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 Enjoying a bravura performance by a professional athlete or virtuoso musician, we 

marvel at the performer’s skilled bodily motion. We are less apt to appreciate that relatively 

humdrum activities—such as walking, talking, riding a bicycle, tying shoelaces, typing, using 

silverware, or pouring milk into a cup without spilling—already require impressive control over 

one’s motor organs. The ease with which we execute these activities belies their difficulty, as 

evidenced by our current inability to build robots that match human performance. During the 

course of each day, a typical adult achieves myriad goals through an extraordinary range of 

dexterous bodily motions. How do humans manage to achieve their goals by exerting such 

refined control over their motor organs? 

Sensorimotor psychology, the scientific study of motor control, emerged from Hermann 

von Helmholtz’s (1867) pioneering investigations and assumed its modern form in the work of 

Nikolai Bernstein (1923; 1930; 1967). Building on insights of Helmholtz and Bernstein, 

contemporary sensorimotor psychologists have convincingly established that human motor 

control involves sophisticated unconscious computations that mediate between cognition and 

bodily motion. The present entry will discuss basic aspects of motor computation, along with 

some implications for philosophy of mind. 

 

1. From intentions to motor commands 
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 Suppose I form an intention to do something—say, to push an elevator button with my 

right index finger. My motor system must transform the intention into a sequence of suitable 

motor commands. How does this transformation work? How does my motor system select 

commands that promote my goal? Bernstein first highlighted a redundancy problem that bedevils 

the transformation of intentions into motor commands. There are innumerable ways the motor 

system might achieve some goal. For example, there are many trajectories my finger might take 

to reach the elevator button and many muscle activations that would achieve a given trajectory. 

The motor system must choose rapidly from among these infinitely many options. 

 Bernstein decisively advanced research into the redundancy problem with a pivotal 

discovery: the movement details through which an agent completes a motor task vary 

considerably across trials in certain characteristic ways. In particular, performance across trials 

varies far less along task-relevant dimensions than task-irrelevant dimensions. For example, 

suppose the task is to aim a laser pistol at a target. Joint configurations in the arm can fluctuate 

widely even as the agent maintains a fixed aim. Scholz, Schöner, and Latash (2000) found that 

fluctuations in joint angle that affect how well the pistol aims at the target are much smaller than 

fluctuations that have no such effect. In a similar vein, Todorov and Jordan (2002) studied a task 

where the subject moved her hand through a sequence of five widely spaced targets arranged in a 

plane. Hand trajectories varied much more between the targets than near the targets, reflecting 

the fact that hand position between targets was task-irrelevant. The scientific literature 

conclusively shows that a large disparity between task-relevant variation and task-irrelevant 

variation occurs within a wide range of motor activities (Todorov and Jordan, 2002), such as 

postural control, walking, talking, skiing, writing, reaching, and bimanual coordination. Any 

adequate theory of motor control must explain the disparity. 
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2. Optimal feedback control 

 Sensorimotor psychologists have explored various theoretical frameworks for explaining 

motor control (Rosenbaum, 2002). The most empirically successful is optimal feedback control 

(OFC). This framework uses optimal control theory, a mathematical approach to decision-

making that has been extensively developed in engineering and statistics (Stengel, 1986). The 

basic idea behind OFC is that the motor system selects motor commands that are in some sense 

optimal (or near-optimal) with respect to one’s current goal. Researchers begin with a normative 

model delineating how an idealized decision maker would accomplish the goal. They then 

investigate how well the normative model fits actual human performance. 

The central construct of optimal control theory is a cost function, which measures the 

desirability of issuing a motor command under the assumption that certain environmental 

conditions obtain. The cost function quantifies various performance criteria. Some of the 

performance criteria are task-independent (e.g. minimizing expenditure of energy). Some are 

task-dependent and reflect the goal being pursued (e.g. that I move the tip of my index finger to a 

specific location; or that I walk to the other end of a room; or that I pick up a nearby ball). 

Optimal motor commands are those that minimize expected costs. Thus, “optimality” is relative 

to a cost function. An optimal controller selects motor commands that are optimal given the 

current cost function. Depending on the details, more than one motor command may be optimal. 

OFC uses optimal control theory to illuminate how the motor system solves Bernstein’s 

redundancy problem (Scott, 2004; Todorov, 2004; Todorov and Jordan, 2002). The crucial 

insight is that the motor system selects certain motor commands over the infinitely many 

alternatives because the selected commands are “better” according to well-defined performance 

criteria. The selected commands minimize (or nearly minimize) expected costs. OFC elaborates 
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this insight into detailed normative models describing how the human motor system should 

choose motor commands (given certain performance criteria). These models are pressed into 

service as psychological descriptions of human motor computation, yielding testable predictions. 

In many cases, researchers have validated the predictions. A well-confirmed optimal control 

model of a motor task provides satisfying explanations for key aspects of human performance. 

 A crucial plank of OFC is the minimal intervention principle, articulated by Todorov 

(2004). When I pursue a goal, factors such as motor noise or external interference frequently 

perturb my bodily trajectory. It is not a good idea to correct each perturbation, because every 

correction expends energy. An optimal controller corrects only those perturbations that are task-

relevant. Hence the minimal intervention principle, which enjoins: “make no effort to correct 

deviations away from average behavior unless those deviations interfere with task performance” 

(Todorov, 2004, p. 911). The minimal intervention principle directs the controller to tolerate 

perturbations so long as they do not interfere with the task. 

 The minimal intervention principle is a norm. It decrees how motor processing should 

operate. OFC postulates that there are numerous cases where the motor system conforms (at least 

approximately) to this norm. In such cases, the motor system pursues a task goal rather than 

enforcing a predetermined movement plan that effectuates the goal. As the task unfolds, the 

motor system chooses motor commands that optimally (or near-optimally) promote the goal. 

Perturbations from the average trajectory may occur, but the motor system only corrects 

perturbations that impede task completion. Motor activity optimizes relatively abstract 

performance criteria, rather than implementing a pre-specified sequence of bodily movements. 

OFC develops these ideas into mathematically detailed, empirically successful models of specific 

motor tasks (Haith and Krakauer, 2013; Wolpert and Landy, 2012). 



5 

 

 By invoking the minimal intervention principle, OFC achieves several notable 

explanatory successes: 

- OFC explains the striking disparity noted above between task-relevant and task-

irrelevant variation across trials. If a controller corrects task-relevant deviations but 

leaves task-irrelevant deviations uncorrected, then task-irrelevant deviations 

accumulate so that bodily movements vary far more along task-irrelevant dimensions.  

- OFC illuminates how the motor system responds to experimentally-induced 

perturbations of bodily motion. The minimal intervention principle dictates that the 

motor system should preferentially correct task-relevant perturbations, and this is 

indeed what happens in numerous motor tasks (Crevecoeur, Cluff, and Scott, 2014). 

For example, Nashed, Crevecoeur, and Scott (2012) studied subjects performing two 

slightly different tasks: reaching rapidly either to a small circular target or to a long 

horizontal bar. In random trials, an unexpected mechanical perturbation disrupted 

hand trajectory horizontally. In the circular target task, the motor system responded 

by correcting course back towards to the target. Corrective motions began as early as 

70 ms after the perturbation—strong evidence that they were automatic and not 

generated voluntarily. In the horizontal bar task, the motor system did not correct the 

perturbation, because it could still accomplish the goal (reaching the horizontal bar) 

without any course correction. Thus, the task goal decisively influenced how the 

motor system responded to mechanical perturbations. Perturbations were corrected 

only when they affected the goal, as dictated by the minimal intervention principle. 

These successes exemplify the fruitful nexus between normative evaluation and psychological 

explanation made possible by OFC. 
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OFC differs significantly from virtually all rival theories of motor control. Rival theories 

usually enshrine the desired trajectory hypothesis, which postulates a rigid division between 

motor planning and motor execution: the motor system first chooses a detailed movement plan, 

and it then tries to implement the chosen plan. From the perspective of OFC, this rigid division is 

non-optimal. No matter how sensible some predetermined detailed movement plan may initially 

seem, enforcing it will waste energy by correcting task-irrelevant deviations. According to the 

minimal intervention principle, the motor system should not solve Bernstein’s redundancy 

problem in advance of executing the motor task. It should instead solve the redundancy problem 

on-line, selecting motor commands in furtherance of the task goal as the task unfolds. The 

desired trajectory hypothesis does not explain why motor processing preferentially corrects task-

relevant perturbations, nor does it explain why performance varies more along task-irrelevant 

dimensions than task-relevant dimensions. Thus, the desired trajectory hypothesis looks 

unpromising. Nevertheless, it has recently attracted high profile advocates in the scientific 

(Friston, 2011) and philosophical (Clark, 2015; Hohwy, 2014) communities. These authors do 

not say how they hope to explain the asymmetry between task-relevant and task-irrelevant 

variation—a fundamental aspect of motor control that looks incompatible with their favored 

approach and that OFC easily explains. 

 

3. Estimating environmental state 

 Environmental conditions are highly relevant to task performance. If my goal is to walk 

across the room and pick up a ball, then relevant factors include the ball’s location, its size, its 

weight, the presence of any obstacles, my own current bodily configuration, and so on. To 

choose appropriate motor commands, the motor system takes these and other factors into 
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account. However, motor processing cannot directly access environmental conditions. It can 

access the environment only by way of sensory stimulations, including stimulations of the retina, 

the inner ear, muscle spindles, and so on. The motor system must use sensory stimulations to 

estimate environmental state. 

 Here we encounter a striking commonality between motor control and perception. I can 

consciously perceive certain properties of my environment, such as the shapes, colors, sizes, and 

locations of nearby objects. But perceptual processing cannot directly access these environmental 

properties. The perceptual system must estimate environmental conditions based upon sensory 

stimulations. Helmholtz (1867) postulated that it does so through an unconscious inference. In 

response to proximal sensory input, the perceptual system forms a “best hypothesis” regarding 

which environmental conditions caused that proximal input. Contemporary sensorimotor 

psychologists adapt Helmholtz’s approach to explain how motor processing estimates 

environmental conditions. Sensorimotor psychology postulates that the motor system executes an 

unconscious inference from sensory stimulations to estimates of environmental state. The motor 

system chooses “best hypotheses” regarding the environmental causes of sensory stimulations. It 

consults the chosen hypotheses when selecting motor commands that promote the current task 

goal. 

 Recently, perceptual and sensorimotor psychologists have elucidated unconscious 

inference in terms of Bayesian decision theory, which is a mathematical framework for modeling 

reasoning and decision-making under uncertainty. Bayesian agents handle uncertainty by 

assigning subjective probabilities to hypotheses. The probabilities are “subjective” because they 

reflect the agent’s own psychological degree of confidence rather than objective probabilities out 

in the world. A Bayesian agent begins with initial subjective probabilities (called priors) and 
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then revises those initial probabilities in light of new evidence. Precise Bayesian norms dictate 

how the agent should revise her probabilities in light of new evidence.
1
 As applied within 

sensorimotor psychology, the basic idea is that the motor system assigns probabilities to 

hypotheses regarding environmental conditions that are relevant to the current task. Ongoing 

sensory stimulation causes constant revision of these probabilities, in rough conformity to 

Bayesian norms. Hence, the motor system estimates environmental conditions through an 

unconscious Bayesian inference. When transforming intentions into motor commands, motor 

processing selects commands that minimize expected cost—i.e. the cost one expects to incur, 

given current probabilities. Bayesian modeling of motor estimation has proved extremely 

successful and is an important component of the overall OFC framework (Shadmehr and Mussa-

Ivaldi, 2012; Wolpert, 2007). 

 A pervasive challenge facing sensorimotor estimation is sensory delay. Motor control 

requires rapid on-line selection of motor commands, but sensory signals take a while to reach the 

brain. To overcome sensory delay, the motor system anticipates how its own commands are 

likely to impact environment state (Wolpert and Flanagan, 2009). For each motor command sent 

to the musculature, the brain produces an efference copy. Using efference copy, the motor system 

predicts likely consequences of its own commands (Miall and Wolpert, 1996). Basically, the 

motor system begins with its current estimate of environmental state and then extrapolates 

forward using efference copy. The result: a new environmental state estimate that is correctable 

by future sensory signals but that can guide motor control until such signals arrive. 

 

4. Challenges for optimal feedback control 

                                                 
1
 For general discussion of Bayesian modeling in cognitive science, see (Colombo and Hartmann, 2017). 
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 OFC has been successfully applied to various relatively simple motor tasks, such as 

reaching, pointing, aiming, and so on. It has also been successfully applied to at least one fairly 

complex task involve the whole body (Stevenson, et al., 2009): balancing on a snowboard. An 

important agenda item for sensorimotor psychology is to apply OFC to more complex real-world 

tasks, such as riding a bicycle or playing a musical instrument. 

A significant hurdle here is that Bayesian inference and expected cost minimization are, 

in general, computationally intractable. Aside from a few simple cases, a physical system with 

limited computational resources cannot update probabilities in precise conformity to Bayesian 

norms, nor can it minimize expected cost with complete precision. A version of this problem 

arises for all fields that employ Bayesian decision theory, including engineering, statistics, and 

artificial intelligence. The standard solution is to investigate algorithms through which a physical 

system can efficiently approximate Bayesian inference and expected cost minimization. 

Sensorimotor psychologists have explored computationally tractable approximation schemes 

tailored to the human motor system, with excellent results (e.g. Li, Todorov, and Pan, 2004; 

Todorov, 2009). Future research will presumably deploy these and perhaps other as-yet-

undiscovered approximation schemes so as to model a range of motor tasks. 

 Another important agenda item is to illuminate the neurophysiological processes through 

which the motor system implements (or approximately implements) computations postulated by 

OFC models. How exactly does the brain encode an assignment of subjective probabilities to 

hypotheses? How does it encode a cost function? Through what neural processing does it update 

subjective probabilities and select optimal (or near-optimal) motor commands? We do not know 

the answers to these questions, although recent research offers some intriguing suggestions (e.g. 

Denève, Duhamel, and Pouget, 2007; DeWolf and Eliasmith, 2011). 
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 With so many questions left unanswered, OFC at present hardly constitutes a complete 

theory of human motor computation. Even in its current incomplete state, OFC offers powerful 

explanations for a range of motor phenomena. 

 

5. Motor control as unconscious inference and decision-making 

 I favor a broadly scientific realist perspective: when a scientific theory is explanatorily 

successful, this gives us a prima facie reason to accept that the theory is at least approximately 

true. I apply the scientific realist perspective to sensorimotor psychology: OFC models are 

explanatorily successful, far more so than rival theories, so we have strong prima facie reason to 

regard them as at least approximately true. I do not say that we should regard a successful OFC 

model as true in every detail. For example, current models often use priors that embody a highly 

simplified dynamics for the human body. They do this for reasons of analytical tractability, not 

because there is any independent reason to think that the motor system employs these precise 

priors. A more accurate model would presumably use more psychologically realistic priors. 

While we should not accept that current OFC models are precisely true in every detail, we should 

accept in broad strokes the picture of motor computation that they embody. More specifically: 

- The motor system assigns subjective probabilities to hypotheses regarding 

environmental conditions. It updates those probability assignments in response to 

sensory stimulations and efference copy. Transitions between probability assignments 

conform at least approximately to Bayesian norms. 

- When pursuing a motor task, the motor system encodes a cost function that reflects 

the goal being pursued. As the task unfolds, the motor system selects motor 
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commands that are near-optimal in light of the cost function and current subjective 

probabilities. 

I defend my realist perspective at length in (Rescorla, 2016; forthcoming). For an opposing 

instrumentalist viewpoint on Bayesian modeling, see (Colombo and Seriès, 2012). For helpful 

comparison of the realist and instrumental viewpoints, see (Sprevak, 2016). 

 Assuming a realist interpretation of OFC modeling, motor control results from 

subpersonal mental processes similar in key respects to high-level conscious inference and 

decision-making. The processes fall under (and approximately conform to) the same Bayesian 

norms that govern inference and decision-making by agents. However, the processes are 

executed not by the person herself but rather by her subsystems. They are subpersonal. Except in 

very unusual cases, the person does not consciously choose a detailed movement plan. She is not 

aware of specific motor commands relayed to her musculature. She does not consciously access 

the environmental state estimates that inform selection of motor commands. She simply sets a 

goal (e.g. pick up that nearby ball) and lets her motor system do the rest. 

 One important consequence of the realist viewpoint is that volitional bodily motion 

results from highly sophisticated computations executed by the motor system. The computations 

are subpersonal and inaccessible to consciousness, but they approximately implement personal-

level rational norms that have been extensively studied within engineering, statistics, robotics, 

and artificial intelligence. Unconscious Bayesian inference and decision-making mediate the 

transition from intentions to motor commands. 

 

6. Motor learning 
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 Improvements in motor performance are crucial to the refined control that we exert over 

our bodies. When I master a new motor skill, such as playing the clarinet or hitting a ball with a 

tennis racket, many changes occur in my motor processing. Even everyday activities such as 

walking or talking require extensive practice for their mastery. Compensatory adjustments in 

motor control are also needed when my body changes over the short-term (e.g. through fatigue or 

injury) or the long-term (e.g. through development or aging) and when the external environment 

changes (e.g. walking on pavement versus walking through mud). Any change in motor control 

that improves task performance is called motor learning. This rubric covers the acquisition of 

new motor skills and also improved performance in previously learned activities (Haith and 

Krakauer, 2013). 

Scientific research mainly studies a specific type of motor learning called adaptation. 

During adaptation, the motor system corrects a disruption of some previously mastered activity. 

In a seminal experiment, Helmholtz instructed subjects to reach to a target, which they did quite 

easily. He then equipped the subjects with prism lenses that shifted the visual field to the left or 

right. Subjects initially missed the target, but they quickly adapted and learned to reach the 

target. Upon removal of the prism lenses, subjects once again failed at the reaching task, 

although they quickly re-adapted. Helmholtz’s prism experiment vividly illustrates the speed and 

efficiency with which the motor system responds to ever-changing conditions (in this case, a 

perturbation of visual input). It is well-established that adaptation mainly involves subpersonal 

processes rather than conscious correction by the subject herself. Although subjects sometimes 

realize that conditions have changed and try to compensate accordingly, adaptation by the motor 

system proceeds in relative independence from high-level conscious thought (Mazzoni and 

Krakauer, 2006; Shadmehr and Mussa-Ivaldi, 2012, pp. 187-192). 
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Sensorimotor psychologists have extensively investigated the subpersonal mental activity 

that underlies adaptation. A key finding is that adaptation, like motor control itself, involves 

sophisticated computations that draw upon available sensory information. When sensory 

prediction error occurs (e.g. my hand does not reach the visual target as expected), the motor 

system cannot directly pinpoint what caused the error. Instead, it must estimate what caused the 

error. Bayesian decision theory provides models that dictate how to solve this estimation 

problem (Shadmehr and Mussa-Ivaldi, 2012, pp. 192-212). Researchers have applied Bayesian 

modeling to several adaptation paradigms, sometimes with striking explanatory success. 

To illustrate, suppose we perturb hand movements during a reaching task by applying an 

external force field to the hand. Motor performance quickly adapts, so that the subject reaches 

the target despite the perturbing force field. Surprisingly, though, force field adaptation does not 

merely change the mapping from sensory estimates to motor commands. It also changes 

subpersonal sensory estimates themselves (Haith, Jackson, Miall, and Vijayakumar, 2009). 

Repeated exposure to an external force field on the right hand causes a shift in visual and 

proprioceptive estimates of the hand’s position. Due to this shift, estimates of hand position 

become markedly less accurate. Thus, force field adaptation generates a sensorimotor illusion. 

The illusion is puzzling, because visual and proprioceptive input agree even in the presence of 

the external force field. Why should visual and proprioceptive estimation change when no 

discrepancy between them occurs? 

A plausible answer is that the sensorimotor illusion reflects a “credit assignment” 

problem. Sensory prediction error might arise from perturbed motor execution (e.g. an external 

force field), perturbed sensory input (e.g. prism lenses), or some combination thereof. The 

Bayesian strategy is to divide the credit for prediction error between motor execution and 
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sensory estimation, taking into account the reliability of all relevant information sources (Haith, 

Jackson, Miall, and Vijayakumar, 2009). A Bayesian estimator will attribute the prediction error 

partly to sensory miscalibration, even though the error actually arises entirely from an external 

force field. Thus, the sensorimotor illusion does not manifest some underlying defect in 

sensorimotor processing. Rather, it reflects the motor system’s ongoing effort to estimate 

environmental conditions based upon ambiguous sensory cues. 

 This example illustrates two important points: first, motor learning involves sophisticated 

subpersonal computations that share many notable properties with high-level reasoning; second, 

Bayesian modeling illuminates these computations by isolating norms to which they 

(approximately) conform. 

 

7. Mental representation as explanatorily central 

 Sensorimotor psychology has significant implications for longstanding debates about the 

nature of the mind. 

Philosophers traditionally regard the mind as a representational organ. On the traditional 

picture, mental states represent the world, and representational properties of mental states are 

vital for understanding how the mind works. Contemporary philosophers often develop this 

picture by linking representation to veridicality-conditions—conditions for veridical 

representation of the world. To illustrate: 

- Beliefs are the sorts of things that can be true or false. My belief that Emmanuel 

Macron is French is true if Emmanuel Macron is French, false if he is not. 

- Perceptual states are the sorts of things that can be accurate or inaccurate. My 

perceptual experience as of a red sphere is accurate only if a red sphere is before me. 
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- Intentions are the sorts of things that can fulfilled or thwarted. My desire to eat 

chocolate is fulfilled only if I eat chocolate. 

Beliefs have truth-conditions, perceptual states have accuracy-conditions, and intentions have 

fulfillment-conditions. Truth, accuracy, and fulfillment are species of veridicality. It is widely 

agreed that veridicality-conditions are vital for understanding belief, perception, intention, and 

many other mental states (Burge, 2010, p. 9; Fodor, 1987, pp. 10-11). 

The traditional emphasis upon mental representation encounters periodic resistance 

among philosophers and psychologists. Some authors castigate mental representation as a 

scientifically unrespectable notion that should be expunged from serious theorizing (e.g. 

Chemero, 2009; Quine, 1960; Skinner, 1938; van Gelder, 1992). In response, 

representationalists maintain that representational discourse is both legitimate and scientifically 

indispensable. Fodor (1975; 1987) develops the representationalist viewpoint. He argues that 

current cognitive science offers impressive representational explanations whose benefits are not 

replicable within a non-representational framework. Burge (2010) argues similarly, focusing 

especially upon the role that mental representation plays within perceptual psychology. 

 Sensorimotor psychology provides strong support for representationalism. The science 

seeks to explain how motor activity transforms intentions into motor commands that promote 

fulfillment of those intentions. An intention’s fulfillment-condition plays a key role in explaining 

the motor commands that it triggers. In particular, the fulfillment-condition helps explain why a 

particular cost function is operative in a given motor task. For example, if I intend to move my 

index finger to some target, then the cost function assigns lower cost to outcomes where my 

finger reaches the target. If I intend to move my hand through five widely space targets, then the 

cost function assigns lower cost to outcomes where my hand moves through those targets. More 
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generally, the intention operative in a motor task helps determine the cost function that the motor 

system employs when computing minimal (or near-minimal) expected costs. This explanatory 

strategy presupposes personal-level intentions with fulfillment-conditions. We cite the condition 

under which an intention is fulfilled (e.g. that my finger reaches the target) to explain which cost 

function the motor system deploys. 

 The science also invokes veridicality-conditions when characterizing subpersonal 

computations. According to current Bayesian models, the motor system estimates environmental 

conditions by updating subjective probabilities p(h) assigned to hypotheses h. Each hypothesis h 

represents the environment as being a certain way. For example, h might represent the size of an 

object, or it might represent the current configuration of one’s body. h is veridical just in case the 

environment is as h represents it. The cost function c(h, u) measures the desirability of issuing 

motor command u in situations where h is veridical. Detailed explanatory generalizations 

describe (a) how sensory input and efference copy influence reallocation of subjective 

probabilities over hypotheses (b) how subjective probabilities along with the cost function 

inform selection of motor commands. Generalizations of types (a) and (b) cite veridicality-

conditions. To illustrate, suppose the cost function rewards placing my index finger at a target. 

Then a different motor command will result when the Bayesian estimator treats it as likely that 

my finger is left of target than when the Bayesian estimator treats it as likely that my finger is 

right of target. A type (b) generalization rigorously captures this pattern by citing veridicality-

conditions of hypotheses, e.g. by adducing whether hypothesis h represents my finger as left or 

right of target. In this manner, our current best sensorimotor psychology assigns a central 

explanatory role to representational aspects of subpersonal motor computation. 
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 Over the past century, many scientists have tried to explain motor control in non-

representational terms (e.g. Chemero, 2009; Kelso, Dumas, and Tognoli, 2013). These attempts 

have proved far less explanatorily successful than representational theories. In particular, anti-

representationalists have not successfully explained Bernstein’s fundamental observation that 

motor performance displays more variability along task-irrelevant dimensions than task-relevant 

dimensions. Indeed, it is unclear whether one can so much as state this explanandum in non-

representational terms, since the task-relevant/task-irrelevant distinction presupposes a goal 

represented and pursued by the subject. 

 Anti-representationalists often insist that, even when a scientific explanation invokes 

mental representation, we can recast the explanation in non-representational terms while 

replicating any benefits that it offers. They claim that we can purge representational locutions 

from cognitive science without explanatory loss (e.g. Field, 2001; Stich, 1983). 

I think that we should regard such claims quite warily. We cannot usually purge a science 

of its central notions while preserving its explanatory achievements. Physicists cannot renounce 

forces while offering anything resembling the explanations offered by Newtonian physics. 

Biologists cannot renounce genes while preserving anything resembling modern genetics. 

Similarly, anti-representationalists have given us little reason to suspect that we can purge 

cognitive science of representational mental states while preserving its explanatory 

achievements. For further defense of a representationalist perspective on sensorimotor 

psychology, see (Rescorla, 2016). For a kindred representationalist analysis of perceptual 

psychology, see (Rescorla, 2015).
2
 

                                                 
2
 I have argued that explanations offered by sensorimotor psychology cite representational properties of mental 

states. However, some representational properties are far more relevant than others to the explanation of bodily 

motion. Context-dependent representational properties are usually much less relevant than context-invariant 

representational properties. For example, suppose I perceive a marble on the floor and form an intention to grab that 
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8. Future directions 

 We are only beginning to understand motor control in humans and other animals. To 

conclude, I highlight a few areas where further scientific or philosophical inquiry is needed. In 

several cases, these areas are under active investigation. 

 Computational architecture. The motor system and the perceptual system both estimate 

environmental state. How does sensorimotor estimation relate to perceptual estimation? This 

question has generated considerable controversy (e.g. Briscoe, 2008; Milner and Goodale, 1995; 

Schenk, Franz, and Bruno, 2011). A less widely discussed question concerns the extent to which 

high-level cognition influences motor control. Intentions crucially influence motor processing by 

influencing the cost function. Beliefs, desires, and other mental states influence the cost function 

by way of influencing intentions. To what extent can higher-level mental states influence motor 

activity without mediation by intentions? For example, to what extent can conscious beliefs 

influence subpersonal estimation by the motor system? Such questions relate to longstanding 

debates about the modularity of perception sparked by Fodor’s (1983) famous discussion. 

 Format and content. I have argued that motor control features subpersonal 

representational mental states: probability assignments to hypotheses that have veridicality-

conditions. We would like to understand the format and content of the hypotheses. Are they 

propositional? Conceptual? Do they involve something like imagistic or map-like representation? 

How do they bear upon standard philosophical theories of representational content, such as 

Fregean thoughts or Russellian propositions? Further investigation would illuminate the 

                                                                                                                                                             
marble. My intention is fulfilled only if I grab that particular marble. My intention’s fulfillment-condition depends 

upon the specific marble represented by the intention. But the specific marble does not seem explanatorily relevant 

to explaining which motor commands my motor system issues. The marble could have been replaced by a 

qualitatively indistinguishable duplicate, and this change does not seem relevant to explaining my bodily motion. 

Thus, not all aspects of the intention’s fulfillment-condition seem relevant to explaining my bodily motion. The 

intention has context-invariant representational properties that, in conjunction with context, help determine its 

fulfillment-condition. The context-invariant representational properties are what seem relevant to explaining the 

bodily motion. These issues merit extensive further discussion. For present purposes, I must set them aside. 
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underpinnings of sensorimotor psychology. It would also enhance philosophical discussion of 

representational content with an expanded diet of scientifically important examples. 

 Subpersonal subjective probability. What is it to assign a subjective probability to a 

hypothesis? This question is basic for Bayesian decision theory. Philosophers have made several 

attempts to answer the question in a non-trivial way, without much visible success (Erikkson and 

Hájek, 2007). Existing proposals tend to emphasize sophisticated personal-level activities, such 

as gambling or linguistic communication. The motor system does not engage in such activities. 

Thus, it seems doubtful that existing proposals shed much light on subjective probability as it 

figures in motor computation. A major philosophical task is to elucidate the subjective 

probabilities employed by the motor system and to clarify how exactly they resemble the 

personal-level subjective probabilities emphasized by traditional philosophical inquiry. Can we 

provide an analysis of subjective probability that applies equally well to the personal and 

subpersonal levels?  

 Intention. The nature of intention is a central topic for philosophy of mind and 

philosophy of action. Discussion usually focuses upon the role that intention plays within 

practical reasoning. The basic strategy is to explore how intention interfaces with belief, desire, 

planning, instrumental reasoning, and other high-level facets of human psychology. A 

complementary strategy, pursued recently by Pacherie (2000; 2006), is to explore how intention 

interfaces with motor control. Fulfilling an environment-directed intention requires a capacity to 

control one’s motor organs in appropriate ways. Accordingly, one might hope to illuminate 

environment-directed intentions by studying how they engage subpersonal motor processing. A 

potential benefit of this complementary strategy is that sensorimotor psychology is far better 
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developed than the science of high-level propositional attitudes, so that it arguably provides a 

sounder basis for philosophical inquiry. 

 These are just a few research avenues suggested by sensorimotor psychology. There are 

many additional avenues that I have not addressed. Given the central role that motor control 

plays within our mental lives, the foundations and ramifications of sensorimotor psychology 

merit thorough scrutiny by the philosophical community. 
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