
20 Epistemic Warrant: Humans and
Computers*

I begin with some remarks about the epistemology of human cognition. Then

I compare human cognition, taken by itself, with human cognition enhanced by

relying on computers. Finally, I discuss some uses of computers in pure math-

ematics and in empirical science.

Knowing a proposition requires that the proposition be true, that one believe it,

and that one’s belief be epistemically warranted. These three conditions are not

jointly sufficient for knowledge. But they are necessary. I will focus on the third

condition—that one’s belief be epistemically warranted.

Being epistemically warranted in having a belief is having the belief in a way

that is good for having true beliefs, given limitations on one’s information and

cognitive capacities. One can be warranted but mistaken. But if one is warranted,

one’s belief is held through a natural competence that is epistemically good—

conducive to the belief ’s being true and, usually, to the belief’s constituting

knowledge. To constitute warrant, this “good” route to truth must meet a certain

minimum standard. It must be reliable in yielding true beliefs, in normal circum-

stances.

These remarks do not constitute a definition, analysis, or reduction of warrant.

They are intended as orientation. They hide complexities. There are hard ques-

tions about limitations on information and capacities, about reliability, and about

the normal circumstances in which reliability is required. I will not discuss the

complexities.1 I assume that we have an intuitive grip on the notion of epistemic

warrant. I want to develop certain aspects of that notion.

Being warranted in having a belief is in the same ballpark as being justified.

I count warrant the genus and justification a primary subspecies. I call the other

main subspecies ‘entitlement’. What differentiates justification and entitlement?

Being justified is having a reason that figures in an appropriate way in arriving at

or in sustaining the relevant psychological state. (For epistemic justification, the
primary relevant psychological state is belief.) Having a reason requires that the

* This essay was written for an interdisciplinary conference on applications of computers in
empirical science, in Paris 2011.

1 See my, ‘Perceptual Entitlement’, Philosophy and Phenomenological Research 67 (2003),
503–548.



reason is in one’s psychology, or could easily be brought into one’s psychology

by simple, easy, obvious inferential transitions from what is already there.2 So

having a reason requires having the capacity to think the reason; and it requires

being able to connect the reason with what it is a reason for. One can have a

reason without the reason’s being operative. A reason that one has for an attitude

is operative if and only if the reason figures in a cognitively relevant causal

way in forming or sustaining the attitude. Thus being epistemically warranted

in having a belief, in the sense of being justified, requires having in one’s

psychology a reason that is operative.

I assume that reasons are propositional contents together with modes (like

belief or intention). Reasons have the same structures as sentences, even though

they need not be linguistic or even symbolic. Some think of perceptions or

pictorial images, which I assume are not propositional, as reasons. I do not.

Perceptions and images can figure in supporting an attitude, but they are not

reasons for it. Reasons are explanatory as well as justificatory. Reasons are

answers to potential ‘why’ questions. In effect, they provide a kind of explanation

of the credibility of what they are reasons for.3 Explanations and answers to

questions are propositional. Perceptions and pictures, except as glossed by

propositions, cannot explain—cannot answer a ‘why’ question or complete a

‘because’ clause. They are not themselves reasons. The point is a conceptual/

grammatical one. Perceptions and pictures can certainly figure in entitlement and

thus in support of belief.

Being entitled to a belief is being warranted in holding it, without depending

for being warranted on having an operative reason for it. Entitlement is warrant

without reason.

2 This formulation allows modular justifications—justifications that occur in an individual’s
psychology, but that cannot, even in principle, be brought to consciousness by the individual. On
this formulation, being justified hinges not on availability to consciousness, but on having a rational
structure in one’s psychology that functions to support and explain the relevant attitude. We might
label being justified in this sense ‘justifiedp’, where the subscript indicates that an individual is justified
in holding a propositional attitude if and only there is an operative (undefeated) reason for the attitude
in the individual’s psychology—whether or not the reason is in-principle accessible to the individual.
A narrower conception of being justified would require in-principle accessibility to consciousness. We
might label being justified in this sense ‘justifiedcp’, where the subscript indicates that an individiual is
justified in holding a propositional attitude if and only if there is an operative (undefeated) reason for
the attitude in the individual’s conscious psychology, or at least that part of the psychology that could
be brought to consciousness through introspection, prompting, or the like. One might use this
distinction to produce correspondingly different notions of entitlement. I will return to this
distinction later in the essay.

I take reasons to be the abstract representational contents, marked with a certain mode, of
psychological states. Strictly, the abstract reasons do not cause anything. Only the psychological
states do. Strictly, an operative reason is one that is the mode-content of a psychological state or
occurrence that has that content and that figures causally in forming or sustaining the attitude whose
mode-content the reason is a reason for.

3 The explanation need not be in meta-representational terms. It is not essentially about belief or
truth. It is fundamentally at the same level as the belief: p because r, where p is the content of the belief
and r is the reason.
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An individual can have both a justification and an entitlement for the same

belief. Epistemic warrants derive from meeting standards for having epistemic-

ally good propositional attitudes, or for making epistemically good transitions

among such attitudes. One can simultaneously meet different standards.

In the history of philosophy, epistemology featured justification, partly

because of a focus on science—which aspires to justification. I focus first on

entitlement.

A simple fact about human cognition is that we often have knowledge for

which we lack a justification—a reason. Often an individual knows a proposition,

and hence is warranted in believing it. Yet the individual may be unable to think a

reason for the proposition. Or whatever reason that the individual does have, or

could come to have, may not be operative in the individual’s believing the

proposition. The belief is not caused or sustained by a reason. Yet the individual

is warranted in the belief, and the belief may even constitute knowledge.

A vivid example is a very young child’s perceptual belief that red sphere is

there. The child may lack the concepts necessary to having a reason for the belief.

The simplest reason might be: I am having a perception as of a red sphere there.

There are developmental reasons to believe that children have beliefs about

colors, shapes, bodies, and locations before they can think about psychological

states like perceiving. Even if they have psychological concepts (like perceiving)
innately, their having meta-beliefs about perceivings is certainly not the primary

warranting basis for perceptual beliefs about spheres. Children first form percep-

tual beliefs about spheres without any thought about perceivings. They form

beliefs directly from their perceptions. They are warranted in doing so. Operative

reasons come later.

An analogous point applies for perceptual beliefs in mature adults, including

scientists. They may be able to cite their perceptions in rationalizing their

perceptual beliefs. They may develop more articulated reasons. But they are

first warranted in their perceptual beliefs because the beliefs were formed via

a good, reliable, truth-conducive psychological competence, not because the

believers can provide a reason that explains the beliefs’ belief-worthiness.

Their justifications are posterior to their entitlements. The justifications are not

needed for the entitlements to hold.

A similar point applies to transitions in a deductive inference. To be warranted
in believing the conclusion of an inference, one must be warranted in believing

the premises and in relying on the inferential transitions. Children and some

adults make warranted propositional inferences even when they are not in a

position to think the inference rules that help explain their inferential transitions.

One can make an inference that relies on a transition that is correctly explained as

an instance of modus ponens. One can be entitled to rely on the transition in

coming to a warranted conclusion, without being able to think the rule as a

justification for a transition. Inference rules are meta-representational schematic

generalizations about propositional contents. They hinge on isolating and repre-

senting the logical constants (here the conditional) on which the transition
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depends. Being competent to make a modus ponens inference does not require a
capacity to think schematic generalizations or to think about propositional con-

tents or logical constants—much less a capacity to think the rule and use it to

justify a transition. Entitlement to rely on such transitions does not require

justifications that cite the rules that codify and explain the transitions. They do

not even require a capacity to cite the premises as a reason for the conclusion.

So at the most elementary level of empirical belief and of inferential transi-

tions, entitlement (warrant without reason) precedes and is independent of justi-

fication (warrant with reason). Warrant without reason is warrant without full

understanding. One can do well cognitively without being able to explain and

rationalize what one is doing.

Many pieces of good reasoning mix entitlement and justification. Perceptual

beliefs that one is entitled to can form premises for inferences. As premises, they

can be reasons for an inference’s conclusion. As just noted, one can be entitled to

make inferential transitions without thinking the inference rules as justification

for the transitions, even unconsciously. Thinking correct rules is not easy, even

for mature thinkers. Even when one can think the rules, this ability is often not

operative in a transition. Except for when an individual deliberately carries out an

explicit proof, individuals who do think an inference rule as justification usually

provide a further warrant, after the fact. Warrant for the conclusion of an

inference is a combination of warrant for the premises and warrant for the

transition-inferences. Even where the premises constitute reasons, justifications,

for the conclusion, the reasons are often mediated by inferential transitions which

the inferrer is entitled to, but not justified in. The transitions are warranted, but

not justified by operative representation of the rule (consciously or uncon-

sciously). So the full warrant for the conclusion is a mix of justification and

entitlement.

In all inferences, a warrant for believing a conclusion depends not only on the

reason-giving powers of the premises, but also on warrants for relying on the

transitions. If the warrant for relying on a transition is an entitlement, the warrant

for believing the conclusion will be a mix of justification (from antecedent steps

for the propositional steps, including the conclusion) and entitlement (to the

inferential transitions). Entitlement resides in an actual competence to make

the relevant deductive transitions, not in an ability to understand and represent

the rule governing the competence.4

When one is warranted in believing a conclusion because of an inference to it

from premises, one commonly has some justification for the conclusion. It is

natural to hold that the premises justify—provide reason for—the conclusion.

I think that it is natural and correct to hold this even when one is just entitled to

the transition steps, as long as the premises, together with the rules governing the

4 Of course, although the premises in empirical inferences are often reasons for the conclusions, the
premises themselves may be warranted by entitlement, not reason. As I have indicated, the basic
warrants for perceptual beliefs are entitlements, not justifications.
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transition steps, constitute a rationalizing explanation of the belief- worthiness of

the conclusion.

I conjecture that, in deductive inference, when one is warranted in accepting a
conclusion by virtue of the inference, the essential premises of the inference are

always reasons for the conclusion. Often premises in good inductive inferences

are reasons—justifications—for the conclusion. The premises constitute reasons,

justifications, for the conclusion, by way of the inference, if but also only if those

premises, when combined with the rule of inference (whether or not the inferrer

understands and is justified in relying on the rule), yield some rationalizing

explanation of the belief-worthiness of the conclusion. But as I will soon explain,

this condition is probably not always met, even when one is warranted through

the inference in believing the conclusion.

I have mostly concentrated on deductive inference. We do not understand

induction very well. We do not have a theory of induction comparable to

deductive logical theory. Many inductions—including what we call ‘inferences

to the best explanation’ (abductions)—are complex, hard to articulate, and partly

unconscious. There have been many attempts to codify induction into a logic. The

best of these is probably Bayesian subjective probability theory. But what we call

‘inductive inference’ is probably a motley of significantly different kinds of

transitions.

Some of what we call ‘inductive inference’ may not be genuine, reason-giving

inference, even when it is warranted. Of course, any transition from one or more

propositional attitudes to another one, according to some warranting transition

pattern, is propositional inference. If inference is to provide a reason for a

conclusion, the premises, together with the inferential transition, must constitute

some sort of explanation of the acceptability of the conclusion. They must

provide some answer to a ‘why’ question. They must be of the form: p because

q, r, and s. The conclusion may be taken as only likely, relative to the inference

from the premises. Or it may be taken as more reasonable than not, or as

enhanced in credibility, relative to the inference. But if the inference is reason-

giving for the inferrer, the premises and the transition rules must combine to go

some way toward providing an (object-level) explanation for the individual

inferrer of why the conclusion is credible. That is a minimum necessary condition

on the premises’ functioning as reasons for the inferrer.

As noted, even with respect to deductive inference, one need not be able to

think the inferential rule that ‘because’ stands in for. One can be entitled to a

transition without being able to explain the connection. One need not have a

complete or fully satisfying explanation of the conclusion’s being made credible

by the premises, even at a non-meta-representational-, object-level of thinking.

But if the premises are to provide reasons for the conclusion, they must provide

some sort of rationalizing, explanatory support for the belief-worthiness, through

the nature of the inferential transition, of the conclusion for the individual.

Spelling out this requirement is difficult. I do not know how to do so. Perhaps

an example will help. Suppose that a human or higher animal has a perceptual
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belief. Suppose that some aspect of the belief triggers, by a natural psychological

competence, an inference to a non-perceptual belief, such as a belief that it would

be dangerous to move. Suppose that the connection between the truth of the

perceptual belief and the truth of the triggered belief is a good, probabilistic one.

Suppose, however, that nothing in the individual’s experience could explain the

connection. Perhaps the individual has no evidence that supports the inference.

Perhaps the connection was innate, selected through evolution. It is well known

that intuitively very unobvious probabilistic connections between properties can

be significant and valuable psychological transitions.5

Of course, there is a biological/psychological explanation of why the percep-

tual belief is connected to belief about danger. There is some causal or statistical

explanation of the relation in the environment between the perceived property

and danger, that grounds the psychological connection. But the perceptual belief

that is the premise may not provide the slightest explanation of the belief-

worthiness of the conclusion for the individual. The individual and the individ-

ual’s psychology cannot use the premise to rationalize, explain, or make sense of

the belief-worthiness of the conclusion—even unconsciously. For the individual,

it constitutes no reason for the conclusion.

In an abstract sense, one might claim that the premise is a reason for the

conclusion. It is a small part of an explanation that could, in principle, be filled in

by evolutionary theory or by an ideal epistemology. I think, however, that the

premise would not function as a reason in the individual’s psychology. The

transition rule in the psychology may provide no insight into the connection,

even for a theorist who knows the rule. The rule may be as simple as: if perceptual

belief has concept F in it, belief about danger is to be formed. Only an explanation

of why the rule is in place explains and rationalizes the belief-worthiness of the

conclusion, given the premise. Such an explanation would have to show why the

environmental property correlates with danger, and why the connection between

the properties in the environment grounds the psychological connection.

Not only does the believer not understand a reason connecting premise and

conclusion. The contents of the premise states that are in the (possibly uncon-

scious) psychology combined with the rules of inductive transition do not add up

to what even a super-psychologist would count as providing the slightest hint of a

reason-explanation of the conclusion. As noted, a full account of why the rule

came to be in place could show the premise as reason for the conclusion. From a

God’s eye point of view, one could reasonably say that the premise is a reason for

the conclusion. But it is not a reason for the individual. It is not a rationalizing,

5 W. S. Geisler, ‘Visual Perception and the Statistical Properties of Natural Scenes’, Annual Review
of Psychology 59 (2008), 10.1–10.26; J. Burge, C. C. Fowlkes, M. S. Banks, ‘Natural Scene Statistics
Predict How the Figure-ground Cue of Convexity Affects Human Depth Perception’, Journal of
Neuroscience, 30 (2010), 7269–7280; W.S. Geisler, ‘Contributions of Ideal Observer Theory to
Vision Research’ Vision Research 51 (2011), 771–781; Tyler Burge, Origins of Objectivity
(Oxford: Oxford University Press, 2010), 359–366.
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explanatory premise within the individual’s psychology. I see too little in such an

inductive inference to count it as reason-giving for the individual.

The premise and inferential transition still entitle the individual to believe the

conclusion. For accepting the conclusion and relying on the inferential transitions

are certainly as warranted as forming perceptual beliefs. In both cases, one uses a

natural psychological competence that in fact constitutes a good, reliable route to

getting things right.

What matters here is not whether or not one calls such inferences ‘reason-

giving’. What matters is to fix ideas on how dumb and non-rationalizing

inductive transitions can be, while still providing entitlement to believe their

conclusions.

It seems to me that more of our elementary induction may take this form than

we philosophers are inclined to think. Patterns of inference are hammered into us

by evolution. The principles that they instantiate and that explain them may yield

little insight into why the conclusion is rationalized, made sense of, or explained

by the premises. So, even knowledgeable reflection on the principle or rule

according to which the inference is carried out may not show the premises to

be reasons for the conclusion for the individual who carries out the inference. We

do not know enough about how we actually carry out inductions to know whether

the foregoing is so. But I think that we should be open to the possibility, indeed,

I think, likelihood.

For some decades, computers have solved problems that are so complex that

human beings lack the time and cognitive power to check the solutions. This

situation emerged dramatically with the proof of the Four-Color Theorem by

Appel and Haken in 1976.6 Although any given step can be checked, the length of

the proof prevents humans from checking the whole proof. Other computers

checked the proof, however; and the theorem is considered proved.

This situation has grown more complex in the succeeding thirty-five years.

Other important conjectures have apparently been proved with the help of

computers. Checking them has sometimes been harder than checking the proof

of the Four-Color Theorem. In 1998 Thomas Hales announced a proof of

Kepler’s conjecture.7 The proof combined traditional geometrical analysis and

6 K. Appel and W. Haken, ‘Every Four Color Map is Colorable, Part I: Discharging’, Illinois
Journal of Mathematics 21 (1977), 429–490; ‘Every Four Color Map is Colorable, Part II:
Reducibility’, Illinois Journal of Mathematics 21 (1977), 491–567. The theorem states that given
any separation of a plane into contiguous regions, producing a figure called a map, no more than four
colors are required to color the regions of the map so that no two regions that share a border segment
have the same color.

7 Thomas C. Hales, ‘A Proof of the Kepler Conjecture’, Annals of Mathematics, 2nd Series 162
(2005), 1065–1185; ‘Historical Overview of the Kepler Conjecture’, Discrete & Computational
Geometry: An International Journal of Mathematics and Computer Science 36 (2006), 5–20;
Thomas C. Hales and Samuel P. Ferguson, ‘A Formulation of the Kepler Conjecture’, Discrete &
Computational Geometry: An International Journal of Mathematics and Computer Science 36 (2006),
21–69. The Kepler Conjecture states that the highest density that can be achieved by filling a three-
dimensional space with equal-sized spheres is pi divided by the square root of 18, or about 74%. This
is the density of spheres stacked in a regular pyramid.
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computer proof, with extensive descriptions of the computer portions. Several

years of trying to check the proof by a committee of referees ended in failure.

Again, the proof was too long to be checked by humans. But the computer

program was not written with a view to being checked by computers. The referees

regarded the proof as 99% likely to be correct. Subsequently, Hales launched an

attempt to produce a fully formal proof that can be verified by computers. Hales

regards it as a multi-year project. It is currently in progress.

Since computers are programmed to run understood mathematics the inferen-

tial transitions that they model in proofs, taken one by one, certainly give reasons,

to humans who understand the mathematics and rely on the computers, for

believing later inferential steps. Mathematicians understand steps as rationalizing
later steps—providing some explanation of why they are belief-worthy. So the

inferential transitions provide them with reason for the conclusions of the transi-

tions. The problem, relative to classical conceptions of proof, lies simply in the

uncheckably large number of transitions in the more complex proofs.

In earlier work, I gave an account of the epistemic status of relying on

computers to complete and check a proof.8 The account compared gaining

knowledge from computers with gaining knowledge from communicating with

other people. Computers are not people. However, their outputs have language-

like character; and they produce propositional knowledge in a receiver much as

human communicators do.

In exchanges with other people, I think that we have a default prima facie

entitlement to accept what they assert unless there is reason not to. The entitle-

ment is grounded in the prima facie rationality of a being that makes propos-

itional assertions. Prima facie rationality implies prima facie competence and

openness, at least on ordinary topics. As a constitutive point about rationality,

rational individuals tend not to make incompetent assertions on such topics,

although of course they sometimes do so. And rational beings tend not to lie

without special reason. Lacking evidence that one’s interlocutor is irrational, and

that the subject matter is one on which competence and openness cannot be

assumed, and lacking reason to believe that one’s interlocutor has a special

reason to lie, one can rely on one’s interlocutor’s prima facie rationality.

I believe that recognizing such a default entitlement is the right way to account

for childrens’ gaining knowledge by being told things that they cannot evaluate,

for adults’ gaining knowledge by asking for unproblematic information from

strangers, and for students’ gaining knowledge when they are introduced to a new

subject. This default entitlement structures most further warrants that can support

or undermine an interlocutor’s credibility on given occasions.9

8 Tyler Burge, ‘Computer Proof, Apriori Knowledge, and Other Minds’, Philosophical
Perspectives 12 (1998), 1–37; reprinted in this volume, section II. The discussion over the next few
paragraphs summarizes some of the points in this article.

9 See my ‘Postscript: Content Preservation’, this volume, section II.
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In using computers to solve difficult problems, however, this default prima

facie entitlement never suffices to yield knowledge, or even warranted belief. For

the extreme difficulty of the subject matter grounds the need for supplementary

warrant to believe that the computer is specially competent to solve the problems

that mathematicians rely on it to solve.

Various types of warrant can support relying on a computer as credible. One

division is between those that concern a machine’s physical make-up and those

that concern the content of its outputs. Knowing that a computer is made of stable

materials, that its workings are predictable by laws of physics, that its power

source does not die quickly, and that it is physically complex can help support

believing that it could solve a difficult problem.

Such physical evidence is inevitably indirect. I think that it is not essential to

warranting belief in a computer’s outputs. Although the computer’s success

depends on the stability, reliability, and complexity of its physical operations,

we do not have to know anything about such operations to have reason to believe

that a computer’s outputs are credible. Consider relying on a human mathemat-

ician or empirical scientist for information. Although the human must have a

stable, reliable, and complex brain to solve a hard problem in mathematics or

science, one need not know anything about biology or physiology to learn to trust

his or her statements. One’s warrant can derive entirely from considering the

content of the statements.

The second, and primary, category of warrants that support relying on a

computer depend on evaluating the content of the computer’s outputs. For

example, a mathematician can check shorter difficult proofs, or difficult parts

of a long proof. One can study its program. Continuities in a proof and similarities

of argument structure among different proofs enable one to ascribe highly

competent processing to a single source, even apart from identifying the source

as a single physical machine. One can check one computer by relying on another.

The second computer can use different methods to solve the same problem.

Thinking through such outputs and performing an induction on cases can provide

warrant to rely on a computer to solve hard problems, even when one cannot

check the full proof. Warrants that rely on understanding the content of a

computer’s output are the primary warrants for believing what a computer

produces.

Warrant to rely on computers in solving hard problems bears comparison

to warrant that a gifted mathematician has to rely on his or her own powers

in arriving at mathematical beliefs without proof. Imagine a Ramanujan-type

genius, who can do proofs, but who often proposes unproved mathematical

results. Repeatedly, but not infallibly, the results are proved later. The individ-

ual has only a sketchy sense of how he or she arrives at the results. The individual

firmly believes the results, however, even before they are proved.

I believe that a reliable individual, like Ramanujan, is often warranted in

believing such results, before they are proved. The individual has exceptional
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mathematical powers and uses them well in forming true beliefs.10 Lacking

knowledge of Ramanujan’s psychology, we cannot know exactly what type of

warrant he had. I presume that no proof occurred in his psychology. If uncon-

scious proofs were carried out in this psychology, he would have a justification

at the unconscious-but-personal-level.11 Perhaps he had inductive reasons to

believe the theorems—unconscious but in principle available to consciousness.

If his routes were non-propositional (say, pictorial), or if they were propositional

but did not constitute an operative, explanation of the conclusion, he would have

an entitlement. Then he would be like a person who reliably forms perceptual

beliefs, but lacks a reason anywhere in his psychology that provides some

explanation of the conclusion’s belief-worthiness.12

A mathematician like Ramanujan is likely to have another warrant. The

mathematician can develop an inductive meta-representational justification for

relying on the powerful competence. He or she can reason: I have reliably come

up with answers that have later been proved; so I have a reliable competence. The

mathematician can strengthen the primary warrant or this meta-representational

warrant by showing that a given result of the unconscious competence coheres

well with other proved propositions, or by producing parts of a proof for it.

Thus the gifted mathematician can have both unconscious entitlement for

belief in particular propositions and conscious, reasoned justification that falls

short of proof. By contrast, a person who relies on a computer to solve difficult

problems can, I think, have only inductive justification for believing the com-

puter’s results. Since the mathematician cannot produce solutions to the problems

in a reliable way, the mathematician must have some inductive reason to accept

the computer’s offerings. The mathematician cannot rely on a general default

entitlement to accept what one is told, other things equal. Other things are not

equal. The known difficulty of the problems demands a reason to justify reliance

on the computer’s outputs. The justifications can be inductive. They have the

defeasible, prima facie character of all inductive reasoning.

Even though reliance on computers to carry out proofs inevitably involves an

inductive element, the way in which this element compromises the deductive

heart of mathematics does not go very deep. Relying on computers to carry out

proofs seems in some ways not substantially different from one mathematician’s

relying on another, as a source about what has been proved.

A deeper reason for rejecting the view that mathematics concerns only proof

has been available for eighty years. Gödel’s results show that for any given

system of consistent axioms of sufficient power (including axioms as weak as

10 I am assuming that the individual understands the relevant mathematics, can explain its
significance, and can relate it insightfully to other mathematics. Thus the individual is not an idiot
savant with marvelous calculating powers, but no broad mathematical competence. I will not take a
position here on the epistemology of the beliefs of idiot savants.

11 He would be justifiedp but not justifiedcp. See note 2. In any case, he would still be warranted in
his beliefs.

12 I think it unlikely but possible that Ramanujan’s warrants were mainly entitlements.
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those for arithmetic), there are truths expressible in that system that are not

provable from those axioms.13

Other mathematical practices also show that proof from compelling starting

points is not always expected in mathematics. Many proofs in advanced descrip-

tive set theory, for example, begin with unproved propositions that are postulated

as plausible but that are far from compelling. The value of the postulations and

proofs from them lies in unifying and helping to explain other results in set

theory.14 Of course, computers can be used in these proofs, as well as in proofs

that begin with compelling assumptions.

Moreover, much work in descriptive set theory involves inductive support for

conjectures that may frame further work—with no immediate expectation of

proof for the conjectures.

Some uses of computers in mathematics go well beyond producing and

checking proofs. A significant departure from traditional uses of computers in

mathematics consists in computer-driven probabilistic tests for the truth of a

hypothesis. There are, for example, probabilistic ways of determining whether a

number is prime or for solving combinatoric problems. The computing itself is

algorithmic and deductive. However, its starting point is a sample of possibilities.

The result is argued to be true on probabilistic grounds, often assigning specific

probabilities.15

Although expanded probabilistic uses of computers in pure mathematics is

inevitable, there is some inertial resistance to such expansion in the mathematical

community. Some of this resistance is simply a natural unease, born of the worry

that any movement away from the gold standard of mathematical argument—

rational compulsion through proof—may ultimately compromise mathematical

standards. I think that no one doubts that proof from conceptually compelling

13 It is sometimes said that the view that mathematical truth must be distinguished from
mathematical theoremhood depends on specialized, doubtful philosophical views, such as Gödel’s
platonism. For an example of such confused writing, see Brian Davies, ‘Wither Mathematics?’,
Notices of the American Mathematical Society 52 (2005), 1350–1356. The evidence of the truth of
the relevant unprovable sentences does not depend at all on philosophical views. Contrary to Davies’
assertions, the point depends neither on Gödel’s platonism nor on reliance on an allegedly specialized
notion of truth, such as Tarski’s. I do regard ontological platonism about central mathematics as the
natural and correct view. Of course, some mathematical problems are, inevitably, afflicted by
vagueness in their key concepts. Then one cannot expect determinately true or false answers
regarding determinate abstract structures. I think that we have no recipe—in particular, no general
strictures (such as that vagueness is present when no proof is possible)—that indicate when and where
there is vagueness in our mathematical concepts.

14 Donald M. Martin, ‘Mathematical Evidence’, in H. G. Dales and G. Oliveri (eds.), Truth in
Mathematics (Oxford: Clarendon Press, 1998), 215–232.

15 David H. Bailey and Jonathan M. Borwein, ‘Future Prospects for Computer-Assisted
Mathematics’, Notes of the Canadian Mathematical Society 37 (2005), 2–6; Leonard M. Adelman,
‘Molecular Computation of Solutions to Combinatorial Problems’, Science 266 (1994), 1021–1024;
C. W. H. Lam, ‘The Search for a Finite Projective Plane of Order 10’, American Mathematical
Monthly 98 (1991), 305–318; Carl Pomerance, ‘The Search for Prime Numbers’, Scientific American
(December 1982), 136–147; Michael Rabin ‘Probabilistic Algorithm for Testing Primality’, Journal
of Number Theory 12 (1980), 128–138.
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starting points is to be preferred where it can be obtained. One simply has to

maintain perspective on the relevant epistemic statuses of different methods.

Sometimes one can use less traditional methods to put one in a better position

to use traditional ones. But mathematics is very large, and mathematicians are

comparatively small. Some mathematical problems simply do not submit to

traditional methods. They can still be worth investigating.

I shall assume that non-traditional, probabilistic uses of computers in pure

mathematics are intellectually worthwhile. I shall assume that they yield at least

knowledge of the high probability of the truth of conclusions. I ask whether there

are epistemically principled differences between probabilistic uses of computers

and traditional methods of proof that include computer-assisted proof. I think that

there are.16

The differences are not matters of rational certainty.17 Although many proofs

in elementary mathematics are rationally certain, use of inductive methods in set

theory and other areas of pure mathematics is standard. Such methods cannot

yield rational certainty. Computer proofs and long proofs that involve many

mathematicians are also not rationally certain: One could, in principle, have

reasonable grounds to doubt them, even when they are correct.

The differences are not matters of apriority. Arguments from self-evident

axioms, broadly inductive-explanatory arguments, and probabilistic arguments

can be all be apriori warranted. The force of the warrant for believing them can

owe nothing to sense perception. Moreover, reliance on other mathematicians or

on computers in carrying out deductive proofs18 and reliance on computers to

carry out probabilistic inferences are both warranted empirically.19

16 In what follows, I disagree with a main conclusion of Don Fallis, ‘The Epistemic Status of
Probabilistic Proof ’, The Journal of Philosophy 94 (1997), 165–186. I agree that there are no good
epistemic grounds for mathematicians to reject non-traditional probabilistic methods in pure
mathematics. I do not agree that ‘there is no important qualitative difference between [probabilistic
uses of computers in pure mathematics] and the [more deductive, traditional methods] acceptable to
mathematicians’ (166). Although I disagree with the letter of the argument, I find its spirit largely
congenial: probabilistic methods in mathematics are epistemically warranted and entirely legitimate.
Fallis focuses exclusively on the epistemic value—supporting the truth of mathematical claims. As he
says, probabilistic methods can make a mathematical truth just as credible as a very long human or
computer-assisted deductive proof can. I think, however, that his article underplays epistemic values
that reside in how a belief is warranted and what sort of understanding a given method provides.
Probabilistic methods do not yield a direct understanding of mathematically necessary structures and
relations.

17 A belief is rationally certain if no possible rational consideration can justify rational doubt.
Psychological certainty is just unshakeable total confidence. Such certainty can be irrational.
Moreover a belief can be rationally certain without being psychologically certain, if the believer is
overly cautious or timid, or does not sufficiently understand the power of his or her reasons. Although
a lot of discussion of probabilistic methods focuses on their (high) degree of psychological certainty,
psychological certainty is of no particular interest to epistemology.

18 I note that I have given up my earlier view that reliance on computers or other human beings’
reports can be strictly apriori warranted. See ‘Postscript: “Content Preservation” ’, this volume,
section III.

19 A striking instance of empirical computation is Adelman’s use of a computational interpretation
of experiments involving DNA to solve a mathematical problem. See Adelman, ‘Molecular
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I believe that the epistemic difference lies in the sort of understanding

associated with the different methods. Deductive inference yields understanding

of why a mathematical truth must be true, at least relative to the premises. Purely

probabilistic inference does not.

Understanding is not a precise notion. There are some ways of caricaturing the

distinction that I am trying to get at. I want to resist such caricatures.

First, one should not think in terms of full understanding. Deductive math-

ematical practice allows many forms of incomplete understanding obtained from

a deduction from self-evident starting points. A computer-assisted proof, like the

proof of the Four-Color Theorem, does not give anyone full understanding of the

proof. The mathematician knows much of the proof, understands the principles

used in it, and has inductive reason to think that the computer has carried out a

proof. Understanding is partial. It is partial understanding of how the proof goes,

backed by inductive ground to believe that the proof has been completed. It is

partial, idealized, but genuine understanding of the necessity of the conclusion

relative to the premises.

The computer-assisted deductive proof is similar to a mathematician’s sketch-

ing a proof and recognizing that the proof is completeable.20 It is also similar to a

mathematician’s having in mind a proof of a closely related proposition and

recognizing that a variant proof for the different proposition is viable—all,

without actually going through the proof. Part of being a good mathematician

is being able to recognize and understand, in a rough how-it-would-go way, the

provability of a proposition. Such recognition provides understanding, even if not

rigorous complete understanding, of the necessity of the conclusion relative to the

premises.

It is common among writers on these subjects to point out cases in which

individuals make mistakes in purporting to recognize that a proposition is

provable. But centering on these cases tends, I think, to miss the most important

point. The most important point is that in these cases, there is commonly a

genuine mathematical competence that grounds epistemic warrant. The recogni-

tion competence is inevitably fallible. It varies in power and reliability with

different mathematicians.

However, the competence is a reliable capacity in trained mathematicians that

commonly warrants their belief in unproved but provable propositions. Assuming

that a worked-out, operative proof is not present in the mathematician’s uncon-

scious psychology, there remain reasons—proof sketches or systematic analogies

Computation of Solutions to Combinatorial Problems’; and Keith Devlin, ‘Test Tube Computing with
DNA’, Math Horizons 2 (1995), 14–21. The mathematical computation clearly is warranted partly
through warrants to believe biological theory about DNA.

20 This kind of situation is very common in mathematics. Gödel only sketched his second
incompleteness theorem in 1931. The proof was not written out, or probably even thought through
in full detail, by anyone until 1939. The mathematical community recognized the theorem as “proved”
much sooner. See John W. Dawson, ‘The Reception of Gödel’s Incompleteness Theorems’,
Philosophy of Science Association 1984 2 (1985), 253–271.
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to other proofs—that are available to the mathematician. These reasons can

combine with an entitlement to rely on a capacity to transition from these reasons

to belief. Thought, even unconscious thought, about the specific rule that governs

these transitions may not (indeed, I am sure, often does not) figure operatively in

the transition. So the warrant for relying on the transition is an entitlement, not a

justification.

We do not know enough about the psychology of mathematicians to articulate

these warrants. It seems likely, however, that the transition rules are often not

represented and operative in the mathematicians’ psychologies. And it seems

even more likely that the whole process, including both the reason sketches and

the transitions, often provides warranted understanding. Such understanding is

incomplete understanding of why a mathematical proposition is a necessary

consequence of the inference’s premises.

In sum, there are different kinds of understanding of the necessities associated

with deduction. The ideal is full deduction from first-principles. However, the

starting points of deduction need not be compelling. They can be acceptable

because they help explain other mathematical truths. And the understanding can

be sketchy and incomplete, while still pointing toward how the explanatory

reasons of a deduction would go.

The understanding need not be general. Brute force proofs in finite domains

determine all relevant possibilities, though the truths are individual to the prob-

lem. (I am thinking, for example, of finite, brute force solutions to versions of the

traveling salesman problem.) Understanding does not derive from general prin-

ciples, and may provide little general insight. Still, such deductions yield singular

understanding of necessary truths and necessary relations between truths.

Further, one should not caricature my point to mean that probabilistic proofs
provide no understanding at all. Probabilistic proofs can yield insight into the

structure of a problem, or inductive insight into mathematical relationships. They

are part of an experimental approach to pure mathematics that is similar to the

method of hypothesis and testing in empirical science.21

Deductive proof gives grounds not just for believing a proposition, but for

understanding the necessity of its truth and its necessary relations to premises. It

is not surprising that mathematical practice counts such understanding—even in

idealized, partial form—epistemically distinctive. Mathematics aims to obtain

such understanding, where possible.

I turn now from computers in mathematics to computers in empirical science.

Empirical science cannot aspire to deductive proof from propositions that are,

when understood, compelling. It must reach its conclusions through induction

from perceptual belief.

Uses of computers in empirical science are more varied than those in pure

mathematics. The variety of types of mathematical applications to empirical

21 J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st
Century (Wellesley, Mass.: A. K. Peters Ltd, 2004; 2nd edition 2008).
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problems seems nearly endless. I discuss briefly just three such applications.

I relate each to issues in human cognition.

A common computer application in biology, psychology, and engineering is

computation of an optimal solution to a problem. In some such applications, the

program is governed by a fixed, although possibly multiply re-applied, math-

ematical formula. In biology and psychology, such computations are often

carried through to determine a baseline for testing actual performance—for

example, by a colony of ants in foraging for a food supply, or by a visual system

in encoding proximal stimulation for accurately representing some environmen-

tal condition.22

These computations consist in applying well-understood—often Bayesian—

mathematical operations to huge data sets—perhaps repeatedly altered by Monte

Carlo randomization—at very fast rates. These uses differ from human reasoning

mainly with regard to length and complexity. Given a task with a clear goal,

given a data set, given prior probabilities and limiting conditions, the computa-

tion provides an optimal solution to the problem, considering costs and benefits.

There are complications. Being certain that a solution is optimal often depends

on a separate proof that there are no local maxima. Often one does without

certainty and takes a computation of a local optimality result to probably apply

globally. Even when one has a proof, the putative certainty lies in the machine’s

proof, not in the scientist’s conclusion. The warrant for the scientist’s conclusion

consists in an inductive justification based on understanding the machine’s

program and reliability. The computer run is, however, often a proxy for

reasoning that except for its complexity could be carried out by the scientist.

The Bayesian transitions in a computer run are commonly in a form that makes

them propositional proxies for human reasoning about non-rational processes. Of
course, the non-rational processes lack propositional structure. The subject

matter of the programs—for example, ants’ foraging behavior or processing in

a visual system—are not pieces of reasoning. Even where the scientist has not

fully thought through the computer’s transitions, the scientist has a general

22 Peter Nonacs and Joanne L. Soriano, ‘Patch Sampling Behaviour and Future Foraging
Expectations in Argentine Ants, Linepithema humile’, Animal Behavior 55 (1998), 519–527; Sasha
R. X. Dalla, Luc–Alain Giraldeaub, Ola Olssonc, John M. McNamarad, and David W. Stephense,
‘Information and its Use by Animals in Evolutionary Ecology’, Trends in Ecology and Evolution 20
(2005), 187–193; Thomas J. Valone, ‘Are Animals Capable of Bayesian Updating? An Empirical
Review’, Oikos 112 (2006), 252–259; Yoram Buraka, Uri Roknia, Markus Meistera, and Haim
Sompolinskya, ‘Bayesian Model of Dynamic Image Stabilization in the Visual System’, Proceedings
of the National Academy of Sciences of the United States of America 107 (2010), 19525–19530; Wilson
S. Geisler, Jiri Najemnik, and Almon D. Ing, ‘Optimal Stimulus Encoders for Natural Tasks’, Journal of
Vision 9 (2009), 1–16.

Sometimes optimization algorithms are developed from observation of frequencies in actual
behavior, for example, the swarm behavior of ants or bees. Such algorithms are often carried over
to apply to different domains, including pure mathematics. See M. Dorigo and T. Stützle, Ant Colony
Optimization (Cambridge, Mass.: MIT Press, 2004). These cases are rather like the DNA computing
mentioned in note 16, in that they use natural empirical phenomena to help solve mathematical
problems, as well as problems in natural science.
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understanding of the explanatory relation between premises and conclusion of the

computer run. The scientist can, commonly, understand any given step as a

reason for a later step. Even where the scientist’s understanding is partial, the

computer run can be interpreted as a realization of reasoning. The scientist can

enter into the reasoning at any point. The computer’s transitions, supplemented

by the scientist’s inductive reasoning about the computer’s performance, yield

justification—warrant by reason—for the conclusion.

The transitions effected by the computer are not operative in the scientist’s

psychology. The scientist makes an induction about the reliability of the

machine’s outputs and is justified in relying on them. The scientist is better off
than in many cases in which the scientist relies on his or her own inductive

reasoning. Transitions in ordinary inductions are, to be sure, operative in the

scientist’s psychology, whereas transitions effected by the machine are not

operative in the scientist’s psychology. Principles governing transitions in

human inductions are, however, often less well understood than the principles

governing transitions effected by the machine.

A second type of computation in empirical science raises more interesting

epistemic issues. I have in mind [what are broadly called] ‘genetic algorithms’.
Genetic algorithms are search and optimization techniques based on principles

governing mechanisms of evolution. The algorithms require individuals in a

population to be represented as solutions to a problem, and they require a fitness

function that maps solutions to a quality-of-solution evaluation. An initial popu-

lation of solutions is generated randomly. A proportion of this population is

selected through fitness evaluation to begin breeding a new population of indi-

vidual solutions. Selection is biased toward better solutions. A new population is

produced by genetic operators—the most common being mutation and crossover

(or recombination). Mutation applies a probability that a random aspect of a

solution is to be modified in some usually random way to produce an individual

solution for the next population. Crossover is a genus of operations that combine

aspects of the solutions of two or more “parent” individuals from a given

population to produce a new individual solution for the next population. Different

parents are chosen from the selected sub-population to produce new individuals.

When a new population of a certain size is produced, the process of fitness

evaluation, selection, and genetic operation is reapplied. The process is usually

terminated when a given optimization level is reached, though it can be termin-

ated after a set number of generations.23

Such algorithms are very good at producing optimal solutions in large,

complex domains. An optimal solution can be used in science as a baseline for

generating empirical hypotheses about actual domains and for empirically testing

the nature of such domains.

23 Melanie Mitchell, An Introduction to Genetic Algorithms (Cambridge, Mass.: MIT Press, 1996);
J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection
(Cambridge, Mass.: MIT Press, 1992).
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What is the epistemic status of a scientist’s belief that a certain population of

solutions is optimal, when that belief rests on the result of a computer’s running a

long, complex genetic algorithm? As before, the belief can be epistemically

justified through inductive reasoning about the program and the computer’s

reliability in implementing it. It seems to me, however, that there is a difference

with the case in which a scientist bases a belief on the generation of an optimality

result that derives from Bayesian updating.

As noted, like genetic algorithms, Bayesian updating processes often yield

results about non-rational processes. But Bayesian updating processes are, at

least on some formulations, proxies for reasoning in Bayesian probability theory.
Each stage in the algorithm is naturally construed as a reason for the next stage.

Genetic algorithms are not proxies for reasoning. The random mutations and

relatively random recombinations are not analogs of reasoning. They lack the

explanatory structure of reason transmission. The computer’s transitions do not

transmit reasons from previous steps to later steps. Earlier processing stages are

not reasons that help constitute answers to why-questions about the credibility of

later steps. The computer does help the scientist reason about a non-rational

process. Its runs provides evidence for scientific inductions about the relevant

subject matter. The computer’s processing is not, however, to be construed as an

instantiation or amplification for reasoning.

Given our understanding of evolution, we understand why the non-rational

process yields an optimality result. We are justified—in principle just as justi-
fied—as in any other inductive case. But the computer’s processing does not

serve as a proxy and amplification for our own reasoning—as it does in carrying

out mathematical proofs and in many construals of Bayesian algorithms. Of

course, the evolutionary process itself is not an exercise of reasoning. Computer

processing that serves as a proxy for that process is not a simulation of reasoning.

I emphasize that these reflections do not bear on the power of our warrants for

believing the computer’s results. Inductive warrants can be equally strong in the

different cases. The reflections bear on the relations between natural construals of

particular transitions in the computer’s processing, on one hand, and steps in our

reasoning, on the other.

I mentioned earlier that some warranted inductive propositional transitions in

our own psychologies may not always constitute reasoning. Previous steps may

enhance credibility of later steps without providing explanatory rationalization of

the later steps—without being reasons for them. Some propositional inductive

processing in our own psychologies may be as non-rational as evolution is, while

still being a good route to truth. Given that our minds reflect nature in many other

respects, it would surprising if they did not do so in this one. Any such warrants to

believe conclusions from inferences would be purely entitlements, not justifica-

tions. Even the premises of the warranted inferences would not be justifications—

reasons—for the conclusions.

There are Hume-inspired conceptions of inductive inference that treat all
inferences as non-reason-giving associative transitions. Some psychologists
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who take connectionist programs to model human reasoning tend in this direc-

tion. I think that such models are not adequate to model deductive reasoning or

most verbally articulated induction. Much of the reasoning in mathematics and

natural science is reason-giving. What I am noting is that there may well be

inductive inferential transitions, even in science, that support their conclusions by

making them reliably more credible, but without providing even a partial explan-

ation of the sort that reasons provide. Such inferences yield entitlements to their

conclusions, all the way down, not justifications.

I turn briefly to a third example of uses of computers in empirical science.

Recently, some striking results have been obtained in producing algorithms for

discovery of scientific explanations. A computer was given data on certain types

of motion, such as that of a double pendulum. It was given basic arithmetic,

geometric, and trigonometric operations, and some basic parameters. It was

programmed with a genetic, symbolic regression algorithm—one that looked

simultaneously both for parameters to plug into equations and for equations

that simulate conservation principles. It was also programmed to balance simpli-

city of equation against accuracy in fitting the data. The algorithm returned a

small number of equations (on the order of ten). Although some were of no

scientific interest, some were classical laws of physics—such as Newton’s second

law of motion and Lagrangian equations that apply to the double pendulum.24

Here the genetic algorithm works on formulae, weeding out the “less fit” ones

in favor of equations that fit the data and are simple. Again, particular transitions

in the computer processing do not yield reasons for subsequent stages. And again,

the scientist has only general insight into the computer’s operations. The algo-

rithm does simulate the scientific method of posing a question, offering a

hypothesis, testing the hypothesis, adjusting the hypothesis until one finds one

that tests better, and so on. But the generation and adjustment of hypotheses have

the random character of all genetic algorithms.25 The process produces better

hypotheses over time because only the better fitting equations are selected for

each new cycle of testing.

In scientific discovery of new laws, we know very little about human infer-

ences to the best explanation. It is clear that hypothesis revision in our reasoning

is often more directed and more based on rational considerations than it is in any

genetic algorithm. Such algorithms can afford to search for and produce new

hypotheses by more nearly random methods.

Human discoveries are often described loosely as leaps of intuition. In such

cases, the scientist has little conscious recognition of how he or she finds a

24 M. Schmidt and H. Lipson, ‘Distilling Free-Form Natural Laws from Experimental Data’, Science
324 (2009), 81–85. There are important issues here, which I shall not go into, about the scientist’s
understanding non-basic parameters that the computer comes up with and about the scientist’s role in
recognizing which among the equations that the computer comes up with are scientifically interesting
and genuinely explanatory.

25 By contrast, as far as I can see, the testing phase of the algorithm does operate as proxy for
rational testing in scientific reasoning.
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hypothesis. But discovery often derives from weighing reasons at various levels

of generality—from observations of evidence to attempts to fit in mathematically

with high-level generalizations that are already known. Normally, a lot of

reasoning goes into the inductive discovery of new explanatory principles.

Even so, we do not know the full psychology of such inductions. We cover

our ignorance with the all-purpose, but uninformative epithets ‘intuition’ and

‘insight’. Although human induction to scientific laws commonly involves

reasoning, it may not consist purely in reasoning. There may be non-rational,

evolutionarily drummed-in associations that are not backed by any explanatory

reasons that are operative in our psychologies. Reasoning may sometimes figure

mainly in testing hypotheses.

I think that this Popperean picture of scientific discovery is at most one factor

in the right overall account of inference to best explanations. I emphasize,

however, that although much human induction (and all deduction) surely differs

from the genetic algorithms used in the case just described, we know very little

about human induction. We are not in a position to say that our unconscious

psychologies never use the brute, non-rational, “natural selection” methods that

occur in genetic algorithms. Thus our sense of not understanding the computer’s

processing as reasoning should not be allowed to obscure the fact that we do not

understand our own inductive processing very well—especially in the case of

inferences to new scientific principles.

What we should insist upon is that science looks for rational explanations that
yield reasons where it can find them. Fundamentally, science attempts to produce

reasoned explanations. Both the non-rational processing in computers that simu-

lates non-rational selectional processes in nature and whatever elements of non-

rational processing there are in our own unconscious psychologies must be used

to find reasoned explanations.

Empirical science, like mathematics, aims at reasons, explanation, and under-

standing. Science is a particular form of understanding. It strives not just for

knowledge, but for scientia—systematic knowledge backed by reasoned, ex-

planatory understanding of why its conclusions are to be believed. Relying on

computers underscores that understanding is often partial, even in science.

Reason is not itself inadequate. But our capacities to reason are small in com-

parison to the vast complexities of our mathematical, physical, and psychological

subject matters. We must rely on computers, and perhaps on our own non-rational

but warranted inductive processing, for all the help we can get, even though such

help guarantees that our understanding of some aspects of science will remain

partial.
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