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Abstract: Lewis proved a Dutch book theorem for Conditionalization. The theorem shows that 

an agent who follows any credal update rule other than Conditionalization is vulnerable to bets 

that inflict a sure loss. Lewis’s theorem is tailored to factive formulations of Conditionalization, 

i.e. formulations on which the conditioning proposition is true. Yet many scientific and 

philosophical applications of Bayesian decision theory require a non-factive formulation, i.e. a 

formulation on which the conditioning proposition may be false. I prove a Dutch book theorem 

tailored to non-factive Conditionalization. I also discuss the theorem’s significance. 

 

§1. Diachronic Dutch books 

 The diachronic norm Conditionalization is a central plank of Bayesian decision theory. 

Conditionalization requires that, in certain situations, you conditionalize on a proposition E by 

replacing your old credences P with new credences Pnew given by: 

 Pnew(H) = P(H | E). 

Here P(H | E) is the old conditional probability of H given E, defined by the ratio formula: 
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for cases where P(E) > 0. A conditioning proposition is a proposition on which you have 

conditionalized. The probability calculus axioms entail that P(E | E) = 1, so conditionalizing on 

E requires you to become certain of E, i.e. to set Pnew(E) = 1. 
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 Philosophers pursue various strategies for defending Conditionalization. One prominent 

strategy builds upon the classic Dutch book arguments advanced by Ramsey (1931) and de 

Finetti (1937/1980). A Dutch book is a set of acceptable bets that guarantees a net loss. You are 

Dutch bookable when it is possible to rig a Dutch book against you. If you are Dutch bookable, 

then a devious bookie can exploit you by offering you bets that you regard as fair. Ramsey and 

de Finetti observed that an agent whose credences violate the probability calculus axioms is 

Dutch bookable. They concluded that credences should conform to the probability calculus 

axioms. This is a synchronic Dutch book argument, because it addresses credences at a moment 

rather than credal evolution over time. Lewis (1999) extended Dutch book argumentation into 

the diachronic realm by proving a Dutch book theorem for Conditionalization. He showed how 

to rig a diachronic Dutch book (containing bets offered at different times) against an agent who 

follows any update rule other than Conditionalization.
1
 Skyrms (1987b) proved a converse result: 

someone who conforms to the probability calculus axioms and to Conditionalization is not Dutch 

bookable in certain natural learning scenarios. Lewis’s Dutch book theorem and Skyrms’s 

converse theorem show that Conditionalization is the unique credal update rule immune to 

guaranteed net loss in the specified learning scenarios. Lewis, Skyrms, and many other authors 

conclude that agents should employ Conditionalization as their credal update rule. 

In this paper, I will identify and rectify a significant imperfection in the standard 

diachronic Dutch book theorem for Conditionalization. As I discuss in Section 2, many 

applications of Bayesian decision theory feature an agent who becomes certain of a false 

proposition and revises her credences accordingly. To model such an agent, we require a non-

factive formulation of Conditionalization, i.e. a formulation that allows conditioning propositions 

                                                 
1
 Lewis proved the theorem in 1972 but did not publish until (Lewis, 1999). Teller (1973) first published the 

theorem with Lewis’s permission, crediting it to Lewis. 
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to be false. Unfortunately, the standard diachronic Dutch book theorem is tailored to factive 

formulations of Conditionalization, i.e. formulations that treat agents as conditionalizing on true 

propositions (Sections 3-4). For that reason, the standard theorem is non-optimal. Luckily, there 

is an easy remedy. In Section 5, I prove a modified diachronic Dutch book theorem tailored to 

non-factive Conditionalization. The modified theorem improves upon Lewis’s original, because 

it pertains to a more general formulation of Conditionalization. The modified theorem brings 

Conditionalization’s unique pragmatic virtues into sharper focus (Section 6). 

To understand my goals, one must distinguish between Dutch book theorems and Dutch 

book arguments. Dutch book theorems are uncontroversial mathematical results. Dutch book 

arguments cite Dutch book theorems as evidence that it is irrational to violate some credal norm. 

Critics raise various objections to Dutch book arguments (Hájek, 2009), especially diachronic 

Dutch book arguments (Christensen, 1991). Whether or not Dutch book arguments succeed, I 

think that Dutch book theorems have great interest. Dutch bookability is an undesirable property. 

It is somehow bad to leave yourself open to Dutch books, somehow good to render yourself 

immune to Dutch books. We have learned important information when we prove a Dutch book 

theorem. Even if one rejects Dutch books arguments, time spent proving and analyzing Dutch 

book theorems is time well spent. I offer the present paper in that spirit. By studying Dutch book 

theorems for Conditionalization, I do not seek to establish that violating Conditionalization is 

irrational. Instead, I aim to clarify notable pragmatic benefits that differentiate Conditionalization 

from rival credal update rules. 

 

§2. Factive versus non-factive formulations of Conditionalization 
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 Let us begin by comparing two prominent formulations of Conditionalization. Earman’s 

(1992, p. 34) formulation runs as follows: 

The rule of strict conditionalization says that if it is learned for sure that E and if E is the 

strongest such proposition, then the probability functions Prold and Prnew, representing 

respectively degree of belief prior to and after acquisition of new knowledge, are related 

by Prnew(.) = Prold (./E). 

Contrast Earman’s formulation with Huber’s (2016): 

If evidence comes only in the form of certainties (that is, propositions of which you 

become certain), if Pr: A→  is your subjective probability at time t, and if between t and 

t′ you become certain of A∈A and no logically stronger proposition in the sense that your 

new subjective probability for A, but for no logically stronger proposition, is 1 (and your 

subjective probabilities are not directly affected in any other way such as forgetting etc.), 

then your subjective probability at time t' should be Pr(⋅∣ A), 

where A is the set of relevant propositions and  is the real numbers. Both formulations say that, 

if you begin with initial credences P, then under certain circumstances your new credal 

allocation Pnew should satisfy the constraint Pnew( . ) = P( . | E). There are various differences 

between Earman’s formulation and Huber’s. The difference that interests me concerns the 

relation that you bear to the conditioning proposition E. For Earman, you “learn for sure that E” 

and thereby acquire “new knowledge.” This formulation entails that E is true. For Huber, you 

become certain of E. You can become certain of a false proposition. Thus, Huber’s formulation 

does not suggest that E is true. Earman’s formulation of Conditionalization is factive, while 

Huber’s is non-factive. 
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Surveying the literature on Conditionalization, one finds both factive and non-factive 

formulations. Factive formulations predominate (e.g. Arntzenius, 2003, p. 367, fn. 7; Briggs, 

2009, p. 61; Easwaran, 2011, p. 314; Greaves and Wallace, 2006, p. 607; Hacking, 1967, p. 314; 

Howson and Franklin, 1994, p. 453; Vineberg, 2011; Weisberg, 2009, p. 499; Williamson, 2000, 

pp. 184-223), but there are also prominent non-factive formulations (e.g. Hájek, 2009; Jeffrey, 

2014; Talbott, 2015; Titelbaum, 2013; van Fraassen, 1999). Some authors do not indicate 

whether they intend a factive or non-factive construal. Surprisingly, authors seldom note the 

contrast between factive and non-factive formulations or defend one approach over the other. 

In my opinion, the non-factive approach offers a crucial advantage over the factive 

approach: it covers a wider range of important cases. The non-factive approach accommodates 

scenarios involving misplaced certainty, i.e. scenarios where you set Pnew(E) = 1 even though E 

is false. Misplaced certainty arises in diverse scientifically and philosophically important 

contexts (Rescorla, forthcoming). For example, Bayesian statisticians routinely conditionalize on 

evidence that may or may not be true. A typical statistical model might dictate how to update a 

probability distribution over a random variable (e.g. the age of a fossil) based on the value of 

another random variable (e.g. a carbon dating measurement). Determining the second variable’s 

value is usually a fallible undertaking. Scenarios featuring misplaced certainty figure routinely in 

most scientific fields that employ the Bayesian framework, including economics (Fudenberg and 

Tirole, 1991), cognitive science (Knill and Richards, 1996), robotics (Thrun, Burgard, and Fox, 

2005), medicine (Ashby, 1996), and many others. To handle these scenarios, we must formulate 

Conditionalization non-factively. 

The literature offers various subtly different formulations of non-factive 

Conditionalization. I give my own preferred formulation in (Rescorla, forthcoming). For present 



6 

 

purposes, I abstract away from subtle differences among non-factive formulations. My 

discussion applies equally well to any reasonably careful non-factive formulation. 

 One might worry that I have drawn the wrong moral from the possibility of misplaced 

certainty. Rather than formulate Conditionalization non-factively, perhaps we should instead 

abandon Conditionalization. After all, conditionalizing on E requires setting Pnew(E) = 1. But 

how can an agent reasonably set Pnew(E) = 1 when E may well be false? Stretching back at least 

to Shimony (1955), many philosophers have maintained that every metaphysically possible 

proposition should receive positive credence. This normative constraint is sometimes called 

Regularity. An agent who conditionalizes on a contingent proposition E and who conforms to the 

probability calculus axioms will violate Regularity by setting Pnew(E) = 0. 

 Jeffrey (1983) develops an alternative approach that lets us honor Regularity. Say that  

is a partition iff it is a countable set of mutually exclusive, jointly exhaustive propositions such 

that 0 < P(E) < 1 for each E . Jeffrey considers scenarios where an agent reallocates credence 

across a partition; on that basis, the agent must reallocate credence across all other propositions. 

Jeffrey formulates a credal reallocation rule (now usually called Jeffrey Conditionalization) 

tailored to such scenarios. One might propose that we replace Conditionalization with Jeffrey 

Conditionalization as the sole basis for credal updates. By relying solely upon Jeffrey 

Conditionalization, we can update credences while cleaving to Regularity. 

 I reply that this proposal is highly revisionary regarding current scientific practice, in at 

least two ways: 

- Scientific disciplines that employ the Bayesian framework (including statistics, 

economics, cognitive science, and robotics) typically use non-factive 

Conditionalization rather than Jeffrey Conditionalization. To replace non-factive 
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Conditionalization with Jeffrey Conditionalization would be to reject the main credal 

reallocation strategy employed in all these disciplines. 

- Orthodox probability theory demands that numerous metaphysically possible 

propositions receive probability 0. Let X be a random variable with continuum many 

possible values (e.g. an object’s velocity) and x a possible value of X (e.g. a specific 

velocity). It is metaphysically possible that X = x. Yet orthodox probability theory 

requires that P(X = x) = 0, for all but countably many x (Billingsley, 1995, p. 188).
2
 

Orthodox probability theory plays a foundational role in most scientific applications 

of the Bayesian framework. Regularity mandates massive revisions to all those 

applications. 

It is far from clear that we could implement such sweeping changes while preserving the 

explanatory and pragmatic benefits offered by current scientific practice. 

 Scientific practice is not sacrosanct. Some readers may simply insist that here is one case 

where scientists should revise how they normally operate. However, I contend that this 

revisionary viewpoint does not obviate our need to consider non-factive Conditionalization. 

To see why, suppose that a scientist sets Pnew(E) = 1, where E may be either true or false. 

The revisionary viewpoint insists that the scientist should not have done so. That diagnosis may 

seem especially plausible when E is false (unbeknownst to the scientist). Let us grant for the 

moment that the diagnosis is correct: the scientist should not have set Pnew(E) = 1. Even so, there 

are better and worse ways for her to revise her other credences in light of her newfound certainty 

in E. A single misstep does not entail that now anything goes. For example, it seems better for 

the scientist to set 

                                                 
2
 Skyrms (1980) recommends that we avoid this consequence by revising orthodox probability theory, allowing 

infinitesimals to serve as probabilities. For critical discussion, see (Easwaran, 2014) and (Weisberg, 2009). 
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 Pnew(H) = P(H | E) 

than for her to set 

 Pnew(H) = P(H | E). 

Which credal revisions are better and which are worse? Only by answering this question can we 

lay down useful prescriptions for scientific practice as it currently stands. Even if the scientist 

should not have become certain of E, we can still assess how well she reallocates her other 

credences in light of her faulty certainty. Even if we hope to revise scientific practice by banning 

certainties in contingent propositions, there is considerable interest in studying the norms that 

govern scientific practice until the revisionary ban takes effect. I submit that non-factive 

Conditionalization occupies a central place among those norms.
3
 

 Still, it may seem that the extra generality offered by non-factive Conditionalization over 

factive Conditionalization is not so helpful. Suppose an agent conditionalizes on E, where E is 

false. Assuming that the agent conforms to the probability calculus axioms, she sets 

 Pnew(E | F) = 1, 

for all propositions F such that Pnew(F) > 0. She cannot dislodge her newfound certainty in E by 

conditionalizing on any such F. So it may appear that she is saddled with permanent certainty in 

E, no matter how much evidence against E she subsequently acquires. Permanent certainty in an 

evident falsehood is highly undesirable. Non-factive Conditionalization may therefore seem a 

fairly useless addition to the Bayesian repertoire. 

                                                 
3
 An anonymous referee suggests that, when a scientist conditionalizes on E, she engages in a kind of idealization: 

she takes E to be true for certain purposes, or in certain theoretical contexts, despite knowing that E may be false or 

even that E is false. However, classifying some aspect of scientific practice as an idealization does not exempt us 

from limning the norms that govern it. Scientific idealizations also fall under norms. Even if we grant that a 

scientist’s newfound certainty in E is an idealizing assumption, there are still better and worse ways for her to adjust 

her other credences in light of her idealizing assumption. Codifying which ways are better and which ways are 

worse requires us to articulate a norm governing idealizing assumptions of this general kind. Articulating such a 

norm carries us back to non-factive Conditionalization or some norm in that vicinity (e.g. an otherwise similar norm 

that relativizes credal assignments to certain theoretical contexts). 
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 I reply that it is quite possible for a rational agent to dislodge her certainty in a 

proposition. The literature offers several broadly Bayesian frameworks for modeling eradication 

of certainties. The framework I myself favor uses regular conditional distributions (rcds) to 

generalize the ratio formula, thereby delineating conditional probabilities P(H | E) for numerous 

cases where P(E) = 0.
4
 Rcds play a foundational role in orthodox probability theory (Billingsley, 

1995). They also figure prominently in scientific practice, including within Bayesian statistics 

(Ghosal and van der Vaart, 2017). If an agent conditionalizes using rcds, then she can dislodge 

credences from 1 down to 0 or anywhere in between. Indeed, certainty eradication through 

conditionalization using rcds is a routine occurrence in Bayesian statistics (Ghosal and van der 

Vaart, 2017). Conditionalization using rcds raises many mathematical and philosophical 

complexities that lie beyond the scope of this paper. What matters for our purposes is just that 

agents can eradicate certainties by using rcds to update credences. In particular, the following 

progression is possible: the agent uses the ratio formula to conditionalize on E, as a result setting 

Pnew(E) = 1; then the agent receives new evidence and conditionalizes using an rcd, as a result 

setting Pnew(E) < 1.
5
 Thus, conditionalizing on E does not forever condemn a Bayesian agent to 

certainty in E. Agents who obey non-factive Conditionalization need not fear permanent 

certainty in falsehoods.
6
 

                                                 
4
 (Rescorla, 2015) contains a philosophically oriented introduction to rcds. There are several alternative frameworks 

for analyzing conditional probability when P(E) = 0. Easwaran (2019) gives a balanced survey, from a perspective 

sympathetic to rcds. Note that the word “regular” in “regular conditional distribution” has nothing to do with the 

doctrine (Regularity) that metaphysically possible propositions should receive positive credence. This is an 

unfortunate case where the literature associates the same word, “regular,” with two completely different meanings. 
5
 Titelbaum’s (2013) Certainty-Loss Framework can also model situations where the agent becomes certain of E but 

subsequently gains evidence that eradicates her certainty in E. As Titelbaum admits (2013, pp. 296-298), though, the 

Certainty-Loss Framework does not fully analyze key aspects of such situations. 
6
 (Rescorla, 2018) proves a Dutch book theorem and converse Dutch book theorem for conditionalization using rcds. 

However, the proof assumes a factive setting. In future work, I will discuss rcds from a non-factive perspective. I 

will also analyze in more detail how conditionalization using rcds can eradicate certainties, including certainties 

gained by previously conditionalizing on a proposition E. 
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 In what follows, I restrict attention to cases where P(E) > 0. These cases already raise 

enough issues for an entire paper. In Section 3, I review Lewis’s diachronic Dutch book theorem. 

In Section 4, I explain why Lewis’s theorem is tailored to factive rather than non-factive 

Conditionalization. In Section 5, I prove a modified Dutch book theorem tailored to non-factive 

Conditionalization. 

 

§3. Lewis’s diachronic Dutch book theorem 

Lewis’s (1999) diachronic Dutch book theorem concerns an idealized agent who interacts 

with a bookie. At time t1, the agent has initial credences over some set of propositions. Her 

credences are given by a function P that conforms to the probability calculus axioms. Let  be a 

partition. Call the members of  partition propositions. At time t2, the agent learns which 

partition proposition E is true. More precisely, she sets Pnew(E) = 1 for some E , and it is 

guaranteed that 

(1) Pnew(E) = 1 iff E is true. 

She has determinate dispositions to reallocate credences upon learning that E is true. We model 

these dispositions through a credal update rule C that maps each partition proposition E to a 

corresponding credal allocation CE. CE (H) is the credence assigned to H upon learning that E is 

true. Hence, 

 Pnew(H) = CE (H) 

if partition proposition E is revealed. Assume that CE conforms to the probability calculus 

axioms. Call the foregoing scenario a Lewis learning scenario.
7
 

                                                 
7
 Lewis’s exposition has several idiosyncratic features that it would be distracting for us to consider in depth. For 

example, he assumes that partition propositions “specify, in full detail, all the alternative courses of experience [the 

agent] might undergo between time 0 and time 1” (1999, p. 405). I track Skyrms’s (1987b) exposition rather than 

Lewis’s. But the core ideas are due to Lewis. 
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 The bookie proposes bets at t1 and t2 concerning propositions in the domain of the agent’s 

credence function. The bookie may choose to offer the null bet, which yields net payoff 0 in all 

outcomes. Multiple bets offered at a given time can be combined into a single bet, so it is 

legitimate to assume that the bookie offers a single bet at t1 and a single bet at t2. The bookie 

learns at time t2 which proposition E is true. He has a strategy for deciding which bet to offer at 

t2, depending on which proposition E is revealed. To model this setup, say that a bookie strategy 

is a pair (B, ), where B is a bet and  is a function that carries each partition proposition E into a 

bet (E). Intuitively, B is the bet offered at t1, while (E) is the bet offered at t2 if E is revealed. 

Since the bookie learns the one true partition proposition: 

(2) The bookie offers (E) if E is true. 

Our agent accepts or rejects a bet depending on whether it is acceptable, where a bet is 

acceptable iff it has non-negative expected net payoff. At t1, she calculates expected net payoffs 

relative to her original credences P. At t2, she calculates expected net payoffs relative to her new 

credences Pnew. A bet is acceptable relative to P (relative to CE) iff it has non-negative expected 

net payoff when expectations are calculated relative to P (relative to CE). A bookie strategy (B, 

) is a Dutch book for update rule C iff: 

 Bet B is acceptable relative to P. 

 For each partition proposition E, bet (E) is acceptable relative to CE. 

 For each partition proposition E, net payoff from B and (E) is negative in all 

outcomes. (Here net payoffs are computed under the assumption that bet (E) is 

enacted if E is true.) 
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A Dutch book for C inflicts a guaranteed net loss upon an agent who obeys C in a Lewis learning 

scenario. These definitions can be formalized more rigorously, but the present level of rigor 

suffices for this paper. A strengthened version of Lewis’s theorem runs as follows: 

 

Diachronic Dutch Book Theorem: If there is a partition proposition E such that CE ( . )  

P( . | E), then there exists a Dutch book for C. 

 

Skyrms (1987b) proves a converse theorem: 

 

Converse Diachronic Dutch Book Theorem: If CE ( . ) = P( . | E) for all partition propositions E, 

then there does not exist a Dutch book for C. 

 

These two theorems establish Conditionalization as the unique update rule that immunizes you 

from a sure loss in Lewis learning scenarios. 

 

Proof of the Diachronic Dutch Book Theorem: Suppose that 

 CE (H)  P(H | E) 

for some propositions E and H. Consider first the case where 

 CE (H) < P(H | E). 

At t1, the bookie offers the following complex conditional bet: if E is false, then no money 

changes hands; if E is true, then the agent pays P(H | E), and she receives a payoff from the 

bookie according to whether H is also true: 

If H is true, the bookie pays 1. 
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If H is true, the bookie pays 0. 

Table 1 summarizes net payoffs for this complex conditional bet. It is easy to show that the bet 

has expected net payoff zero relative to P and hence is acceptable relative to P. At t2, the agent 

and the bookie both learn which partition proposition is true. The bookie’s strategy is to offer the 

null bet at t2 unless E is true. If E is true, then the bookie will ask the agent to sell for price 

CE (H) a new bet that pays off as follows: 

If H is true, the agent pays 1. 

If H is true, the agent pays 0. 

Table 2 summarizes net payoffs for this new bet. The bet has expected net payoff zero relative to 

CE and hence is acceptable relative to CE. 

 

INSERT TABLES 1-2 ABOUT HERE 

 

Table 3 gives net payoffs for the overall gambling scenario as described thus far. Net 

payoff is CE (H) – P(H | E) < 0 when E is true and 0 otherwise. A Dutch book as defined above 

requires a loss in all outcomes. We can fix this by adding a sidebet at t1. The agent buys the 

sidebet for price [P(H | E) – CE (H)]P(E), and she receives a payoff from the bookie according to 

whether E is true: 

If E is true, then the bookie pays P(H | E) – CE (H). 

If E is true, then the bookie pays 0. 

Table 4 summarizes net payoffs for the sidebet. The sidebet is easily shown to have expected net 

payoff zero relative to P. With the sidebet in place, net payoff for the entire gambling scenario is 

P(E)[CE (H) – P(H | E)] < 0 in all outcomes. Thus, the overall gambling scenario inflicts a 
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guaranteed net loss. For the case where CE (H) > P(H | E), the bookie can inflict a guaranteed net 

loss by multiplying all payoffs from Table 1-4 by –1.  

 

INSERT TABLES 3-4 ABOUT HERE 

 

 A bet is favorable relative to P (relative to CE) iff it has positive expected net payoff 

relative to P (relative to CE). Skyrms (1992) suggests that a genuine Dutch book should contain 

bets that are favorable, not just acceptable. One can strengthen Lewis’s theorem to accommodate 

Skyrms’s viewpoint. We need merely add a “sweetener” –P(E)[CE (H) – P(H | E)]/100 to the 

agent’s payoff for each bet and each possible outcome. The sweetener ensures that each bet is 

favorable. Net payoff from the sweetened book is negative no matter the outcome. 

 

§4. Mismatch between theorem and norm 

 The proof of Lewis’s theorem assigns a crucial role to the factivity assumptions (1) and 

(2). It assumes that at t2 the non-conditionalizer become certain of the true partition proposition. 

This leads her to adopt new credences, which she uses to compute expectations at t2. If the true 

partition proposition is E, then she uses CE to compute expectations. She therefore deems the bet 

from Table 2 acceptable. The bookie also learns the true partition proposition at t2, and he offers 

the bet from Table 2 precisely when E is true. As a result, 

(3) The bet from Table 2 is enacted iff E is true. 

This reasoning underlies the computation of net payoffs in the proof of Lewis’s theorem. Absent 

(3), net payoff differs from P(E)[CE (H) – P(H | E)] in some outcomes. 
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 More specifically, consider what happens when H & E is true but both gamblers become 

certain at t2 of a different partition proposition E*. Since the bookie does not believe that E is 

true, and since his goal is to offer the bet from Table 2 precisely when E is true, he does not offer 

the bet from Table 2. Net payoff is determined by the bets from Tables 1 and 4: 

 [1 – P(H | E)] + [P(H | E) – CE (H)][1 – P(E)]. 

The first summand [1 – P(H | E)] is nonnegative. The second summand [P(H | E) – CE (H)][1 – 

P(E)] is the product of two positive numbers. Thus, net payoff is positive. In short: the bookie 

does not offer any bet at t2, so the non-conditionalizer’s winnings from the bets enacted at t1 are 

not cancelled out. What this shows is that Lewis’s Dutch book does not inflict a sure loss in 

scenarios where participants may acquire misplaced certainty in a partition proposition. Lewis’s 

proof goes through only because the theorem restricts attention to Lewis learning scenarios, i.e. 

scenarios where misplaced certainty in partition propositions cannot arise. The theorem and its 

converse may establish that Conditionalization offers distinctive pragmatic benefits when 

participants are guaranteed to become certain of the true partition proposition, but the theorems 

leave open whether Conditionalization offers distinctive pragmatic benefits when participants 

can acquire misplaced certainty in a partition proposition.
8
 

 If we formulate Conditionalization factively, then perhaps there is a principled reason to 

restrict attention to Lewis learning scenarios. Factive Conditionalization only applies to 

situations where the conditioning proposition is true. This restricted applicability arguably 

supplies a rationale for only considering Lewis learning scenarios when evaluating any 

distinctive pragmatic advantages afforded by factive Conditionalization. Once we formulate 

                                                 
8
 Lewis’s proof also depends on the assumption that the agent follows a deterministic update rule. The proof does 

not apply to an agent who violates Conditionalization by employing a stochastic credal reallocation strategy (e.g. an 

agent who randomly selects a new credal allocation at t2). I will follow Lewis by restricting attention to deterministic 

rather than stochastic credal reallocation strategies. 
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Conditionalization non-factively, though, the putative rationale evaporates. Non-factive 

Conditionalization applies to situations where the agent acquires misplaced certainty in a 

partition proposition. Situations of that kind arise routinely in applications of Bayesian decision 

theory. We should consider them for a more complete assessment of the pragmatic benefits 

provided by non-factive Conditionalization versus rival norms. I conclude that Lewis’s theorem 

does not optimally specify the distinctive pragmatic benefits that attach to Conditionalization. 

There is a fundamental mismatch between Lewis’s theorem and non-factive Conditionalization. 

 Some readers may deny that there is any need to consider the pragmatics of non-factive 

Conditionalization once we have proved a Dutch book theorem and converse theorem for factive 

Conditionalization. How are you supposed to determine whether proposition E is true, beyond 

evaluating whether it deserves credence 1? If you have some reason for suspecting that E is not 

true, then shouldn’t you assign it credence below 1? All evidence regarding E should already be 

incorporated into your new credal allocation. Surely, then, you should respond to your new 

credence Pnew(E) = 1 by updating credences in the same way whether or not E is true. One might 

conclude that a Dutch book theorem tailored to non-factive Conditionalization is superfluous, 

since anyone who conforms to factive Conditionalization should also conform to non-factive 

Conditionalization. 

 Let us grant that anyone who conforms to factive Conditionalization should also conform 

to non-factive Conditionalization. We still want to elucidate the distinctive pragmatic benefits 

offered by non-factive Conditionalization. Doing so requires a Dutch book theorem not 

specifically tailored to Lewis learning scenarios. We must investigate learning scenarios where 

the conditioning proposition is allowed to be false. 
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§5. Generalizing the Dutch book theorem and its converse 

 A generalized Lewis learning scenario proceeds as follows. An agent’s initial credences 

at t1 are given by a function P conforming to the probability calculus axioms.  is once again a 

partition. At t2, the agent assigns Pnew(E) = 1 for some E , where E may or may not be true. 

For any partition proposition E, she has determinate dispositions to reallocate credence in light of 

setting Pnew(E) = 1. A credal update rule C codifies these dispositions. CE is the credal allocation 

that results when the agent becomes certain of partition proposition E. Assume that CE conforms 

to the probability calculus axioms. Assume also that 

CE (E) = 1, 

since CE is the credal allocation induced by her new certainty in E. In the context of Lewis’s 

theorem, C codifies how the agent would reallocate credence upon learning the true partition 

proposition with complete certainty. In the present context, C codifies how she would reallocate 

credence upon acquiring certainty --- possibly misplaced certainty --- in a partition proposition. 

 Having broadened attention to generalized Lewis learning scenarios, we must reconsider 

our treatment of gambling. We still assume that the bookie has a strategy  for deciding what bet 

to offer at t2, depending on the partition proposition of which he becomes certain. However, it no 

longer seems appropriate to assume (2). After all, if the bookie learns the true partition 

proposition but the agent has no such luck, then the bookie’s ability to exploit his superior 

knowledge for sure gain hardly suggests that the agent’s credal update rule is problematic. It now 

seems appropriate to assume merely that agent and bookie both become certain of the same 

partition proposition E at t2, where E may be false. Under this revised conception, a gambling 

interaction proceeds much as under Lewis’s conception. On both conceptions, there is a partition 

proposition that agent and bookie come to invest with complete certainty. The key difference is 
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that under our revised conception the partition proposition may be false. As with Lewis’s 

theorem, we can model the gambling setup through a bookie strategy (B, ). In the context of 

Lewis’s theorem, (E) is the bet the bookie will offer at t2 upon learning the true partition 

proposition E with complete certainty. In the present context, (E) is the bet the bookie will offer 

at t2 upon becoming certain of E (where E may or may not be true). 

Payoffs are to be computed in terms of the true outcome, which may differ from the 

agent’s certain opinion at t2. To illustrate, suppose the agent and bookie enact a bet at t1 that 

yields a net gain if E is true and a net loss otherwise. Suppose the agent and bookie both become 

certain at t2 of E, even though E is false. The bet yields a net loss but the agent and bookie are 

certain at t2 that it yields a net gain. How, then, can they compute the correct payoff from the 

bet? The answer is that they can compute the correct payoff only if they eradicate their certainty 

in E. As noted in Section 2, the literature offers several frameworks for modeling certainty 

eradication. We could use one of these frameworks to model how the gamblers transition away 

from certainty that E is true. For present purposes, we may proceed informally. We may simply 

stipulate that at some future time t3 the gamblers learn the truth-value of each proposition 

relevant to their bets and revise their other credences accordingly. Under this stipulation, the 

gamblers can compute true payoffs at t3 for all bets they have enacted. 

 Skyrms (1987b), in his treatment of diachronic Dutch book, postulates an oracle whom 

the gamblers trust completely and who reveals the truth about all relevant propositions at t3. This 

is a vivid way of imagining how the gamblers might compute true payoffs. However, there are 

obviously many different ways besides an oracle that the agent and bookie may gain new 

evidence at t3. Accordingly, I do not assume any oracle. I assume only that at t3 the gamblers in 

some way or other become certain of all true propositions relevant to computing net payoffs. 
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 A similar assumption is needed even if we restrict attention to Lewis learning scenarios 

simpliciter, rather than generalized Lewis learning scenarios. An agent in a Lewis learning 

scenario simpliciter may become certain at t2 of a false proposition H: the agent may set CE(H) = 

1 even though H is false and E is true. To compute the correct payoff for a bet on H, the agent 

must eventually learn that H is false. So payoff computation in Lewis learning scenarios also 

sometimes requires certainty eradication. Hence, retrenching from generalized Lewis learning 

scenarios to Lewis learning scenarios simpliciter would not eliminate the need to postulate 

certainty eradication. In either setup, cases arise where correct payoff computation requires 

eradicating certainties gained at t2. 

Our new setting requires a slightly different formal notion of Dutch book. Say that a 

bookie strategy (B, ) is a non-factive Dutch book for update rule C iff 

 Bet B is acceptable relative to P. 

 For each partition proposition E, bet (E) is acceptable relative to CE. 

 For each partition proposition E, net payoff from B and (E) is negative in all 

outcomes. (Here net payoffs are not computed under the assumption that bet (E) is 

enacted if E is true.) 

The difference between non-factive Dutch books as just defined and Dutch books as defined in 

Section 3 and lies in the third clause: we drop the assumption that bet (E) is enacted if E is true. 

The reason why we drop this assumption is that we have dropped the factivity assumptions (1) 

and (2). If agent and bookie acquire misplaced certainty in partition proposition E*, then the 

bookie will offer bet (E*) even if some different partition proposition E is true. See Figure 1. A 

non-factive Dutch book for C inflicts a guaranteed net loss upon someone who follows C in a 

generalized Lewis learning scenario: she loses money no matter the partition proposition of 
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which she becomes certain and no matter the true outcome. She loses money no matter how the 

gambling scenario unfolds. 

 

INSERT FIGURE 1 ABOUT HERE 

  

 

 Lewis’s book from Section 3 is a Dutch book simpliciter, but it is not a non-factive Dutch 

book. In terms of Figure 1: Lewis’s book yields a net loss on all diagonal cells, but it does not 

yield a net loss on all cells. Once we recognize the possibility of misplaced certainty, we see that 

Lewis’s theorem does not adequately elucidate Conditionalization’s distinctive pragmatic 

benefits. We require a new Dutch book theorem that targets non-factive Dutch books.  

 

Non-factive Diachronic Dutch Book Theorem: If there is a partition proposition E such that 

CE ( . )  P( . | E), then there exists a non-factive Dutch book for C. 

 

Proof: Suppose that 

CE (H)  P(H | E), 

for some propositions E and H. We again consider the case where 

 CE (H) < P(H | E). 

The case where CE (H) > P(H | E) can be handled by multiplying all payoffs described below by 

–1. At t1, the bookie offers the bet given by Table 1. This bet is acceptable relative to P, as noted 

in the proof of the diachronic Dutch book theorem. At t2, the agent newly assigns credence 1 to 

some partition proposition E*, so her new credences are given by CE*. The bookie’s strategy is to 
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ignore E* and propose a new complex conditional bet: if E is false, then no money changes 

hands; if E is true, then the bookie pays CE (H), and the agent pays according to whether H is 

true: 

If H is true, the agent pays 1. 

If H is true, the agent pays 0. 

Table 5 summarizes net payoffs for this bet. Let us now confirm that the bet is acceptable 

relative to CE*, for all E* . 

 

INSERT TABLE 5 ABOUT HERE 

 

Either E = E* or E  E*. Suppose first that E = E*. Since CE (E) = 1, and since CE 

satisfies the probability calculus axioms, 

CE (E) = 0 

CE (H & E) = 0 

CE (H & E) = CE (H). 

The bet’s expected net payoff is therefore 

 * * *( & ) ( & ) ( & ) ( & ) ( ) ( )E E EC H E Payoff H E C H E Payoff H E C E Payoff E       

 = ( & )[ ( ) 1] ( & ) ( ) 0E E E EC H E C H C H E C H     

 = ( )[ ( & ) ( & )] ( & )E E E EC H C H E C H E C H E    

 = ( ) ( ) ( )E E EC H C E C H  

 = ( ) ( ) 0E EC H C H  . 
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On the other hand, suppose that E  E*. Since *( *) 1EC E  , and since 
*EC  satisfies the 

probability calculus axioms, 

*( ) 0EC E   

*( & ) 0EC H E   

*( & ) 0EC H E   

so that the bet’s expected net payoff is 

 * * *( & ) ( & ) ( & ) ( & ) ( ) ( )E E EC H E Payoff H E C H E Payoff H E C E Payoff E       

 = 0 + 0 + 0. 

Thus, the bet is acceptable relative to *EC whether or not E  E*. Table 6 gives net payoffs for 

the entire gambling scenario. Net payoff is CE (H) – P(H | E) < 0 when E is true and 0 otherwise. 

To inflict a guaranteed net loss in all outcomes, the bookie can add the sidebet at t1 given by 

Table 4. For the supplemented gambling scenario, net payoff is P(E)[CE (H) – P(H | E)] < 0 no 

matter the outcome.  

 

INSERT TABLE 6 ABOUT HERE 

 

 The key difference from Lewis’s proof lies in the bookie strategy pursued at t2. The new 

proof employs a different bookie strategy, one that requires no factivity assumptions to secure a 

net loss. As with Lewis’s original theorem, we can strengthen the theorem by sweetening all 

bets, so that each individual bet becomes favorable and not just acceptable. 
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Converse Non-factive Diachronic Dutch Book Theorem: If CE ( . ) = P( . | E) for all partition 

propositions E, then there does not exist a non-factive Dutch book for C. 

 

Proof: Suppose that CE ( . ) = P( . | E) for all partition propositions E. Suppose for reductio that 

there exists a non-factive Dutch book (B, ) for C. Thus: 

 Bet B is acceptable relative to P. 

 For each partition proposition E, the bet (E) is acceptable relative to CE. 

 For each partition proposition E, net payoff from B and (E) is negative in all 

outcomes. 

For the third clause, net payoffs are not computed under the assumption that bet (E) is enacted 

if E is true. If net payoffs are negative even without that assumption, then they are certainly 

negative under the assumption. (In terms of Figure 1: if (B, ) yields negative net payoff in all 

cells, then it certainly yields negative net payoff along the diagonal.) It follows that (B, ) is a 

Dutch book for C as defined in Section 3. By the converse diachronic Dutch book theorem, there 

exists no such Dutch book. By reductio, there does not exist a non-factive Dutch book for C.      

 

§6. Significance of the two theorems 

 From a technical perspective, Section 5’s theorems are fairly trivial variants on theorems 

proved by Lewis and Skyrms. The new theorems are significant for philosophical rather than 

mathematical reasons. They show that non-factive Conditionalization offers distinctive benefits 

over rival update rules one might follow in generalized Lewis learning scenarios. 

 Consider an agent who accepts all acceptable bets. The non-factive diachronic Dutch 

book theorem shows that, if she employs any update rule other than Conditionalization in a 
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generalized Lewis learning scenario, then a devious bookie with no superior knowledge can 

inflict a sure loss upon her. The converse theorem shows that, if the agent instead employs 

Conditionalization as her update rule, then she is immune to such exploitation. Just as factive 

Conditionalization is the unique update rule that immunizes the agent from a sure loss in Lewis 

learning scenarios, non-factive Conditionalization is the unique update rule that immunizes her 

from a sure loss in generalized Lewis learning scenarios. 

 My stipulation that the agent accepts all acceptable bets may seem questionable. If we 

construe payoffs as monetary amounts, then rationality does not demand that an agent accept 

every bet whose expected net payoff is non-negative. For example, an agent may rationally reject 

certain such bets if money has diminishing marginal utility for her (as it does for most people). 

Following Armendt (1993) and Skyrms (1987a), I respond that we may construe payoffs 

as utilities rather than monetary amounts. An agent who maximizes expected utility should be 

willing to accept the bets comprising the non-factive diachronic Dutch book, with payoffs 

construed as utilities. If we consider sweetened bets that are favorable rather than just acceptable, 

then accepting the sweetened bets is the unique choice that maximizes expected utility. Thus, 

Section 5 establishes the following contrast: an expected utility maximizer is vulnerable to a sure 

loss of utility in generalized Lewis learning scenarios if she follows any update rule besides 

Conditionalization; she is immune to this prospect if she instead employs Conditionalization as 

her update rule. The contrast strikes me as a significant pragmatic advantage for non-factive 

Conditionalization. Losing utility is bad. Therefore, it is bad to find yourself in a situation where 
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you are guaranteed to lose utility. Non-factive Conditionalization is the only update rule through 

which an expected utility maximizer can insulate herself from that predicament.
9
 

Some readers may object that expected utility maximization is a non-mandatory decision-

making rule. The literature offers numerous arguments that people do not (Kahneman and 

Tversky, 1979) or need not (Buchak, 2013) maximize expected utility. If an agent declines to 

maximize expected utility, then why should she care about any advantages that 

Conditionalization offers to expected utility maximizers? This objection applies whether we 

consider Lewis learning scenarios (for factive Conditionalization) or generalized Lewis learning 

scenarios (for non-factive Conditionalization). 

Luckily, my argument that Conditionalization offers pragmatic advantages does not 

assume that expected utility maximization is the unique rational decision-making rule. My 

argument assumes only that expected utility maximization is one reasonable decision-making 

rule that agents might follow. Given that expected utility maximization figures crucially across a 

range of disciplines, I feel comfortable leaving this assumption undefended. If credal update rule 

C1 when combined with reasonable decision-making rule D offers pragmatic benefits over credal 

update rule C2 when combined D, then there is at least one respect in which C1 is pragmatically 

superior to C2. Thus, Section 5 shows that there is at least one respect in which non-factive 

Conditionalization is pragmatically superior to rival credal update rules. Perhaps there are other 

respects in which Conditionalization is inferior to certain rival update rules. This paper does not 

aim for a comprehensive assessment of Conditionalization’s merits and demerits. I aim only to 

establish one advantage uniquely offered by Conditionalization. 

                                                 
9
 Some authors claim that a Dutch bookable agent should see the losses coming and opt out from all bets, thereby 

avoiding any losses. Levi (1987) and Maher (1992) develop this viewpoint as applied to diachronic Dutch books. 

Skyrms (1993) responds convincingly to Levi and Maher. 
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 Overall, then, non-factive Conditionalization offers pragmatic benefits in generalized 

Lewis scenarios comparable to the pragmatic benefits that factive Conditionalization offers in 

non-generalized Lewis learning scenarios. That non-factive Conditionalization offers distinctive 

pragmatic benefits was no doubt antecedently plausible, but it is reassuring when rigorous proof 

confirms the antecedently plausible. 

 The pragmatic benefits I have identified may seem rather marginal. It is hardly as if 

Dutch bookies lurk on every street corner. Implementing a diachronic Dutch book (whether 

Lewis’s original Dutch book or my modified Dutch book) requires knowing the agent’s credal 

update rule in advance. The bookie must then engineer a complex series of exploitive bets. Few 

bookies are so knowledgeable and resourceful. Why should an agent feel at all troubled by her 

vulnerability to such a remote threat? Why should a conditionalizer feel particularly relieved that 

she is immune to that same threat? 

I agree that one is unlikely to encounter a Dutch bookie. However, prudence counsels that 

one guard against many unlikely dangers. If you own a home, then buying homeowner’s 

insurance leaves you better off in one important respect than you were before, even though you 

are unlikely to file a claim on your insurance. There is a benefit to guarding against an unlikely 

outcome when the potential downside is sufficiently bad. And the potential downside from Dutch 

bookability is devastating: the Dutch bookie from Section 5 can enforce arbitrarily high losses, 

simply multiplying all payoffs by an arbitrary constant. Hence, there is an important respect in 

which someone immunized from sure loss in generalized Lewis scenarios is better off than 

someone vulnerable to sure loss in generalized Lewis learning scenarios, even though the chance 

of encountering a Dutch bookie is small. Just as there is a benefit to having homeowner’s 

insurance, so is there a benefit to insulating oneself from a diachronic Dutch book.  
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 The literature offers various additional arguments that Dutch bookability is not a 

pragmatic defect (Vineberg, 2011). I have not addressed all these arguments, so some readers 

may remain unconvinced that non-factive Conditionalization offers pragmatic advantages over 

alternative update rules. These readers will not accept everything I say in the paper, but they can 

still accept my main thesis: the non-factive diachronic Dutch book improves upon Lewis’s 

original diachronic Dutch book. The non-factive Dutch book is an improvement because it works 

for scenarios that feature misplaced certainty. By allowing for misplaced certainty, the non-

factive diachronic Dutch book theorem provides a fuller perspective on the worst case result that 

attaches to every possible update rule one might follow. Every update rule besides 

Conditionalization is vulnerable to a devastating worst case result in generalized Lewis learning 

scenarios: arbitrarily large loss of utility. Whether or not one agrees that this is a “pragmatic 

advantage” offered by Conditionalization, it is a striking difference in worst case results, and it is 

a difference far more sweeping than any isolated by the original Lewis-Skyrms results. 

Comparison of worst case results should inform any contrastive evaluation of update rules. Thus, 

Section 5’s theorems should inform any comprehensive comparison of Conditionalization with 

rival update rules. 

§6.1 Comparison with Skyrms 

 Skyrms proves some theorems in the same vicinity as Section 5’s non-factive Dutch book 

theorem. Let us do a comparison so as to clarify what the present paper contributes. 

 Following Jeffrey (1983), Skyrms analyzes learning scenarios where probability mass 

shifts across a partition . The agent begins with credences P and subsequently adopts new 

credences over the partition propositions, which leads to new credences Pnew for all other 

propositions. As discussed in Section 2, Jeffrey Conditionalization is one possible update rule for 
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learning scenarios of this kind. Building on Armendt’s (1980) discussion, Skyrms proves a 

Dutch book theorem and converse Dutch book theorem for Jeffrey Conditionalization. 

Generalized Lewis learning scenarios are a special case of Jeffrey-style learning scenarios: they 

are the special case where all probability mass shifts to a single partition proposition E*, so that 

Pnew(E*) = 1 and Pnew(E) = 0 for E  E*. 

By inspecting Skyrms’s discussion (1987b, pp. 9-10), we can extract a Dutch book 

theorem for non-factive Conditionalization. However, the theorem employs a somewhat different 

notion of diachronic Dutch book than figures in Section 5. First, Skyrms posits a third time stage 

t3 where an oracle reveals the true partition proposition E. Skyrms assumes that the agent will 

invest complete certainty in the oracle’s pronouncements. In Skyrms’s setup, a bookie strategy is 

a plan for offering bets at three times stages t1, t2, and t3 (whereas a bookie strategy as defined in 

Section 5 only involves bets at t1 and t2). Second, and more importantly, the diachronic book 

showcased by Skyrms’s theorem does not guarantee a net loss. Instead, it guarantees that the 

agent will never achieve a net gain and will sometimes suffer a net loss. Books with this property 

are called semi-Dutch books.
10

 

Skyrms proves that (given reasonable assumptions) one can rig a diachronic semi-Dutch 

book against an agent who follows any update rule besides non-factive Conditionalization. 

Specifically, suppose there are propositions E* and H such that the agent’s credence in H at t2 

upon becoming certain of E* differs from P(H | E*). Skyrms isolates a bookie strategy that never 

yields a net gain and that inflicts a net loss in scenarios where the agent become certain of E* at 

t2. If the agent’s credences at t2 are given by Pnew, then the bookie strategy yields a net loss when 

Pnew(E*) = 1 

                                                 
10

 Skyrms’s discussion of Jeffrey Conditionalization assumes that the agent does not become certain of a partition 

proposition at t2. Nevertheless, his proof readily generalizes to yield the results summarized in the next paragraph. 
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and net payoff 0 otherwise. See Figure 2.
11

 

 

INSERT FIGURE 2 ABOUT HERE 

 

This semi-Dutch book theorem is non-optimal. The reason is that semi-Dutch books are 

not so troubling. 

Here it becomes important to distinguish between semi-Dutch books and what I will call 

weak Dutch books. A semi-Dutch book offers a possibility of net loss and no possibility of net 

gain. A weak Dutch book offers a positive probability of net loss and no positive probability of 

net gain. Semi-Dutch books are not necessarily weak Dutch books, because the probability of net 

loss from a semi-Dutch book may be 0. A weak Dutch book offers a positive probability of net 

loss, not just a possibility of net loss. 

As Hájek (2009, pp. 188-189) urges, a possibility of net loss need not seem troubling if 

you are certain that the possibility will not occur. Focusing first on a synchronic semi-Dutch 

book, suppose you attach probability 0 to some remote metaphysical possibility H (e.g. that 

aliens have replaced your cat with an indistinguishable duplicate). Taking expected net payoffs 

as a guide, you should be willing to pay price 1 for a wager that returns payoff 1 when H is false 

and payoff 0 when H is true. From your viewpoint, the possibility that you will lose money on 

this wager is so remote that you assign the wager expected net payoff 0. The wager is acceptable 

from your viewpoint, even though it offers a possibility of net loss and no compensating 

possibility of net gain. The wager is a semi-Dutch book but not a weak Dutch book. From your 

                                                 
11

 I assume that the agent’s credences at t3 are given by P( . | E), where E is the true partition proposition revealed by 

the oracle at t3. (If the assumption is false, then the bookie can impose a Dutch book simpliciter using Lewis’s 

strategy for times t1 and t3, bypassing t2.) Under my assumption, the bookie can mount a semi-Dutch book by 

exploiting the disparity between the agent’s credences at t2 and t3 in the case where Pnew(E*) = 1. 
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viewpoint, the wager imposes no serious risk of net loss. Perhaps you are worried by the remote 

possibility of net loss, perhaps not. If you are not worried, it does not follow that you violate any 

norm of rationality. Thus, semi-Dutch bookability does not in itself suggest that any serious 

pragmatic defect afflicts your credal assignments. Whether weak Dutch bookability reveals a 

pragmatic defect in your credal assignments is a trickier question that we may luckily set aside 

for purposes of this paper.
12

 

These points generalize to diachronic semi-Dutch books, including the diachronic semi-

Dutch book secured by Skyrms’s theorem. That an agent will suffer a net loss if Pnew(E*) = 1 and 

otherwise achieve net payoff 0 is not in itself worrisome. The mere possibility of net loss need 

not worry the agent if she attaches credence 0 to that possibility. In particular, the prospect of net 

loss when Pnew(E*) = 1 need not disturb her if she attaches credence 0 to the possibility that 

Pnew(E*) = 1. We have assumed that she attaches non-zero initial credence to E*, but it does not 

follow that she attaches non-zero initial credence to the proposition that Pnew(E*) = 1. For 

example, she may feel certain that an evil demon will intervene at time t2 to ensure that she does 

not set Pnew(E*) = 1, even if E* is in fact true. From her viewpoint, a semi-Dutch book that only 

inflicts net loss when Pnew(E*) = 1 need not be disturbing. Hence, the semi-Dutch Book theorem 

does not indicate the presence of any pragmatic defect. 

Skyrms is attuned to these worries. He addresses them by making additional assumptions 

about second-order credences (1987b, pp. 11-14). Basically, he assumes that the non-

conditionalizer initially sets P(Pnew(E*) = 1 ) > 0. Given Skyrms’s second-order assumption, the 

semi-Dutch book secured by his diachronic semi-Dutch book theorem is a weak Dutch book. We 

can therefore add a sidebet at t1 that yields net gain when Pnew(E*) = 1 and net loss otherwise. 

                                                 
12

 As this paragraph illustrates, one can rig a semi-Dutch book against any agent who violates Regularity. Shimony 

(1955) defends Regularity on that basis. I agree with Hájek (2009) that semi-Dutch bookability in itself is not 

worrisome and hence that Shimony’s argument is not compelling. 
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(No such sidebet would be acceptable if the non-conditionalizer assigned credence 0 to the 

proposition that Pnew(E*) = 1.) When supplemented with a suitable sidebet, the weak Dutch book 

becomes a non-factive Dutch book in the spirit of Section 5 (except that bookie strategies now 

extend over the three time stages t1, t2, and t3). In effect, then, Skyrms proves a second-order 

theorem along the following lines: an agent is vulnerable to a guaranteed net loss if she initially 

sets P(Pnew(E*) = 1 ) > 0, subsequently becomes certain of E*, and responds to this newfound 

certainty by applying any update rule other than Conditionalization.
13

 

 This second-order theorem is potentially less helpful than Section 5’s non-factive 

diachronic Dutch book theorem. Theorems should assume as little as possible. The second-order 

theorem requires an additional second-order assumption, so in that respect it is weaker than the 

non-factive diachronic Dutch book theorem. Specifically, suppose that an agent has second-order 

credence P(Pnew(E*) = 1 ) = 0 and employs an update rule other than Conditionalization. The 

second-order theorem leaves open whether she is Dutch bookable. So the second-order theorem 

leaves open whether any pragmatic defect afflicts her credal reallocation strategy. In contrast, the 

non-factive diachronic Dutch book theorem shows that her credal reallocation strategy shares a 

crucial pragmatic defect with the credal reallocation strategy of an otherwise similar agent who 

sets P(Pnew(E*) = 1 ) > 0. 

Second-order credences obscure the true nature of the pragmatic advantages that accrue 

to Conditionalization. Whether formulated factively or non-factively, Conditionalization does 

not have a second-order character. It dictates the proper evolution of an agent’s credences, where 

those credences may be either first-order or higher-order. Just as Lewis’s Dutch book theorem 

for factive Conditionalization does not involve second-order credences, Section 5’s non-factive 

                                                 
13

 Here one must allow second-order bets, i.e. bets over the agent’s own credences at t2. See (Skyrms, 1987b) for 

mathematical and philosophical details. 
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Dutch book theorem does not involve second-order credences. An agent who employs a credal 

update rule other than Conditionalization is exploitable for very general reasons quite 

independent of her initial second-order credences. 

 

§6.2 Dutch book arguments for Conditionalization 

 I have not offered a Dutch book argument for Conditionalization. Nevertheless, many 

philosophers do offer such arguments. My discussion bears upon that enterprise. 

 In schematic form, diachronic Dutch book arguments for Conditionalization move from 

the following two premises: 

(4)  An agent who employs any credal update rule other than Conditionalization is vulnerable 

to a guaranteed net loss. 

(5)  A conditionalizer whose credences conform to the probability calculus axioms is immune 

to a guaranteed net loss. 

to the conclusion: 

(6) Rationality requires that agents employ Conditionalization as their credal update rule. 

There are many ways one might challenge the argument from (4) and (5) to (6). I want to focus 

on premise (4). In what sense does Lewis’s diachronic book guarantee a net loss? The book 

inflicts a sure loss in all outcomes where the agent and the bookie learn the true partition 

proposition. Yet there are possible outcomes where the agent and the bookie both become certain 

of a false partition proposition. As seen in Section 4, the book yields a net gain in some of those 

outcomes. Thus, Lewis’s diachronic book does not in any straightforward sense inflict a sure 

loss. We can say that the book “guarantees” a net loss only if, when defining what it is to 

“guarantee” a net loss, we ignore all outcomes where the book yields a net gain. 
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 Theorists who formulate Conditionalization factively may be justified in ignoring those 

outcomes. You violate factive Conditionalization only when you become newly certain of a true 

proposition. A restricted focus on outcomes where (1) and (2) prevail is therefore perhaps 

justified. However, I argued in Section 2 that we should formulate Conditionalization non-

factively. Having chosen a non-factive formulation, there is no good reason to focus exclusively 

on scenarios where (1) and (2) prevail. The potential for misplaced certainty is latent within 

virtually all scientific and philosophical applications of the Bayesian framework. Situations 

where (1) and (2) fail can arise just as easily as situations where they prevail. We should consider 

such situations when assessing the relative merits of potential updates rules. Once we take 

“Conditionalization” in (6) to mean “non-factive Conditionalization,” the Dutch book argument 

only looks remotely compelling if “guaranteed” in (4) means guaranteed even when the agent 

and the bookie both become certain of a false partition proposition. Lewis’s diachronic book 

looks ill-suited to underwrite a compelling Dutch book argument for non-factive 

Conditionalization. 

This problem is seldom if ever noted in the literature, perhaps because few authors 

explicitly distinguish between factive and non-factive formulations of Conditionalization. 

Admittedly, I have not conclusively forestalled all attempts at using Lewis’s diachronic book to 

support non-factive Conditionalization. One might hope to mount a compelling argument that 

somehow surmounts the mismatch between theorem and norm. But a more straightforward 

remedy is to replace Lewis’s theorem with a generalized theorem that allows misplaced 

certainty. 

That is exactly what the non-factive diachronic Dutch book theorem accomplishes. The 

theorem shows that any update rule besides Conditionalization induces vulnerability to a sure 
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loss even in scenarios where misplaced certainty in partition propositions can arise. By 

employing a more suitable notion of “guaranteed net loss,” the theorem offers dialectical 

advantages over Lewis’s theorem. It also offers dialectical advantages over Skyrms’s second-

order theorem. The second-order theorem assumes P(Pnew(E*) = 1 ) > 0. A Dutch book argument 

for non-factive Conditionalization based on the second-order theorem seems destined to concede 

that you can rationally decline to conditionalize on E* as long as you initially set P(Pnew(E*) = 1 

) = 0. The non-factive diachronic Dutch book theorem avoids such worries by assuming nothing 

about second-order credences. I do not say that the non-factive diachronic Dutch book theorem 

subserves a compelling Dutch book argument. I say only that philosophers who hope to defend 

non-factive Conditionalization using a Dutch book argument would do well to invoke this 

theorem rather than Lewis’s original or Skyrms’s second-order variant. 

In conversation, I have sometimes heard philosophers espouse a non-strategic 

formulation of the diachronic Dutch book argument. They claim that the argument does not 

depend in any essential way upon strategies for exploiting the non-conditionalizer. One could 

just as well consider a machine that randomly offers bets at t2, rather than a bookie strategy for 

offering bets at t2. In some situations, the machine will randomly offer the bet from Table 2, 

which combined with bets already offered at t1 ensures a net loss. According to the non-strategic 

formulation, this possibility establishes irrationality. If the non-strategic formulation is correct, 

then a satisfying diachronic Dutch book argument does not require anything as strong as the non-

factive diachronic Dutch book theorem or even Lewis’s original theorem. The argument requires 

only that the non-conditionalizer have the following property: 

(7) There are situations where the agent accepts bets at t1 and bets at t2 that collectively yield 

a net loss in all outcomes. 
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(7) is weaker than the consequent of Lewis’s original theorem, let alone the non-factive 

diachronic Dutch book theorem. 

I find the non-strategic formulation unconvincing. I doubt that (7) or anything in its 

vicinity suffices to establish irrationality. To see why, suppose an agent has credence P(E) = .5 at 

t1 and then conditionalizes on E at t2 so that Pnew(E) = 0. We may stipulate that it was perfectly 

rational for her to do so (since all parties to the present dispute agree that Conditionalization in 

some form or other is a rational credal update norm). The agent will accept a bet at t1 that yields 

a small profit if E is true and a small loss otherwise, along with a second bet at t2 that yields a 

huge loss if E is true and payoff 0 otherwise. The two bets jointly guarantee a net loss whether or 

not E is true. So our agent satisfies (7): she has accepted bets at t1 and t2 that guarantee a net loss. 

Nevertheless, the agent proceeded rationally. Thus, (7) does not suffice to establish irrationality. 

One cannot establish irrationality simply by describing a scenario where the agent accepts bets at 

t1 and t2 that collectively ensure a net loss. No doubt that is why Lewis and Skryms, when 

advancing the diachronic Dutch book argument, took great pains to formulate it in strategic 

terms. Both Lewis and Skyrms emphasize that the argument hinges upon a strategy through 

which the bookie ensures a net loss no matter how the gambling scenario unfolds. 

The problem highlighted by Section 4 is that existing versions of the argument do not 

actually specify such a strategy. Lewis’s book ensures a net loss only when the agent and the 

bookie learn the true partition proposition. The non-factive diachronic Dutch book theorem fixes 

the problem by specifying a strategy that ensures a net loss even when misplaced certainty in a 

partition proposition occurs. 

Even with this problem fixed, many objections face any philosopher who hopes to mount 

a compelling Dutch book argument for Conditionalization. For example: 
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- As mentioned earlier, the most natural way to construe “payoffs” from bets is as 

utilities rather than monetary amounts. But this construal raises the question of how 

we should understand utilities (Kaplan, 1996, p. 160). To what extent do Dutch book 

arguments depend upon contestable assumptions regarding utility? For discussion of 

the relation between Dutch books and utility theory, see (Armendt, 1993), (Kaplan, 

1996, pp. 155-180), (Maher, 1993), and (Skryms, 1987a).
14

 

- An increasingly popular objection to Dutch book arguments is that they misguidedly 

prioritize pragmatic over epistemic factors (Joyce, 1998; Kaplan, 1996, pp. 158-159). 

Even if we grant that violations of Conditionalization are pragmatically defective, 

why conclude that such violations are epistemically irrational? Why should we think 

that premises (4) and (5), no matter how we interpret them, support conclusion (6)? 

A vast literature addresses these and many other objections to Dutch book arguments (Hájek, 

2009), including some objections specifically tailored to diachronic Dutch book arguments 

(Christensen, 1991). I do not pretend to have done justice to this literature. I do claim that the 

non-factive diachronic Dutch book theorem fixes one significant problem with previous versions 

of the diachronic Dutch book argument for Conditionalization.
15

 

 

                                                 
14

 A common way to explicate utility is through a representation theorem. A typical representation theorem entails 

that, when an agent’s preferences satisfy certain constraints, we can represent her as having credences and utilities 

that determine her preferences via expected utility maximization. Ramsey (1931) proved the first such representation 

theorem and, on that basis, defended a version of Bayesianism. The ensuing literature offers additional 

representation theorems that improve upon Ramsey’s, often assigning the theorems a foundational role. For 

example, Jeffrey (1983) highlights a representation theorem proved by Bolker (1967), while Joyce (1999) proves a 

representation theorem for causal decision theory. Kaplan (1996, pp. 155-180) and Maher (1993, pp. 94-104) 

suggest that, given the apparent need to bring utilities into Dutch book arguments, we are better off abandoning 

Dutch book argumentation and appealing instead to a suitable representation theorem. However, representation 

theorems only apply to credences at a moment of time. Even if they yield a compelling justification for synchronic 

Bayesian norms, they do not seem well-suited to support a diachronic norm such as Conditionalization. 
15

 van Fraassen (1984) gives a diachronic Dutch book argument for the Principle of Reflection. His argument, like 

Lewis’s original diachronic book argument for Conditionalization, assumes a factive setting. In future work, I will 

discuss how the diachronic Dutch book argument for Reflection fares once we reject factivity assumptions. 
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§6.3 Expected accuracy arguments for Conditionalization 

In recent years, philosophers have grown increasingly focused upon more properly 

epistemic arguments for Bayesian norms. The goal is to justify Bayesian norms by arguing that 

they promote accuracy, where “accuracy” measures how much your credences differ from actual 

truth-values. Building on de Finetti’s (1974) discussion, Joyce (1998) gives an accuracy-based 

argument that credences should conform to the probability calculus axioms. Easwaran (2013), 

Greaves and Wallace (2006), and Leitgeb and Pettigrew (2010a; 2010b) extend accuracy-based 

argumentation from the synchronic realm to the diachronic realm. They argue that 

Conditionalization has a distinctive epistemic virtue that privileges it over rival credal 

reallocation rules: it maximizes the expected accuracy of your future credences. 

Schoenfield (2017) shows that expected accuracy arguments for Conditionalization rest 

upon a key factivity assumption. The arguments assume that you are certain you will learn the 

true partition proposition E at time t2. That assumption looks highly suspect once we 

acknowledge the possibility of misplaced certainty in partition propositions. Schoenfield shows 

that, if we lift the assumption, expected accuracy maximization no longer favors 

Conditionalization. She argues that it instead favors a different norm: 

(8) If you learn E, then you should conditionalize on the proposition that you learned E. 

Schoenfield here construes “learn” in non-factive terms, so that you can learn E even if E is 

false. She remains neutral as to whether expected accuracy arguments are compelling. She takes 

no stand on whether Conditionalization versus (8) is the rational update rule. Whatever one 

thinks of (8), Schoenfield convincingly establishes that Conditionalization does not maximize 

expected accuracy when you recognize a non-negligible possibility of future misplaced certainty 

in partition propositions. 
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This situation marks a significant contrast with the Dutch book theorem for 

Conditionalization. As I have shown, the Lewis-Skyrms Dutch book results extend smoothly 

from Lewis learning scenarios to generalized Lewis learning scenarios. Conditionalization offers 

unique pragmatic benefits whether or not we allow misplaced certainty in partition propositions. 

It offers those benefits quite independently of whatever initial first-order or second-order 

credences you happen to have. By comparison, Conditionalization does not maximize expected 

accuracy once you recognize the non-negligible possibility of misplaced certainty in partition 

propositions. The Dutch book theorem for Conditionalization naturally extends from a factive to 

a non-factive setting, while the expected accuracy theorem for Conditionalization does not.
16

 

What should we conclude from the contrast? Should we reappraise diachronic Dutch 

book arguments for Conditionalization as perhaps not so bad after all? Or should we insist that 

there is a principled reason to assume factivity when evaluating expected accuracy? Or should 

we say that diachronic Dutch book arguments are unconvincing and that Schoenfield’s results 

support (8) over Conditionalization as the rational credal update rule? All these options, and 

many others besides, are worth considering. As the debate moves forward, the theorems proved 

in this paper can serve as fixed points that constrain the space of viable options. 

 

§7. Going non-factive 

 All too often, philosophical discussion of Conditionalization proceeds in a factive vein. 

Many philosophers suggest that Conditionalization dictates how one should react upon becoming 

certain of a true proposition. This picture fits naturally with the widespread emphasis upon 

Lewis’s Dutch book theorem, which analyzes learning scenarios where one gains certainty in a 

                                                 
16

 Briggs and Pettigrew (forthcoming) give an accuracy-dominance argument for Conditionalization. They prove 

that an agent who violates Conditionalization could have guaranteed an improved accuracy score by instead obeying 

Conditionalization. Their proof implicitly assumes a factive setting. 
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true proposition. I favor a more ecumenical picture. Most fundamentally, Conditionalization 

governs the evolution of credences in response to new certainties, where those new certainties 

may be misplaced. Conditionalization dictates how old credences should relate to new credences 

when the latter result from an exogenous change that instills newfound certainty in some 

proposition. I have promoted my favored approach by situating Conditionalization in the broader 

context of generalized Lewis learning scenarios and by proving an appropriate Dutch book 

theorem. Future inquiry into Conditionalization should abandon unhelpful factivity restrictions, 

adopting a more comprehensive approach that countenances misplaced certainty. 
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Outcome Net payoff 

H & E 1 – P(H | E) 

H & E – P(H | E) 

E 0 

 

Table 1. Net payoff for the bet offered at t1. 

 

 

  

Outcome Net payoff 

H CE (H) – 1 

H CE (H) 

 

Table 2. Net payoff for the bet offered at t2 when partition proposition E is revealed. 

 

 

 

Outcome Net payoff 

H & E CE (H) – P(H | E) 

H & E CE (H) – P(H | E) 

E 0 

 

Table 3. Net payoff for the bets from Tables 1 and 2, computed under the assumption that the 

second bet is enacted iff E is true. 

 

 

 

Outcome Net payoff 

E [P(H | E) – CE (H)][1 – P(E)]  

E – [P(H | E) – CE (H)]P(E) 

 

Table 4. Sidebet on E offered at t1. 

 

 

 

 

Outcome Net payoff 

H & E CE (H) – 1 

H & E CE (H) 

E 0 

 

Table 5. Net payoff for the bet offered at t2 in the proof of the non-factive Dutch book theorem.  



43 

 

 

 

  

Outcome Net payoff 

H & E CE (H) – P(H | E) 

H & E CE (H) – P(H | E) 

E 0 

 

Table 6. Net payoff for the bets from Tables 1 and 5. Although the entries on this table are the 

same as for Table 3, the underlying computations are different. For Table 6, we assume that the 

bet from Table 5 is offered no matter the partition proposition E* of which the non-

conditionalizer becomes certain. 
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Figure 1. Assume some enumeration E1, E2, …, En, … of . The horizontal axis depicts the 

partition proposition of which the agent becomes certain at t2. Thus, the horizontal axis 

determines which bet is selected at t2. The vertical axis depicts the true partition proposition. In a 

Lewis learning scenario, only cells along the diagonal are possible: agent and bookie both 

become certain at t2 of the true partition proposition. In a generalized Lewis learning scenario, all 

cells are possible. A non-factive Dutch book ensures a net loss at every cell. A Dutch book 

simpliciter only ensures a net loss along the diagonal. (The partition  may be countably infinite, 

in which case Figure 1 only depicts a finite portion of the infinitely many possible outcomes.) 
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Figure 2. The horizontal axis depicts the partition proposition of which the agent becomes 

certain at t2. The vertical axis depicts the true partition proposition, revealed by the oracle at t3. 

Skyrms constructs a diachronic semi-Dutch book that inflicts negative net payoff in the grey 

column where Pnew(E*) = 1 and that otherwise yields net payoff 0. 

 

 


