 

apparent. It is not a priori obvious that the distal cause of certain retinal stimulations is the same 

property as the distal cause of certain haptic stimulations. Ernst puts the point as follows (2007, 

p. 2): “the felt and seen size of an object are two totally different sensory signals: One is derived 

from photons on the retina, and the other one is derived from sensors detecting the fingers’ 

position given some force when in contact with the object.” The perceptual system must 

somehow bring “visual size” into alignment with “haptic size.” It must determine how visual 

size-estimates correlate with haptic size-estimates. More generally, the perceptual system must 

correlate estimates based upon one cue with estimates based upon another cue, even when they 

are estimates of a single distal variable. Learning the requisite correlation is a non-trivial task. 

In this connection, let us consider how the perceptual system develops during childhood. 

I already mentioned that the adult perceptual system typically employs a concentrated or near-

concentrated prior for disparity and texture cues, resulting in complete or near-complete fusion. 

Nardini, Bedford, and Mareschal (2010) found that 6 year olds do not fuse disparity and textures 

cues to slant. Instead, they maintain separate disparity-based and texture-based slant-estimates. 
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The estimates can diverge considerably. Thus, developing perceptual systems handle intramodal 

sensory cues differently than adult perceptual systems. The reason: developing perceptual 

systems have not learned how the distal cause revealed by one cue correlates with the distal 

cause revealed by the other cue. More formally: the coupling prior employed by developing 

perceptual systems is much less concentrated than that employed by adult perceptual systems. 

Similarly, the coupling prior over visual and haptic size-estimates begins relatively flat and 

becomes more concentrated with experience (van Dam, Parise, and Ernst, 2014, p. 222). 

When deciding how to handle disparate sensory signals, the perceptual system faces two 

questions regarding the etiology of the signals: 

(1) Are the signals caused by the same object (e.g. one dog versus two dogs)? 

(2) Are the signals caused by the same property (e.g. “visual size” versus “haptic size”)? 

The causal inference model mentioned in §2.1 nicely handles type (1) questions. However, the 

model implicitly assumes that signals deriving from the same object also derive from the same 

property, so it cannot handle situations where the perceptual system determines that two signals 

derive from the same object but remains uncertain whether they derive from the same property. 

(Cf. Ernst and Di Luca, 2011, p. 239.) For this reason, the model is not well-suited to address 

type (2) questions.
8
 

The coupling prior framework easily addresses type (2) questions. It can also address 

type (1) questions, by building implicit expectations about causal structure into the coupling 

prior (Ernst and Di Luca, 2011). However, the coupling prior framework does not explicitly 

                                                 
8
 Hospedales and Vijayakumar (2009) analyze the experimental results from (Hillis et al., 2002) using a causal 

inference model. Their analysis hinges upon a very specific feature of the (Hillis et al., 2002) experimental setup: 

namely, that the experiment involves an oddity-detection task. It is unclear how if at all one might generalize the 

analysis to other experimental setups, such as the discrimination task studied in (Roach, Heron, and McGraw, 2006). 

Adams (2016) compares how the coupling prior approach and the causal inference approach handle cross-modal 

effects in a visual-auditory estimation task. She concludes that the coupling prior approach fits the data much better. 
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model perceptual estimation of causal structure. For example, it does not explicitly model the 

difference between estimating that visual and auditory input derive from a single dog versus 

estimating that they derive from two different dogs. The causal inference model arguably 

provides a better setting for addressing type (1) questions. In the present paper, I am primarily 

concerned with type (2) questions, which is why I focus on the coupling prior framework. 

Obviously, a complete treatment of cue combination must address questions of both types.  

  

§3. Co-referring perceptual representations 

 Any Bayesian perceptual model features probabilities attached to hypotheses. What are 

the “probabilities”? And what are the “hypotheses” to which they attach? 

Following conventional wisdom, my answer to the first question is that the probabilities 

are subjective. They register the degree of confidence that the perceptual system reposes in a 

hypothesis. Thus, they reflect aspects of the perceiver’s psychology, rather than objective 

chances in the distal environment. 

My answer to the second question is that the hypotheses are mental representations. A 

mental representation is a mental item that represents. More explicitly: (a) it is the kind of thing 

that can be instantiated by mental states, events, or processes; and (b) it has representational 

properties. Hypotheses posited within Bayesian perceptual psychology satisfy (a): perceptual 

activity instantiates hypotheses by maintaining priors over them, by reallocating probabilities 

over them in rough conformity to Bayesian norms, and by selecting a particular hypothesis as a 

privileged estimate of distal conditions. Hypotheses also satisfy (b). They represent specific 

distal properties, including shapes, sizes, and colors (Rescorla, 2015). For example, a Bayesian 

model of size perception posits hypotheses that represent possible sizes, a Bayesian model of 
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slant perception posits hypotheses that represent possible slants, and so on. Any Bayesian 

perceptual model posits an array of hypotheses that represent distal properties. We may aptly call 

the hypotheses perceptual representations. 

 Say that two mental representations co-refer when they represent the same object or 

property. Current scientific theories of cue combination presuppose that, in many cases, the 

perceptual system employs co-referring perceptual representations. To illustrate, consider size-

estimation based on visual and haptic cues. As we saw in §2, the perceptual system maintains a 

coupling prior p(sV, sH). sV is a vision-based hypothesis that represents some distal size. sH is a 

touch-based hypothesis that represents some distal size. In my terminology, sV and sH are 

perceptual representations that represent distal sizes. Depending on sV and sH, they may represent 

either the same size or different sizes. Even when sV and sH represent the same size, they are 

distinct perceptual representations. They must be distinct, because otherwise there would not be 

a two-dimensional space of visual size-estimates and haptic size-estimates. There would only be 

a one-dimensional space of size-estimates, and no coupling prior would be possible. 

 Compare luminance and stiffness. There is an array of representations l1, l2, l3, … that 

represent possible luminance values, and there is a second array of representations s1, s2, s3, … 

that represent possible degrees of stiffness. Each representation li is distinct from each 

representation sk. In the Ernst (2007) experiment, the perceptual system acquires a probabilistic 

correlation (encapsulated by the coupling prior) between the arrays l1, l2, l3, … and s1, s2, s3, …. 

It can only encode such a correlation if there are luminance-representations and distinct stiffness-

representations to correlate. Similarly, the developing perceptual system acquires a probabilistic 

correlation between size as represented visually and size as represented haptically. It can only 

encode such a correlation if there are vision-based size-representations ,...,,
321 VVV sss and distinct 
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touch-based size-representations ,...,,
221 HHH sss  to correlate. We theorists know that luminance is 

not stiffness but that a certain size as represented visually is identical to that same size as 

represented haptically. The developing perceptual system has no such knowledge at its initial 

disposal. It must discover for itself how size as represented visually correlates with size as 

represented haptically. To do so, it requires separate vision-based and touch-based size-

representations. 

 A similar analysis applies to intramodal cue combination. Consider slant-estimation 

based on disparity and texture cues. As we saw in §2, the developing perceptual system 

computes quite distinct slant-estimates based upon disparity and texture cues, whereas the adult 

perceptual system approaches complete fusion. We can explain the contrast by positing a change 

in the coupling prior over disparity-based slant-estimates and texture-based slant-estimates. The 

prior begins relatively flat, then becomes concentrated or near-concentrated. Our explanation 

presupposes a two-dimensional space of disparity-based slant-estimates and texture-based slant-

estimates. It presupposes an array of disparity-based representations that represent possible slants 

and a separate array of texture-based representations that represent possible slants. Even when a 

disparity-based representation co-refers with a texture-based representation, they are distinct 

representations that occupy distinct roles in perceptual processing. 

 That co-referring perceptual representations occupy distinct psychological roles is 

especially evident in the intermodal case. As noted above, sensory signals from different 

modalities typically lead the perceptual system to form separate estimates of a single distal 

variable (Hillis et al., 2002). The separate estimates are given by distinct mental representations. 

In this manner, the intermodal case vividly illustrates how the perceptual system computes over 

distinct arrays of mental representations representing possible values of a single distal variable. 
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The intramodal case does not afford such a vivid illustration, at least for the adult perceptual 

system where complete fusion occurs. The adult perceptual system does not typically form 

separate estimates corresponding to distinct cues within a single modality. Hence, there is 

perhaps not as much intuitive pressure for us to postulate distinct arrays of perceptual 

representations. However, the developing perceptual system does not completely fuse (Nardini et 

al. 2010), so the intuitive pressure is still present for developing perceivers. In any event, the 

coupling prior framework requires us to posit co-referring perceptual representations for all these 

cases. Even when the coupling prior is concentrated, it is defined over a two-dimensional space 

formed by distinct arrays of mental representations. 

  

§4. Berkeley on perceptual ideas 

 My position has historical routes tracing back at least to Berkeley’s An Essay Towards a 

New Theory of Vision (1709/1948). As was standard at the time, Berkeley spoke of “ideas” rather 

than “mental representations.” His core thesis in the Essay is that visual ideas are distinct from 

haptic ideas. He writes: “it is plain the Objects of Sight and Touch make, if I may so say, two 

Sets of Ideas, which are widely different from each other” (CXI), and “The Extension, Figures, 

and Motions, perceived by Sight are specifically distinct from the Ideas of Touch, called by the 

same Names, nor is there any such thing as one Idea, or kind of Idea common to both Senses” 

(CXXVII). Berkeley holds that the perceptual system must learn through experience how visual 

and haptic ideas correlate (XLV, CIV). He defends a similar position regarding visual and 

auditory ideas (XLVI-XLVIII, CXXX). He does not address whether different cues within a 

single modality are associated with distinct ideas. 
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 Berkeley supplements his core thesis with numerous doctrines that I reject. Some of the 

doctrines are characteristic of his era. Some are idiosyncratically his own. A few highlights: 

(i) Like many early modern philosophers, Berkeley holds that ideas are the immediate 

“objects” of perception (XLIX, CXI, CXXIX, CLXVII). If you see a tree, what you 

most directly see are your visual ideas of the tree. If you touch the tree, what you 

most directly feel are your haptic ideas of the tree. 

(ii) Berkeley holds that visual ideas acquire determinate representational import only by 

virtue of correlations with haptic ideas (LXII-LXIV, LXIX, CXLIII-CXLVII). Visual 

ideas come to represent distal properties (such as shapes, sizes, or distances) only 

when the developing perceptual system learns how they correlate with haptic ideas. 

(iii)In other writings (1710/1949), although perhaps not explicitly in the Essay, Berkeley 

espouses the radical idealist position that material things are composed of ideas. 

I reject all three doctrines: 

(i) Like most contemporary philosophers, I reject the early modern prejudice that mental 

representations, rather than the worldly objects and properties represented by mental 

representations, are the immediate objects of perception. We do not literally perceive 

mental representations. We perceive distal objects and their distal properties. We do 

so by way of instantiating perceptual representations, but we do not thereby perceive 

the perceptual representations themselves. 

(ii) I deny that visual perceptual representations depend for their representational import 

on correlations with haptic perceptual representations. The scientific work surveyed 

in §2 posits Bayesian inference over visual and haptic representations that represent 

distal properties quite independently of any particular correlation instituted by the 
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perceptual system between visual and haptic representations. This work undermines 

Berkeley’s claim that vision is parasitic upon touch for its representational import. 

(iii)Needless to say, I reject all versions of idealism. 

There are many other aspects of Berkeley’s discussion that I reject but that I will not mention. Of 

course, his discussion is scientifically outdated. Nevertheless, I agree with his core thesis. I agree 

that visual cues and haptic cues generate distinct perceptual representations (“ideas”), and 

similarly for visual and auditory cues. My discussion extends Berkeley’s core thesis by 

associating distinct intramodal cues with distinct perceptual representations. 

 Berkeley defends his core thesis partly through discussion of Molyneux’s question. The 

question is whether someone born blind would, upon gaining sight, immediately recognize how 

visually perceived shape correlates with haptically perceived shape. Berkeley answers the 

question negatively (CXXXII). He argues on this basis that visual ideas of shape are distinct 

from haptic ideas of shape and that one must learn through experience how the ideas correlate 

(CXXXIII-CXXXV). He pursues a similar argumentative strategy regarding visual and haptic 

perception of distance (XL-XLII). Since Berkeley’s time, there has been considerable 

psychological research on Molyneux’s question, including recent work that arguably supports a 

negative answer (Sinha, Wulff, and Held, 2014). However, the currently available experimental 

data is not decisive (Schwenkler, 2012), (Van Cleve, 2014). I have therefore opted not to invoke 

Molyneux’s question in developing my own argument. I have instead emphasized the 

explanatory structure instantiated by Bayesian models of cue combination. 

 

§5. Perceptual modes of presentation 

 I now elucidate perceptual co-reference using some tools introduced by Frege. 
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In a seminal discussion, Frege (1892/1997) adduced cases where a thinker does not 

recognize an entity as the same because she represents it in different ways. One may not realize 

that Hesperus is Phosphorus, even though Hesperus and Phosphorus are one and the same entity 

(Venus). One may not realize that mercury is quicksilver, or that cilantro is coriander, or that 

groundhogs are woodchucks, or that Obamacare is the Affordable Care Act. These are now 

usually called “Frege cases.” The moral Frege drew from Frege cases is that one can think about 

a single entity in different ways. He argued that a good theory should posit ways of representing 

entities, which he called modes of presentation. Frege said relatively little about what “modes of 

presentations” are. Partly as a result, critics often condemn his approach as overly obscure. As 

Fodor (2008) argues, though, modes of presentation do not seem particularly obscure once we 

accept that mental activity involves computation over mental representations. Having endorsed 

mental representations, we have committed ourselves to mental items that “present” entities to 

thought. We can then gloss modes of presentation as mental representations. For example, we 

can postulate two mental representations that denote mercury in different ways: the first 

represents it as mercury, while the second represents it as quicksilver. 

Frege focused on modes of presentation as they arise in high-level cognition. Recently, 

several authors have suggested that we should generalize by positing perceptual modes of 

presentation (Burge, 2010), (Chalmers, 2004), (Kulvicki, 2007), (Peacocke, 1989), (Thompson, 

2010). In effect, §3 constitutes an argument for perceptual modes of presentation. As the 

argument highlights, there are different ways of perceptually representing a single distal 

property. The perceptual system may represent size in a vision-based way or a touch-based way. 

It may represent slant in a disparity-based way or a texture-based way. Following Fodor, I have 
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glossed the “ways” as mental representations. Distinct perceptual representations of a single 

distal property “present” the property differently for purposes of perceptual computation. 

Philosophers who defend a broadly Fregean approach to perception usually (e.g. 

Chalmers, 2004; Kulvicki, 2007; Thompson, 2010), although not invariably (e.g. Burge 2010), 

emphasize phenomenology. They adduce phenomenological differences between perceptual 

experiences --- differences in “what it is like” to have the experiences. They infer that the 

experiences involve distinct perceptual modes of presentation. However, any argument along 

these lines embodies a contestable picture of the relation between phenomenological and 

representational aspects of experience. For example, the undeniable phenomenological 

differences between a visual percept of size and a haptic percept of size do not immediately 

entail any difference among mental representations. One might hold that a single mental 

representation of size is associated with one phenomenology when deployed by vision and a 

different phenomenology when employed by touch. Whether such a position is tenable hinges 

upon a controversial question: whether phenomenological properties supervene upon 

representational properties. 

My own argument does not rely upon phenomenological considerations. Instead, I 

emphasize the role that perceptual representations play within perceptual computation. I claim 

that our current best computational theories of sensory cue combination presuppose co-referring 

perceptual representations corresponding to distinct sensory cues. One advantage of my 

argumentative strategy is that it generalizes readily from intermodal cue combination to 

intramodal cue combination. Phenomenological arguments do not so generalize. 
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To strengthen the connection with Frege’s discussion, let us consider probabilistic Frege 

cases. As Chalmers (2011) emphasizes, we can construct probabilistic analogues to Frege’s 

examples. For instance, we can imagine a thinker who harbors the probabilities 

p(Mercury is in the beaker) = .9 

p(Quicksilver is in the beaker) = .2  

and the conditional probabilities  

p(Mercury is in the beaker | Mercury is in the beaker) = 1  

p(Mercury is in the beaker | Quicksilver is in the beaker) = .2. 

The thinker is uncertain as to whether mercury is quicksilver. As a result, her mercury mode of 

presentation figures in different unconditional and conditional probabilities than her quicksilver 

mode of presentation. §3’s argument for co-referring perceptual representations hinges upon 

probabilistic perceptual Frege cases. A non-concentrated coupling prior p(sV, sH) encodes 

uncertainty regarding the correlation between “visual size” and “haptic size.” The perceptual 

system is uncertain as to whether a distal size as represented in visual terms is identical to a 

distal size as represented in haptic terms. As a result, vision-based size-representations figure in 

different unconditional and conditional probabilities than touch-based size-representations. In 

both cognitive and perceptual cases, we posit distinct co-referring modes of presentation so as to 

capture the system’s subjective probabilities and probabilistic inferences. 

 In cognitive Frege cases, the thinker can explicitly represent identity. She can recognize 

that Hesperus is Phosphorus, or that mercury is quicksilver. It is much less evident that the 

perceptual system can explicitly represent identity, especially identity relations among 

properties. Nevertheless, the perceptual system has available a probabilistic analogue of identity 

judgments. A concentrated coupling prior encodes certainty in a particular correlation between 

visual size-estimates and haptic size-estimates. For many purposes, a concentrated coupling prior 
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serves as an analogue to the explicit judgment that Hesperus is Phosphorus. Viewed in this light, 

the transition from a flat coupling prior to a concentrated coupling prior looks analogous to the 

transition from not knowing that Hesperus is Phosphorus to knowing that Hesperus is 

Phosphorus. 

 

§5. Explaining perception 

 An important moral emerges: explanation within perceptual psychology must sometimes 

consider mode of presentation and not simply denotation. When we seek to explain how the 

perceptual system estimates a distal variable, we must adduce the way that the perceptual system 

represents the variable’s values. Mode of presentation crucially informs how perceptual 

computation proceeds. For example, the perceptual system can represent size in a vision-based 

way or a touch-based way, and it can represent slant in a texture-based way or a disparity-based 

way. Those differences influence the course of perceptual inference. The influence becomes 

apparent within the coupling prior framework, which posits a prior probability defined over 

estimates differentiated not just by their denotations but also by the way the perceptual system 

represents the denotations. Good explanation of intermodal and intramodal cue combination 

must attend to these fine-grained differences. 

 Over the past few decades, philosophers have intensely debated how we should 

taxonomize mental states for purposes of psychological explanation. The debate concerns how 

fine-grained a taxonomization we should employ. Fregeans advocate a relatively fine-grained 

taxonomization that takes mode of presentation into account. The literature offers various 

opposing coarse-grained taxonomic schemes, one of the most widely discussed being the 

Russellian scheme. So-called due to its origin in Russell’s (1903) work, the Russellian scheme 
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eschews modes of presentation. It classifies mental states by citing denotations and 

representational properties determined by denotations. On a Russellian approach, we should not 

postulate modes of presentation over and above denotations. Various philosophers have 

developed the Russellian approach, usually focusing on high-level cognition (Soames, 2002) but 

sometimes applying it to perception as well (Thau, 2002). 

 While the Russellian approach may be useful for certain purposes, §§3-5 cast doubt upon 

whether it provides an adequate foundation for perceptual psychology. Good explanation of 

sensory cue combination apparently requires a finer-grained Fregean taxonomic scheme that 

cites modes of presentation over and above denotations. 

 The philosophical literature offers various strategies through which a committed 

Russellian might try to circumvent modes of presentation. Russellians typically insist that an 

agent represents some denotation by representing properties that distinguish the denotation from 

all other possible denotations. They then explain Frege cases by citing different represented 

properties that single out the same denotation. For example, a Russellian might seek to 

differentiate Hesperus-thoughts from Phosphorus-thoughts not by invoking different modes of 

presentation but rather by invoking different distinguishing properties represented by a thinker: a 

Hesperus-thought represents the heavenly body as appearing at certain positions at certain times, 

while a Phosphorus-thought represents it as appearing at certain other positions at certain other 

times. Russellian maneuvers along these lines have been extensively debated in the literature. 

However compelling they may be for the case of high-level cognition (and I myself do not find 

them compelling), they seem quite implausible when applied to perception. 

To illustrate, suppose a Russellian tries to distinguish visual and haptic size-estimates 

along the following lines: the visual estimate represents a given size as the cause (or typical 
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cause) of certain visual stimulations or sensations and the haptic estimate represents that same 

size as the cause (or typical cause) of certain haptic stimulations or sensations. This Russellian 

maneuver differentiates visual and haptic size-estimates by citing properties represented by the 

perceptual system, without invoking modes of presentation beyond such represented properties. 

The maneuver is problematic, because it hinges upon the unsupported and implausible claim that 

perception represents distal sizes as causes of sensory states. When I perceive an object as having 

a certain size, I do not perceive its size as causing me to have certain stimulations or sensations. I 

may upon reflection represent such causal relations within high-level thought, but I do not in any 

natural sense perceive the causal relations. I perceptually represent the object’s size, not the 

causal influence that the object’s size exerts upon my sensory apparatus. Common sense and 

perceptual psychology both reject any suggestion that, when I perceive some distal property, I 

thereby perceive the distal property as causally influencing my own sensory states. We may 

safely set the Russellian maneuver aside.
9
 

 

§6. Instantiating a perceptual representation 

I have argued that Bayesian perceptual psychology posits co-referring mental 

representations. My position enshrines a fine-grained Fregean conception of psychological 

explanation, as opposed to a comparatively coarse-grained Russellian conception. The question 

remains just how fine-grained a taxonomic scheme we require. Under what conditions does 

mental activity instantiate a given perceptual representation? How finely should we differentiate 

among perceptual representations? For example, under what conditions does mental activity 

                                                 
9
 Burge (1991) critiques a proposal, due to Searle (1983), according to which each visual experience represents 

causal relations between distal conditions and that very visual experience. Much of Burge’s critique readily extends 

to the Russellian proposal that perception represents distal properties as causally influencing sensory states. 
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instantiate vision-based size-representation 
iVs ? What changes to perceptual processing entail 

that 
iVs  is no longer being instantiated? 

I will not provide systematic answers to these questions. But I will address two 

phenomena that good answers should take into account: perceptual adaptation and perceptual 

constancies. 

 

§5.1 Perceptual adaptation 

Perceptual computation constantly evolves in response to a changing environment or a 

changing interface between perceiver and environment. Perceptual adaption is “a 

semipermanent change in perception or perceptual-motor coordination which serves to 

effectively reduce or eliminate an apparent discrepancy between or within sensory modalities or 

the errors introduced by this discrepancy” (Welch, 1978, p. 8). Examples: 

- Luminance-stiffness prior. As discussed in §2, Ernst (2007) exposed subjects to 

deviant stimuli that altered the coupling prior over luminance and stiffness. As a 

result, perceptual estimation of luminance and stiffness changed. 

- Shape from shading. A concave stimulus lit from overhead generates the same retinal 

shading as a convex stimulus lit from below. To infer shape from the ambiguous 

shading cue, the perceptual system deploys a prior over possible lighting directions. 

The prior assigns higher probability to overhead lighting directions. Adams, Graf, and 

Ernst (2004) experimentally manipulated the prior by exposing subjects to deviant 

visual-haptic stimuli indicating a non-standard lighting direction. The experimental 

manipulation shifted the prior towards the non-standard lighting direction, yielding a 

significant change in visual shape-estimation. 
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- Ventriloquism aftereffect. Suppose we repeatedly expose a perceiver to a 

ventriloquism illusion: a visual stimulus and an auditory stimulus with fixed spatial 

separation. The perceptual system will then change how it estimates location based 

solely upon auditory cues. Perceived location of the auditory stimulus without any 

accompanying visual stimulus shifts markedly along the spatial separation. This is the 

ventriloquism aftereffect. Sato, Toyoizumi, and Aihara (2007) argue that the 

aftereffect reflects a change in the prior likelihood p(eA | lA) relating audition-based 

location-estimates lA and auditory input eA. Intuitively: when sustained ventriloquism 

occurs, the perceptual system changes its expectations regarding which auditory 

stimulations will result from a sound at a given location. 

In each example, the prior probabilities or the prior likelihoods change so that they more closely 

match changing environmental statistics. 

Do perceptual representations change whenever the priors change? Or can a perceptual 

representation persist as the priors change? 

My answer is that a perceptual representation can persist even as the priors change. In 

each example of perceptual adaptation (luminance-stiffness, shape from shading, and the 

ventriloquism aftereffect), the perceptual system responds to the changing environment by 

reallocating probabilities over a hypothesis space containing perceptual representations. The 

hypothesis space, and the perceptual representations contained therein, remain fixed. Otherwise, 

the perceptual system would not be reallocating probabilities over the hypothesis space. It would 

instead be replacing one hypothesis space with another. Consider the ventriloquism aftereffect, 

which involves a shift in the prior likelihood p(eA | lA) relating location-estimate lA and auditory 

input eA. What changes is the conditional probability p(eA | lA) assigned to eA given lA. In order 
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for p(eA | lA) to shift, lA must remain fixed. Persistence of lA through adaptation is built into the 

adaptation model offered by Sato, Toyoizumi, and Aihara (2007, p. 3341). The model contains 

an explicit rule governing how the old conditional probability of eA given lA is replaced by a new 

conditional probability of the same eA given the same lA. The rule presupposes that a persisting 

perceptual representation lA figures in both the old and the new prior likelihood. 

A similar diagnosis applies to other Bayesian models of perceptual adaptation, such as 

the models found in (Burge, Ernst, and Banks, 2008), (Ernst and Di Luca, 2011), (Stocker and 

Simoncelli, 2006). Each model presupposes a fixed hypothesis space and describes how 

unconditional or conditional probabilities redistribute over the space due to environmental 

changes. The same perceptual representations figure in both the old and the new probability 

assignments. Assuming that these models are on the right track, we must recognize that a single 

fixed perceptual representation can participate in a range of priors. The perceptual representation 

persists even as the priors change. 

The upshot: a perceptual representation can persist through significant changes in 

perceptual processing. 

 

§5.2 Perceptual constancies 

 A perceptual constancy is a capacity to represent some fixed distal property despite 

radical variation in proximal sensory input. For example, very different retinal angles a and b can 

cause a perceptual estimate of size s, so long as the perceptual system estimates that the object 

causing angle a is located at a suitably different depth than the object causing angle b. Similarly, 

the perceptual system may represent a surface as square despite considerable variation in the 
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shape that the surface casts upon the retina. Human perception has constancies for shape, size, 

color, location, depth, and many other distal aspects of the environment.  

 Burge (2010) invokes perceptual constancies to defend a very fine-grained conception of 

perceptual representation. He posits items that he calls perceptual attributives: “A perceptual 

attributive is an aspect of perceptual representational content that functions to indicate a 

repeatable type and to group or characterize purported particulars as being of that type” (2010, p. 

380). There are perceptual attributives that represent distal sizes, shapes, colors, and so on. Burge 

argues that significant differences in proximal input yield different perceptual attributives. For 

example, different attributives occur when retinal angle a triggers a perceptual estimate of distal 

size s and when distinct retinal angle b triggers a perceptual estimate of that same size s. Burge 

glosses his approach in Fregean terms: the attributives represent a single referent s, but they 

represent it in different ways (2010, pp. 40-41). Similarly for other cases where different 

proximal stimulations trigger perceptual estimates of a single distal property. 

 In (Rescorla, 2014), I questioned Burge’s fine-grained conception. I asked why we 

should say that different proximal stimulations trigger different perceptual attributives. To 

illustrate, suppose that retinal angles a and b trigger perceptual estimates of a single size s. Why 

posit different size-representations corresponding to a and b, rather than saying that different 

retinal angles can trigger the same perceptual size-representation? Burge (2014) replies to my 

critique and offers new arguments for his fine-grained conception. For reasons of space, I will 

not address the new arguments. Instead, I will explore how Burge’s fine-grained conception 

relates to Bayesian modeling of perception. 

 The main claim I wish to defend is that Bayesian perceptual psychology does not 

enshrine Burge’s fine-grained conception. Consider Ernst’s (2006) model of visual-haptic size-
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estimation. The model employs a two-dimensional space of vision-based and touch-based 

estimates. For each distal size s, the model presupposes a unique vision-based representation 
iVs  

that represents s and a unique touch-based representation 
kHs  that represents s. The model does 

not differentiate between vision-based size-representations triggered by one retinal angle and 

vision-based representations triggered by a different retinal angle. In general, Bayesian models 

do not differentiate among perceptual representations based upon triggering proximal 

stimulation. Prior probabilities and prior likelihoods are defined over perceptual representations 

that lack privileged ties to specific patterns of proximal input. A perceptual representation h 

participates in many conditional probabilities p(e1 | h), p(e2 | h), …, p(en | h), …, where each en is 

a different proximal input. Depending on the model’s details, many different proximal inputs en 

may trigger the same final perceptual estimate ĥ . The perceptual representation ĥ  is not tied to 

any one en. 

 My analysis suggests a relatively coarse-grained conception of perceptual 

representations, along the following lines. The perceptual system has the capacity to estimate the 

value of some distal variable (e.g. depth) based upon some sensory cue (e.g. disparity). 

Estimation deploys priors p(h) and p(e | h), where e reflects a possible value of the sensory cue 

and where h is a perceptual representation that represents a possible value of the distal variable. 

Representation h is tied to the sensory cue, but it is not tied to any specific values of the cue. 

Different sensory cues (e.g. disparity versus motion parallax) typically entail different perceptual 

representations. Different values of a single cue (e.g. different disparities) do not. Radically 

different inputs e may trigger the same final perceptual estimate ĥ . 

 My conception differs from Burge’s, but the conceptions do not necessarily conflict. 

Burge might reply that coarse-grained representations figure in the subpersonal processes that 
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produce the percept but that the final percept contains a finer-grained perceptual attributive. This 

reply seems consistent with Bayesian perceptual psychology, although I am not sure how 

plausible it is or how compelling Burge would find it. 

There is another way to reconcile the two conceptions: one might treat them as different 

but compatible ways of describing the same perceptual states. By analogy, consider utterances of 

the following sentences: 

 The police booked the suspect. 

 John booked a hotel room. 

One might hold that the utterances involve a single word “booked.” Alternatively, one might 

hold that the utterances involve two distinct words pronounced the same way. Finally, one might 

hold that these are both legitimate descriptions, embodying different but legitimate conceptions 

of word: a coarse-grained conception on which relatively many utterances instantiate the same 

word, or a fine-grained conception on which relatively few utterances instantiate the same word. 

One might say that the different conceptions yield different but equally legitimate ways of 

classifying utterances. Similarly, one might hold that my coarse-grained conception of perceptual 

representations and Burge’s finer-grained conception are different but equally legitimate ways of 

classifying perceptual states. On the coarse-grained conception, perceptual states can instantiate 

the same perceptual representation of size even though they result from very different retinal 

angles. On the finer-grained conception, any such perceptual states instantiate distinct perceptual 

representations of size. Both conceptions are legitimate, although one conception might serve 

certain explanatory purposes better than the other. 

 Let us grant that, for some purposes, it is fruitful to differentiate between a perceptual 

size-representation triggered by retinal angle a and a perceptual size-representation triggered by 
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different retinal angle b. Let us grant that we should sometimes classify perceptual states in this 

fine-grained way. Even so, a coarser-grained conception seems more appropriate for many 

purposes. Bayesian perceptual models embody the coarser-grained conception. The models posit 

perceptual representations tied to specific sensory cues but not to specific values of those cues. 

 

§6. Conclusion 

 I have argued that different sensory cues are typically associated with distinct sets of 

perceptual representations. I have also defended a relatively coarse-grained conception of these 

representations. A single perceptual representation can persist despite changing priors (§5.1) and 

despite significant variation in proximal input (§5.2). Thus, although my broadly Fregean 

treatment is finer-grained than a Russellian treatment, it is not as fine-grained an approach as 

some Fregeans have advocated. 

Many questions remain. Under what conditions does a perceptual state instantiate a given 

perceptual representation? What is the difference between instantiating vision-based 

representation 
iVs versus co-referring touch-based representation 

kHs ? Generally speaking, what 

distinguishes co-referring perceptual representations? Intuitively, the primary difference between 

a vision-based size-representation and a touch-based size-representation is that the 

representations have canonical links to different information sources. The vision-based 

representation is canonically linked to retinal stimulations, including retinal angle and depth 

cues. The touch-based representation is canonically linked to input from sensors that detect 

finger position. Similarly, one depth-representation may be canonically linked to disparity cues 

while another is canonically linked to motion-parallax cues. More generally, canonical links to 

different aspects of proximal sensory stimulation help determine whether a perceptual state 
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instantiates a particular perceptual representation. To unpack this idea, one must say what the 

“canonical links” consist in. Since I have not done so, I do not claim to have provided anything 

like a complete account. My goal has been to make progress by scrutinizing some well-

confirmed models of perceptual computation. 
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Figure 1. Each panel depicts the two-dimensional space of visual-haptic size-estimates s = (sV, 

sH). The horizontal axis contains visual size-estimates sV. The vertical axis contains haptic size-

estimates sH. White indicates high probability mass. Black indicates low probability mass. The 

top row depicts the likelihood function that results from a visual-haptic stimulus x with 

discrepant visual and haptic cues. Assuming no bias in either sensory channel, x = ( Vŝ , Hŝ ). The 

middle row depicts three possible coupling priors, ranging from flat on the left to concentrated 

on the right. The bottom row depicts the posteriors that result from combining the likelihood 

with each coupling prior.  is the maximum a posteriori (MAP) estimate, i.e. the estimate that 

maximizes the posterior. The arrow indicates the extent to which the coupling prior biases  

away from ( Vŝ , Hŝ ) and towards the diagonal line sV = sH. Rpt. from (Ernst, 2007) by permission 

of the Association for Research in Vision and Ophthalmology. 

 


