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Abstract: Bayesian decision theory is a mathematical framework that models reasoning and 

decision-making under uncertain conditions. The past few decades have witnessed an explosion 

of Bayesian modeling within cognitive science. Bayesian models are explanatorily successful for 

an array of psychological domains. This article gives an opinionated survey of foundational 

issues raised by Bayesian cognitive science, focusing primarily on Bayesian modeling of 

perception and motor control. Issues discussed include: the normative basis of Bayesian decision 

theory; explanatory achievements of Bayesian cognitive science; intractability of Bayesian 

computation; realist versus instrumentalist interpretation of Bayesian models; and neural 

implementation of Bayesian inference. 

 

1. INTRODUCTION 

 Bayesian decision theory is a mathematical framework that models reasoning and 

decision-making under uncertain conditions. The framework --- initiated by Bayes (1763), 

systematically articulated by Laplace (1814/1902), modernized by Ramsey (1931) and de Finetti 

(1937/1980), equipped with a secure mathematical foundation by Kolmogorov (1933/1956), and 

further elaborated by Jeffreys (1961) and Savage (1974) --- figures prominently across a range of 

scientific disciplines. Bayesian decision theory is a normative enterprise: it addresses how people 

should reason and make decisions, not how they actually reason and make decisions. 
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Nevertheless, many authors contend that it describes some mental activity with at least some 

degree of accuracy (e.g. Arrow, 1971; Davidson, 1980; Luce & Suppes, 1965). Over the past few 

decades, Bayesian theorizing has flourished within cognitive science. This research program uses 

the Bayesian framework to build and test precise mathematical models of the mind. Researchers 

have offered Bayesian models for an array of psychological domains, achieving particularly 

notable success with perception and motor control. Ongoing neuroscientific work investigates 

the mechanisms through which the brain (approximately) implements Bayesian inference. 

 

2. BAYESIAN DECISION THEORY 

 The core notion of Bayesian decision theory is credence, or subjective probability --- a 

quantitative measure of the degree to which an agent believes an hypothesis. I may have low 

credence that a meteor shower occurred five days ago, higher credence that Seabiscuit will win 

the race tomorrow, and even higher credence that Emmanuel Macron is French. An agent’s 

credence in hypothesis h is notated as p(h) and is assumed to fall between 0 and 1. Credences are 

psychological facets of the individual agent, not objective chances or frequencies out in the 

world. The agent’s credences need not track any objective probabilities that inhere in mind-

independent reality. To illustrate, suppose that a biased coin has objective chance .3 of landing 

heads. I may mistakenly believe that the coin is fair and therefore assign subjective probability .5 

to the hypothesis that it will land heads. Then my credence departs dramatically from the 

objective chance of heads. 

 Bayesian decision theory hinges upon synchronic norms governing how an agent should 

allocate credences over hypotheses. The probability calculus axioms codify these norms (Box 1). 

Also crucial for the Bayesian framework is the notion of conditional probability p(h | e): the 
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probability of h given e. When p(e) > 0, we can explicitly define conditional probability in terms 

of unconditional probability. When p(e) = 0, no explicit definition is in general possible. To 

handle such cases, we must take conditional probability as a primitive notion subject to further 

axiomatic constraints (Box 2). 

 

INSERT BOX 1 AND BOX 2 ABOUT HERE 

 

 Credences evolve over time. For example, if I learn that Seabiscuit is recovering from an 

illness, then I may lower my credence that he will win the race. Conditionalization is a norm that 

governs how credences should evolve over time. The basic idea behind Conditionalization is 

that, upon learning e, you should replace your former credence p(h) with p(h | e). Thus, your old 

conditional credence p(h | e) becomes your new unconditional credence in h. p(h) is called the 

prior probability and p(h | e) is called the posterior probability. The literature offers various 

subtly different ways of formulating Conditionalization more precisely (Meacham, 2016; 

Rescorla, forthcoming a). 

 Bayes’s theorem is an extremely useful tool for computing the posterior p(h | e). The 

theorem states that: 

( ) ( | )
( | )

( )

p h p e h
p h e

p e
 , 

when p(e) > 0. This formula expresses the posterior in terms of the prior probabilities p(h) and 

p(e) and the prior likelihood p(e | h). In most applications, p(e) figures only as a normalization 

constant to ensure that probabilities sum to 1, so it is common to write the theorem as: 

( | ) ( ) ( | )p h e p h p e h , 
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where 
1

( )p e
   . A generalized analogue to Bayes’s theorem obtains in many cases where p(e) = 

0 (Schervish, 1995, pp. 16-17). There are also cases (including some cases that arise in Bayesian 

cognitive science) where p(e) = 0 and no generalized analogue to Bayes’s theorem is available 

(Ghosal & van der Vaart, 2017, pp. 7-8).
1
 

Bayes’s theorem must be sharply distinguished from Conditionalization. Bayes’s theorem 

is a direct consequence of the probability calculus axioms. As such, it is purely synchronic: it 

governs the relation between an agent’s current conditional and unconditional credences. In 

contrast, Conditionalization is a diachronic norm. It governs how the agent’s credences at an 

earlier time relate to her credences at a later time. Any agent who conforms to the probability 

calculus axioms also conforms to Bayes’s theorem, but an agent who conforms to the probability 

calculus axioms at each moment may violate Conditionalization. Thus, one cannot derive 

Conditionalization from Bayes’s theorem or from the probability calculus axioms. One must 

articulate Conditionalization as an additional constraint upon credal evolution.
2
 

 The final key notion of Bayesian decision theory is utility: a numerical measure of how 

much an agent desires an outcome. According to Bayesians, an agent should choose actions that 

maximize expected utility. The expected utility of action a is a weighted average of the utilities 

assigned to possible outcomes, where the weights are probabilities contingent upon performance 

of action a. How to formulate expected utility maximization more rigorously is a topic of 

extended debate (Steele & Stefánsson, 2016). 

                                                 
1
 For example, Dirichlet process priors do not admit a formula analogous to Bayes’s theorem (Ghosal and van der 

Vaart, 2017, pp. 59-101). Dirichlet process priors play an important role in nonparametric Bayesian statistics, and 

they also figure in Bayesian cognitive science (Navarro et al., 2005). 
2
 In the scientific literature, the phrase “Bayes’s Rule” is used sometimes to denote Conditionalization, sometimes to 

denote Bayes’s theorem, and sometime to denote an admixture of the two. 
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 Bayesian decision theory (comprising the probability calculus axioms, 

Conditionalization, and expected utility maximization) has found fruitful application within 

statistics (Gelman et al., 2014), physics (Trotta, 2008), robotics (Thrun, et al., 2005), medical 

science (Ashby, 2006), and many other disciplines. There are other mathematical frameworks for 

modeling uncertainty (Colombo et al., forthcoming), but no other framework approaches the 

Bayesian framework’s sustained record of achievement across so many disciplines. 

  

Box 1. The probability calculus 

In Kolmogorov’s (1933/1956) codification of the probability calculus, probabilities are assigned 

to sets of possible outcomes. For example, suppose we seek to define probabilities over possible 

results of a horse race. We can specify an outcome by describing the order in which the horses 

finish. The hypothesis that Seabiscuit wins the race is the set of outcomes in which Seabiscuit 

finishes before every other horse. The hypothesis that Seabiscuit does not win the race is the set 

of outcomes in which Seabiscuit does not finish before every other horse. Three axioms govern 

the assignment of probabilities to hypotheses: 

 Probabilities fall between 0 and 1. 

 The set containing all possible outcomes receives probability 1. (Intuitively: this 

hypothesis exhausts the relevant possibilities, so it must be true.) 

 An additivity axiom. 

To illustrate the additivity axiom, suppose that h1 and h2 are mutually exclusive hypotheses (i.e. 

disjoint sets of possible outcomes). More concretely, let h1 be the hypothesis that Seabiscuit wins 

the race and h2 the hypothesis that War Admiral wins the race. Consider the union 1 2h h : the set 

of possible outcomes in which Seabiscuit finishes before every other horse or War Admiral 
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finishes before every other horse. This is the hypothesis that Seabiscuit wins the race or War 

Admiral wins the race. Additivity requires that: 

 1 2 1 2( ) ( ) ( )p h h p h p h  . 

More generally, finite additivity demands that: 

 1 2 1 2( ) ( ) ( ) ( )n np h h h p h p h p h     

when h1, h2, …, hn is a finite list of mutually exclusive hypotheses. More generally still, consider 

a potentially infinite list of mutually exclusive hypotheses h1, h2, …, hi, …. Countable additivity 

demands that: 

 ( ) ( )i i

ii

p h p h , 

where i

i

h  is the union of the hi. Most Bayesians endorse countable additivity (e.g. Easwaran, 

2013b), but some endorse only finite additivity (e.g. de Finetti, 1972). Cognitive science 

applications typically presuppose countable additivity. 

  

Box 2. Conditional probability 

When p(e) > 0, we may define the conditional probability p(h | e) using the ratio formula: 

 
( )

( | )
( )

p h e
p h e

p e
 .  

Here hypotheses are sets of possible outcomes (see Box 1), and h e is the intersection of h and 

e: the set of outcomes contained in both h and e. The ratio formula restricts attention to outcomes 

contained in e and then selects the proportion of those outcomes also contained in h. When p(e) = 

0, the ratio formula is ill-defined. However, scenarios where p(e) = 0 arise in virtually all 

scientific fields that employ Bayesian decision theory, including Bayesian cognitive science. For 
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example, it is common to update credences upon learning that a continuous random variable X 

has value x. This requires conditional probabilities p(h | X = x), where X = x is the set of 

outcomes in which X has value x. The probability calculus axioms entail that p(X = x) = 0 for all 

but countably many values x (Billingsley, 1995, p. 162, p. 188), so the ratio formula does not 

supply the needed conditional probabilities. There are several alternative theories that supply 

conditional probabilities for cases where p(e) = 0 (Easwaran, 2019). All of these theories 

abandon any attempt at explicitly defining conditional probability and instead impose axiomatic 

constraints that conditional probabilities should satisfy. The most popular approach uses regular 

conditional distributions, introduced by Kolmogorov in the same treatise that codified the 

probability calculus (1933/1956). Regular conditional distributions figure crucially in probability 

theory (Billingsley, 1995) and in many scientific applications of the Bayesian framework, 

including within statistics (Ghosal & van der Vaart, 2017), economics (Feldman, 1987), and 

cognitive science (Bennett et al., 1996). 

 

3. JUSTIFYING CREDAL NORMS 

 Bayesian decision theory governs the rational allocation, evolution, and employment of 

credence. For example, someone whose credences satisfy the probability calculus axioms is 

alleged to be more rational than someone whose credences violate the axioms. Cognitive 

scientists often motivate Bayesian modeling by invoking the rationally privileged status of 

Bayesian norms. But why should we ascribe a privileged status to Bayesian norms? Why is 

someone who satisfies Bayesian norms any more rational than someone who violates them? 

What is so special about these norms as opposed to alternative norms one might follow? A 

vibrant tradition stretching over the past century aims to establish that Bayesian norms are 
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rationally privileged. The goal is to justify Bayesian norms over alternative possible norms. 

Attempts at systematic justification have focused mainly on the probability calculus axioms and 

Conditionalization, rather than expected utility maximization. 

 One justificatory strategy, pursued by Cox (1946) and Jaynes (2003), advances 

constraints upon rational credence and then derives the probability calculus axioms from those 

constraints. Unfortunately, the Cox-Jaynes constraints do not seem any more antecedently 

plausible than the axioms themselves (Weisberg, 2009). Thus, it is debatable how much extra 

justification the Cox-Jaynes constraints confer upon the already very plausible axioms. 

Moreover, the Cox-Jaynes constraints are synchronic, so they cannot possibly justify the 

diachronic norm Conditionalization. Even if the Cox-Jaynes constraints justify the probability 

calculus axioms, the problem of justifying Conditionalization would remain. 

 A second justificatory strategy, stretching back to Ramsey (1931) and de Finetti 

(1937/1980), emphasizes the connection between probability and gambling. Your credences 

influence which bets you are willing to accept. For example, you will accept different odds on 

Seabiscuit winning the race depending on whether you have a high or low credence that 

Seabiscuit will win the race. Ramsey and de Finetti exploit the connection with gambling to 

justify the probability calculus axioms. To illustrate, suppose that John’s credences violate the 

probability calculus axioms. Ramsey and de Finetti show that (under ancillary assumptions) a 

devious bookie can offer John a collection of bets that inflict a sure monetary loss. John will 

accept each bet as fair, yet he will lose money overall no matter how the individual bets turn out. 

A collection of bets with this property is called a Dutch book. In contrast, the bookie cannot 

mount a Dutch book against an agent whose credences obey the probability calculus axioms. So 

agents who violate the axioms can be pumped for money in a way that agents who obey the 
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axioms cannot. Ramsey and de Finetti argue on this basis that credences should obey the 

probability calculus axioms.
3
 

 Lewis (1999) and Skyrms (1987) extend Dutch book argumentation from the synchronic 

realm to the diachronic realm. To illustrate, suppose Mary learns e but does not replace her 

former credence p(h) with new credence p(h | e), i.e. she violates Conditionalization. Lewis 

shows that (under ancillary assumptions) a clever bookie can inflict a sure loss upon Mary by 

offering her a series of bets that she regards as fair: some bets offered before she learns e and a 

final bet offered after she learns e. These bets comprise a diachronic Dutch book. Skyrms shows 

that an agent who conforms to the probability calculus axioms and to Conditionalization is not 

similarly vulnerable to a diachronic Dutch book. So agents who violate Conditionalization can be 

pumped for money in a way that agents who obey Conditionalization cannot. Lewis and Skyrms 

argue on this basis that agents should obey Conditionalization. Although Lewis and Skyrms 

assume that p(e) > 0, one can prove generalized Dutch book results for many cases where p(e) = 

0, including all or virtually all cases likely to arise in realistic applications (Rescorla, 2018). 

 There is a large literature on Dutch book arguments, much of it quite critical. One 

popular critique is that vulnerability to a Dutch book does not on its own entail irrationality. 

From a practical perspective, there is something undesirable about credences that leave you 

vulnerable to a Dutch book. But why conclude that your credences are irrational? By analogy, 

suppose you believe you are going to perform badly in an upcoming job interview. Your belief is 

quite rational: you have ample evidence based on past experience that you are likely to perform 

badly in the interview. Your belief makes you nervous, and as a result you do even worse in the 

job interview than you would have had you formed an irrationally overconfident belief that you 

                                                 
3
 The Dutch book argument for countable additivity (see Box 1) posits a book containing countably many bets. For 

worries about this posit, see (Arntzenius, Elga, and Hawthorne, 2003) and (Rescorla, 2018, p. 717, fn. 9). 
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would do well. The job interview example shows that beliefs with negative practical 

consequences may be quite rational. Why, then, must credences with negative practical 

consequences be irrational? See (Hájek, 2009) for discussion of this objection, along with many 

other objections to Dutch book arguments.
 
And see (Eberhardt & Danks, 2011) for critical 

discussion of diachronic Dutch book arguments in connection with Bayesian cognitive science. 

 A third justificatory strategy centers on the notion of accuracy. Here “accuracy” 

measures how much your credences differ from actual truth-values: if you assign high credence 

to false hypotheses and low credence to true hypotheses, then your credences are relatively 

inaccurate; if you assign high credence to true hypotheses and low credence to false hypotheses, 

then your credences are relatively accurate. There are various possible “scoring rules” that 

quantify accuracy more precisely. Suppose that your credences violate the probability calculus 

axioms. Joyce (1998, 2009) shows that, for a large class of scoring rules, there exists an 

alternative credal allocation that satisfies the axioms and that is guaranteed to improve your 

accuracy score. Intuitively: if your credences violate the axioms, then (for a large class of scoring 

rules) you can ensure that your credences are more accurate by emending them so as to obey the 

axioms. Credences that already conform to the axioms, by contrast, are not so improvable. Joyce 

argues on this basis that it is irrational to violate the axioms. 

 One problem with the accuracy-based argument is that it only works for certain scoring 

rules. If we allow a sufficiently broad class of scoring rules, then you cannot always ensure an 

improved accuracy score by correcting violations of the probability calculus axioms (Hájek, 

2008; Maher 2002). Thus, the accuracy-based argument only goes through if we restrict the class 

of admissible scoring rules. Do the needed restrictions on admissible scoring rules beg the 
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question in favor of the probability calculus axioms? Or can one independently motivate the 

needed restrictions? These questions are subject to ongoing debate (Pettigrew, 2019). 

 Some authors extend accuracy-based argumentation from the synchronic to the 

diachronic realm (Easwaran, 2013a; Greaves & Wallace, 2006; Leitgeb & Pettigrew, 2010). 

Consider expected accuracy: the accuracy score you expect for your future credences. Different 

update rules will yield different future credences, so expected accuracy depends on how you plan 

to update your credences in light of new evidence. Greaves and Wallace show that (under 

ancillary assumptions) Conditionalization maximizes expected accuracy. In other words, you 

maximize the expected accuracy of your future credences by using Conditionalization as your 

update rule. Greaves and Wallace argue that this result privileges Conditionalization over 

alternative update rules one might follow. However, Schoenfield (2017) shows that the expected 

accuracy argument for Conditionalization rests upon a crucial assumption: namely, that you are 

certain you will update your credences based upon an e that is true. What if the e upon which 

you update is false? People make mistakes all the time, so it seems entirely possible that you will 

update your credences based upon a false e. Schoenfield shows that, once you allow for this 

possibility, Conditionalization no longer maximizes the expected accuracy of your future 

credences.
4
 Schoenfield’s analysis casts doubt upon the expected accuracy argument for 

Conditionalization.
5
 

 Justification of credal norms is a very active research area. Several notable developments 

have occurred quite recently, so the landscape is likely to shift in the coming years. 

                                                 
4
 In contrast, the Lewis-Skyrms Dutch book results for Conditionalization extend smoothly to cases where e may be 

false (Rescorla, forthcoming c). 
5
 Briggs and Pettigrew (2020) give an accuracy-dominance argument for Conditionalization. They show that (under 

ancillary assumptions) an agent who violates Conditionalization could have guaranteed an improved accuracy score 

by instead obeying Conditionalization. However, their argument assumes away the possibility that the agent updates 

based upon a false e. So the argument leaves open whether Conditionalization guarantees an improved accuracy 

score in situations where e may be false. 
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4. BAYESIAN COGNITIVE SCIENCE 

 A major trend in cognitive science over the past few decades has been the rise of 

Bayesian modeling. Adherents pursue the following methodology when studying a psychological 

task: first, build an idealized Bayesian model of the task; second, fit the Bayesian model to 

experimental data as well as possible by fixing any free parameters; third, evaluate how well the 

model fits the data with all free parameters specified. 

Bayesian perceptual psychology is a particularly successful branch of Bayesian cognitive 

science. How does the perceptual system estimate distal conditions based upon proximal sensory 

input? For example, how does it estimate the shapes, sizes, colors, and locations of nearby 

objects based upon retinal stimulations? Helmholtz (1867/1925) proposed that the perceptual 

system estimates distal conditions through an unconscious inference. Bayesian perceptual 

psychology develops Helmholtz’s proposal, postulating unconscious Bayesian inferences 

executed by the perceptual system (Knill & Richards, 1996). On the Bayesian approach, 

perception has prior probabilities p(h) over distal conditions (e.g. possible shapes; possible 

lighting conditions) and prior likelihoods p(e | h) relating distal conditions to sensory input (e.g. 

the likelihood of retinal input e given that a certain shape is present under certain lighting 

conditions). The perceptual system responds to input e by computing the posterior p(h | e), in 

accord with Conditionalization. Based on the posterior, the perceptual system selects a privileged 

hypothesis h regarding distal conditions. In many models, though not all, the selected hypothesis 

h is the one that maximizes the posterior. 

Bayesian perceptual psychologists have constructed empirically successful models of 

numerous phenomena, including: 
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 Perceptual constancies. The perceptual system can estimate the same distal 

property in response to diverse proximal sensory stimulations. For example, you 

can recognize that a surface has a particular color shade across diverse lighting 

conditions, despite radically different retinal input. This is color constancy. How 

is color constancy achieved? Helmholtz conjectured that the perceptual system 

estimates lighting conditions and then uses the lighting estimate to infer surface 

color from retinal input. Bayesian models formalize Helmholtz’s conjecture, 

generating predictions that fit actual human performance quite well (Brainard, 

2009). 

 Perceptual illusions. Perceptual estimation deploys a prior probability over 

possible distal conditions. The prior helps the perceptual system decide between 

rival hypotheses that are, in principle, equally compatible with current proximal 

input. Perceptual priors often match the statistics of the environment quite well. 

For that reason, they often induce accurate perceptual estimates. But sometimes 

the prior assigns low probability to actual distal conditions, inducing a perceptual 

illusion. For example, the perceptual system has high prior probability that the 

light source is overhead (Stone, 2011). The light-from-overhead prior informs 

perceptual estimation of shape from shading. Since the light source is almost 

always located overhead, the resulting shape estimates tend be very accurate. 

When the light source happens to be located elsewhere, the shape estimates are 

inaccurate. Bayesian models can similarly explain a host of other perceptual 

illusions, such as motion illusions (Weiss, Simoncelli, & Adelson, 2002; Kwon, 

Tadin, & Knill, 2015). 



14 

 

 Cue combination. If you hold an apple while looking at it, then you receive both 

visual and haptic information regarding the apple’s size. A similar phenomenon 

occurs within modalities, as when the visual system estimates depth based upon 

convergence, retinal disparity, motion parallax, and other cues. How does the 

perceptual system integrate multiple cues into a unified estimate? The Bayesian 

framework helps us model sensory cue combination in a principled way (Ernst 

and Banks, 2002). For instance, estimation based upon two distinct cues might 

feature prior likelihoods p(e1 | h) and p(e2 | h), where e1 and e2 correspond to the 

two cues. Inputs e1 and e2 yield a posterior p(h | e1, e2), which supports a unified 

estimate. Bayesian models of cue combination have achieved notable success for 

many intermodal and intramodal estimation tasks (Trommershäuser et al., 2011). 

A good example is the causal inference model given by (Körding et al., 2007), 

which estimates location by assessing whether a visual cue and an auditory cue 

have a common cause or two distinct causes. The model successfully explains 

several multisensory effects, such as the ventriloquism illusion. 

Overall, the Bayesian framework generates principled, quantitatively precise explanations for 

diverse perceptual phenomena (Rescorla, 2015; Rescorla, forthcoming b). 

 Priors employed by the perceptual system are highly mutable. They can change quite 

rapidly in response to changing environmental statistics. For instance, the light-from-overhead 

prior can rapidly change in response to visual-haptic input indicating an altered lighting direction 

(Adams et al., 2004). Mutability of priors is key to accurate perception: as just noted, a prior that 

is not well-tuned to the environment will tend to induce inaccurate perceptual estimates. 
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 Motor control is another area where Bayesian modeling has proved highly successful. 

How does the motor system select motor commands that promote one’s goals? Even a mundane 

task such as picking up a cup is a complex undertaking with multiple degrees of freedom 

(Bernstein, 1967). On a Bayesian approach, the motor system selects appropriate motor 

commands through unconscious Bayesian inference and decision-making (Wolpert, 2007). The 

motor system maintains a running estimate of relevant environmental conditions, including both 

distal state and bodily state. For example, when you reach towards a target, your motor system 

maintains a running estimate of the target’s location along with the location and velocity of your 

hand. Credences are updated based upon incoming proximal input, through iterated application 

of Conditionalization. As the task unfolds, your motor system uses its updated credences to 

select motor commands that maximize expected utility (Wolpert & Landy, 2012). The utility 

function reflects the task goal (e.g. reaching the target with your hand) along with other task-

invariant desiderata (e.g. minimizing energetic expenditure). Detailed Bayesian models 

successfully explain human motor performance in a range of tasks (Haith & Krakauer, 2013; 

Rescorla, 2016). 

A basic fact about human motor performance is that it responds differentially to external 

perturbations depending on how those perturbations impact the task goal. Some perturbations are 

task-relevant: they affect execution of the task. Other perturbations are task-irrelevant: they do 

not affect execution of the task. For example, if the task is to maintain a certain hand position, 

then perturbations that affect hand position are task-relevant while perturbations that affect joint 

angles but not hand position are task-irrelevant. It is well-established that the motor system 

preferentially corrects task-relevant perturbations over task-irrelevant perturbations (Nashed et 

al., 2012; Todorov, 2004). This experimentally observed disparity is readily explicable within a 
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Bayesian framework: correcting a perturbation expends energy, so an ideal Bayesian decision-

maker whose utility function penalizes energetic expenditure will only correct perturbations that 

impede the task (Todorov and Jordan, 2002). In contrast, rival frameworks have great difficulty 

explaining the experimentally observed disparity between task-relevant and task-irrelevant 

perturbations. Rival frameworks typically enshrine the desired trajectory hypothesis, according 

to which the motor system crafts a detailed plan for motor organs and then seeks to execute that 

plan (e.g. Friston, 2011; Latash, 2010). The desired trajectory hypothesis incorrectly predicts that 

the motor system will correct task-irrelevant perturbations along with task-relevant perturbations 

(Braun & Wolpert, 2007; Scott, 2012). 

In addition to perception and motor control, researchers have offered Bayesian models 

for many other psychological domains (Chater et al., 2010), including intuitive physics (Battaglia 

et al., 2013), social cognition (Baker & Tennenbaum 2014), causal reasoning (Griffiths & 

Tenenbaum, 2009), child development (Gopnik & Bonawitz, 2015), human and non-human 

navigation (Madl et al. 2014), and natural language parsing (Hale, 2011; Levy, 2008; Narayan 

& Jurafsky, 1998). 

 

4.1 Approximate Bayesian inference 

 Bayesian inference computes the posterior from the priors. Unfortunately, computation of 

the posterior is in general intractable, consuming resources of time or memory beyond those 

available to a limited physical system (Kwisthout et al., 2011). The reason is that calculating the 

normalization constant  requires summing (or integrating) over the hypothesis space, which 

usually requires substantial computational resources. The brain only has limited resources at its 

disposal, so it cannot execute intractable Bayesian inferences. 
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 In some special cases, one can circumvent computational intractability by positing priors 

that allow tractable inference. When the prior probability and the prior likelihood are Gaussian, 

for example, the posterior is easily computable (Gelman et al., 2014, pp. 39-42). Gaussian priors 

work well for some modeling purposes, such as Bayesian modeling of certain simple perceptual 

tasks. However, human priors need not be precisely Gaussian even in the special case of 

perception (Stocker & Simoncelli, 2006). As a general matter, we should not expect the priors 

that figure in human mental activity to support tractable Bayesian inference (Pouget et al., 2013). 

The standard response is to explore algorithms that approximately implement idealized 

Bayesian inference. A huge literature in statistics and machine learning investigates algorithms 

that can tractably approximate intractable Bayesian inference (Murphy, 2012). There are two 

main implementation strategies: 

 Variational approximation approximates the posterior with a probability 

distribution drawn from a “nice” family of distributions, such as Gaussians. The 

goal is to choose a nice distribution as “close” as possible to the true posterior. 

This is often a tractable task even if precise computation of the posterior is 

intractable. 

 Sampling approximation approximates the posterior by drawing samples from the 

hypothesis space. In a sampling model, there is an objective probability that the 

system draws a given hypothesis. This objective probability serves as the 

subjective probability assigned by the system to the hypothesis (Icard, 2016). A 

good sampling algorithm draws samples in a way that approximates computation 

of the posterior. More precisely: a system that implements the algorithm will, 

given sufficient computational resources, asymptotically converge to objective 
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sampling probabilities that match the true posterior probabilities (Murphy, 2012, 

pp. 817-876). 

Variational and sampling approximation schemes have both been used to model mental activity 

(Sanborn, 2017). For example, Gershman et al. (2012) hypothesize that multistable perception 

arises from a tractable sampling approximation to intractable Bayesian computation. Their 

sampling model explains a variety of phenomena, such as the distribution of switching times 

between percepts. 

 An approximate Bayesian inference will, by definition, deviate from the rational ideal 

codified by Conditionalization. The question therefore arises whether approximate Bayesian 

inference has a rationally privileged status (Danks & Eberhardt, 2011; Eberhard & Danks, 2011). 

Why does an algorithm that merely approximates Bayesian inference deserve praise as any more 

rational than an algorithm that is radically anti-Bayesian? Why is it better to come close to the 

Bayesian ideal than to depart from that ideal quite dramatically? 

 In response, one might simply concede that approximate Bayesian inference does not 

have a rationally privileged status. If our goal is to delineate well-confirmed models of mental 

activity, then we can achieve this goal without attributing a rationally privileged status to our 

models. The mind might execute approximate Bayesian inference whether or not approximate 

Bayesian inference is rationally privileged. Another possible response is to argue that 

approximate Bayesian inferences are somehow rationally privileged, given the mind’s limited 

computational resources. Icard (2018) develops this viewpoint, drawing on the notion of 

bounded rationality (Simon, 1956). Icard considers an agent who makes predictions based upon 

incoming evidence. The agent has limited computational resources at her disposal, so she must 
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balance “rational” use of those resources against the quality of her predictions.
6
 Icard shows that 

(under ancillary assumptions) the optimal solution to this problem yields a sampling 

approximation to Bayesian inference. Further research in the spirit of Icard’s analysis is needed. 

Such research would help us assess the extent, if any, to which approximate Bayesian inference 

has a rationally privileged status.
7
 

 

4.2 Violation of Bayesian norms? 

 A recurring worry about Bayesian cognitive science is that people often seem to violate 

Bayesian norms (Colombo et al., forthcoming; Eberhardt & Danks, 2011; Mandelbaum et al., 

forthcoming). Kahneman and Tversky argue that human reasoning systematically violates the 

probability calculus axioms and that human decision-making systematically violates expected 

utility maximization (Kahneman & Tversky, 1979; Tversky & Kahneman, 1983). Similarly, 

Rahnev and Denison (2018) argue that some perceptual phenomena are anti-Bayesian. 

 Proponents of Bayesian modeling respond that many apparently anti-Bayesian 

phenomena are explicable in Bayesian terms (Stocker, 2018). Consider the size-weight illusion: 

when you lift two objects of equal weight but different size, the smaller object feels heavier. At 

first, the illusion looks anti-Bayesian because it flouts a prior expectation that larger objects are 

heavier. However, the illusion turns out to be explicable by a Bayesian model that estimates 

relative densities (Peters et al., 2016). As this example illustrates, it is often possible for 

                                                 
6
 See (Lieder & Griffiths, 2020) for general discussion of how humans make rational use of limited cognitive 

resources. 
7
 De Bona and Staffel (2018) study an agent who violates the probability calculus axioms. They show that (under 

ancillary assumptions) the agent can improve her accuracy score and also reduce her potential Dutch book losses by 

moving closer towards conformity to the axioms. Building on these and other similar results, Staffel (2019) argues 

that an agent is more rational to the extent that her credences conform to the probability calculus axioms. It remains 

unclear whether Staffel’s argumentative strategy can extend to the diachronic norm Conditionalization. 
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Bayesians to accommodate apparently anti-Bayesian phenomena by constructing a more 

sophisticated Bayesian model (Wei & Stocker, 2015). 

 In any event, Bayesian cognitive science does not aim to establish that all or most mental 

activity conforms to Bayesian norms (Griffiths et al., 2012). It aims to investigate how well 

mental activity conforms to Bayesian norms. Obviously, the enterprise would be a waste of time 

if no mental activity even approximately conformed to Bayesian norms. However, Bayesian 

cognitive science does not presuppose that any particular mental process conforms to the norms. 

Bayesian norms are not intended to be universal psychological laws. It may be that some mental 

activity conforms well to the norms while other mental activity violates the norms, perhaps very 

dramatically. For example, even if personal-level reasoning and decision-making flagrantly 

violate Bayesian norms, perception may still conform quite closely. Even if people are very 

irrational, the perceptual system may make rational or near-rational inferences. Similarly, it may 

be that certain perceptual processes conform quite well to Bayesian norms while others do not. 

One must investigate on a case-by-basis how well and in what circumstances a given mental 

process conforms to the norms. 

Even when a mental process violates Bayesian norms, it may still implement a tractable 

algorithm that approximates idealized Bayesian inference. Consider order effects: the order in 

which evidence is received impacts human judgments. Order effects straightforwardly violate 

Conditionalization, which does not take the order of evidence into account. However, Sanborn et 

al. (2010) argue that order effects in human categorization are explicable by a sampling model 

that approximates idealized Bayesian inference. Thus, idealized Bayesian modeling can 

sometimes shed light upon a mental phenomenon that violates Bayesian norms. In such a case, 
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the Bayesian model articulates an ideal benchmark that human performance approximates but 

fails to meet due to limited computational resources. 

 

 

5. REALISM VERSUS INSTRUMENTALISM 

 Realists about Bayesian cognitive science hold that, when a Bayesian model is 

explanatorily successful, we have reason to regard the model as approximately true. For 

example, perceptual psychology offers Bayesian models that successfully explain constancies, 

illusions, and cue combination. Realists hold that we have good reason to regard these models as 

approximately true descriptions of how the perceptual system works (Rescorla, 2015). Similarly 

for successful models of other psychological domains, such as motor control (Rescorla, 2016). 

What does it mean to say that a Bayesian model is “approximately true”? A Bayesian 

model posits credal states: assignments of credences to hypotheses. The model also posits 

transitions among credal states (e.g. the transition from priors to posterior). If the model is 

approximately true, then at a minimum there must be credal states and credal transitions roughly 

like those posited by the model. The mind must instantiate priors roughly like those posited by 

the model, and it must transition from the priors to a credal state roughly like the posited 

posterior. 

 How does a physical system “assign” a credence to a hypothesis? There are several 

options here: 

 Explicit enumeration. A system can explicitly enumerate the credence assigned to 

each hypothesis. Explicit enumeration is not an option when the hypothesis space 

is infinite, as it is in virtually all scientific applications. 
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 Parametric encoding. A system can sometimes encode a probability distribution 

using finitely many parameters. For example, a system can encode a Gaussian 

distribution by recording the distribution’s mean and variance. Parametric 

encoding is more general than explicit enumeration. It still has relatively limited 

applicability because many naturally arising probability distributions are not 

finitely parametrizable. 

 Sampling encoding. When a system samples stochastically from the hypothesis 

space, there is an objective probability that the system draws a given hypothesis. 

As noted in section 4.1, this objective probability can serve as the subjective 

probability assigned by the system to the hypothesis. Thus, a system’s sampling 

behavior can encode a probability distribution. 

Applications of the Bayesian framework (e.g. in statistics or robotics) virtually always use 

parametric or sampling encoding rather than explicit enumeration. Likewise, realists about 

Bayesian cognitive science can happily allow that the mind sometimes uses parametric or 

sampling encoding of credal states (Rescorla, 2020). 

 Instrumentalists about Bayesian cognitive science reject realism. They regard a Bayesian 

model as nothing more than a useful tool for making predictions about human behavior (Block, 

2018; Colombo & Seriès, 2012). From an instrumentalist viewpoint, the empirical success of a 

Bayesian model provides no reason to accept that there are credal states and transitions remotely 

like those posited by the model. For example, a Bayesian perceptual model may correctly predict 

various experimental results, but we should not conclude that the perceptual system even 

approximates a Bayesian inference like that posited by the model. We should only say that the 

perceptual system behaves as if it executes a Bayesian inference. Talk about priors and posteriors 
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is just a useful fiction --- a helpful way of summarizing observed human behavior. We should 

attribute no psychological reality to the core theoretical posits of Bayesian models. 

 The debate between realism and instrumentalism about Bayesian cognitive science relates 

to a more general debate within philosophy of science. Scientific realists say that the explanatory 

success of a scientific theory gives us reason to adopt a positive attitude towards the approximate 

truth of the theory (Chakravartty, 2007; Putnam, 1975). Instrumentalists disagree (van Fraassen, 

1980). They regard scientific theories simply as useful tools for making predictions. For 

example, scientific realists say that the explanatory success of modern physics gives us reason to 

believe in subatomic particles, while instrumentalists say that we have no reason to believe in 

subatomic particles. Those inclined towards instrumentalism in general will presumably incline 

towards instrumentalism regarding Bayesian cognitive science. However, one might be a 

scientific realist regarding most sciences (physics, chemistry, biology, etc.) and an 

instrumentalist regarding Bayesian cognitive science. One might believe in the subatomic 

particles posited by physics but not the credal states and transitions posited by Bayesian 

cognitive science. Moreover, one might be a realist about certain Bayesian models (e.g. Bayesian 

models of perception and motor control) but an instrumentalist about other Bayesian models (e.g. 

Bayesian models of high-level cognition). See (Rescorla, 2020) for a defense of realism 

regarding at least some Bayesian models. 

 

6. NEURAL IMPLEMENTATION OF BAYESIAN INFERENCE 

 If we accept that the mind executes (or approximately executes) Bayesian inferences, the 

question arises how those inferences are physically implemented. How does the brain encode 

priors and posteriors? Through what neural mechanisms does the brain implement, or 
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approximately implement, the transition from priors to posterior? To tackle these questions, 

neuroscientists construct neural network models that encode credal states and that approximately 

implement Bayesian computations. Researchers have proposed two main approaches (Fiser at al. 

2010): parametric and sampling. 

The most popular version of the parametric approach uses probabilistic population codes 

(PPCs), in which the firing pattern over a neural population encodes parameters of a probability 

distribution. Consider a population of neurons tuned to some observable variable (e.g. orientation 

of a bar), where each neuron’s tuning curve peaks at a different value of the variable (e.g. a 

different possible orientation of the bar). Under biologically plausible assumptions about neural 

noise, firing activity in the population can encode the mean and variance of a Gaussian 

distribution for the variable (Knill and Pouget, 2004). PPCs can also encode certain non-

Gaussian finitely parametrizable distributions (Ma et al., 2006). PPCs support a number of 

Bayesian operations, including computation of the posterior (Orhan & Ma, 2017; Pouget et al. 

2013). When computation of the posterior is intractable, PPCs can sometimes approximate 

Bayesian inference through variational methods (Beck, Pouget, & Heller, 2012). 

 The second main approach to neural implementation uses sampling (Fiser et al., 2010). 

On a sampling approach, each neuron’s activity encodes a sample from the hypothesis space. 

Specifically, a neuron’s membrane potential can encode a possible value of a variable. By 

sampling from the hypothesis space, the brain approximates computation of the posterior. There 

are several neural network models that develop this intuitive idea (Aitchison & Lengyel, 2016; 

Buesing et al., 2011; Hoyer & Hyvärinen, 2002; Orbán et al., 2016). Some of the models 

successfully replicate neurophysiological phenomena that existing PPC models do not capture. 

For example, experimentally observed neural responses have a complex dynamics, including 
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oscillatory response to a constant stimulus (Roberts et al., 2013) and large transient increases at 

stimulus onset (Ray & Maunsell, 2010). These dynamical properties are predicted by the 

(Aitchison & Lengyel, 2016) sampling model but not by existing PPC models. 

 Research into neural implementation of Bayesian inference is still at an early stage.  We 

do not know whether the brain uses a PPC implementation scheme, a sampling implementation 

scheme, or some other scheme. Note that PPC and sampling implementations need not be 

mutually exclusive: Shivkumar et al. (2018) give a sampling-based model of neural responses in 

V1, and they show that the model can be interpreted as employing a PPC. 

 Some research into neural implementation emphasizes predictive coding. On a predictive 

coding approach, the neural network generates a prediction about expected input and compares 

this prediction with actual input, computing a prediction error term. Prediction error then 

propagates back through the network as an impetus to further computation. Prediction error is 

usually the difference between prediction and input (Rao & Ballard, 1999) but is sometimes the 

ratio between them (Spratling, 2016). Predictive coding can be combined with a parametric 

scheme, such as a PPC (Spratling, 2016), or with a sampling scheme (Lee & Mumford, 2003). 

Clarke (2015) and Hohwy (2014) promote a version of predictive coding, developed by Friston 

(2005, 2010), that computes a variational approximation to the posterior. Proponents of 

predictive coding argue that it can explain a range of neurophysiological phenomena, such as 

extra-classical receptive field effects in the visual cortex. Critics retort that those same 

phenomena can be explained equally well without recourse to predictive coding (Aitchison & 

Lengyel, 2016; Aitchison & Lengyel, 2017; Heeger, 2017). To illustrate, consider the extra-

classical effect known as surround suppression, in which neural response diminishes when the 

stimulus extends beyond the neuron’s receptive field. An example would be a cell that 
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preferentially responds to a bar with a certain orientation but that exhibits a reduced response  

when the bar extends beyond the cell’s receptive field. Predictive coding can explain surround 

suppression. For instance, longer bars are more predictable than short bars because they are more 

common in the natural environment, so a longer bar induces lower prediction error and hence 

reduced response by the error-detecting cell (Rao & Ballard, 1999). However, alternative models 

can explain surround suppression without any appeal to predictive coding (e.g. Coen-Cagli, 

Kohn, & Schwartz, 2015). These models also posit that activity in a neural population modulates 

cellular response --- just not through computation of prediction error. 

 Notably, research into the neural basis of approximate Bayesian inference presupposes a 

realist rather instrumentalist perspective on credal states and transitions (Ma, 2019). This 

research program aims to discover how credal states are physically realized in the brain and how 

the brain transits between credal states in approximate accord with Bayesian norms. So the 

research program presupposes that there are credal states and that the brain transits between 

them in rough accord with Bayesian norms. In other words, it presupposes realism. Searching for 

the neural mechanisms that underlie approximate Bayesian inference would be pointless if the 

brain only behaves as if it approximately implements Bayesian inference. Thus, the dispute 

between realism and instrumentalism has major ramifications for neuroscience. If realism is 

correct, then research into neural implementation of Bayesian computation is a vitally important 

endeavor. If instrumentalism is correct, then that research is a waste of time. 

 Debate continues as to which of these two viewpoints is correct. However, there is some 

suggestive neurological evidence for the realist perspective. On a sampling approach, and also on 

certain versions of the PPC approach (Ganguli & Simoncelli, 2014), neural activity evoked by 

sensory input encodes the posterior probability, while spontaneous activity absent any sensory 
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input encodes the prior. If spontaneous activity encodes the prior, then spontaneous activity 

should change during development as the prior comes to match environmental statistics. More 

specifically: a prior that matches environmental statistics should closely resemble the average 

posterior evoked by external input; so one predicts a close match between spontaneous activity 

and average evoked activity in adults but a less close match at earlier stages of development. A 

study of the ferret visual cortex confirmed that prediction, revealing spontaneous activity that 

grew closer to average evoked activity during development (Berkes et al., 2011). The change in 

spontaneous activity arguably reflects gradual acquisition of a prior fitted to environment 

statistics. This interpretation presupposes that the prior is a genuine mental state physically 

realized in the brain. See also (Walker et al., 2020), which provides neurophysiological evidence 

for PPC implementation of Bayesian inference in the rhesus macaque visual cortex. 

 

7. CONCLUSION 

Bayesian decision theory provides an organizing framework for studying normative, 

computational, and neural aspects of mental activity. There is good evidence that human 

performance across a range of psychological domains closely matches either the Bayesian ideal 

or some tractable approximation thereof. If we accept that a Bayesian model (or a tractable 

approximation model) accurately describes a mental process, then we can take the model as a 

guide towards discovery of underlying neural mechanisms. 

Which mental processes approximately conform to Bayesian norms, and which do not? 

Which circumstances promote conformity to Bayesian norms, and which circumstances impede 

conformity? How do limited computational resources impact the mind’s ability to conform to 

Bayesian norms? When a mental process approximately conforms to Bayesian norms, how did 
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evolutionary and developmental pressures help instill this approximate conformity? How do 

nature and nurture jointly shape the priors employed during Bayesian computation? Continued 

interdisciplinary investigations into these and other questions raised by the Bayesian program 

promise to illuminate how the mind grapples with an uncertain world. 
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