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Abstract: It is widely agreed that one can fruitfully describe a computing system at various 

levels. Discussion typically centers on three levels: the representational level, the syntactic level, 

and the hardware level. I will argue that the three-level picture works well for artificial 

computing systems (i.e. computing systems designed and built by intelligent agents) but less well 

for natural computing systems (i.e. computing systems that arise in nature without design or 

construction by intelligent agents). Philosophers and cognitive scientists have been too hasty to 

extrapolate lessons drawn from artificial computation to the much different case of natural 

computation. 

 

§1. Representation, syntax, and hardware 

 It is widely agreed that one can fruitfully describe a computing system at various levels. 

Discussion typically centers on three levels that I will call the representational level, the 

syntactic level, and the hardware level. To illustrate, consider a computer programmed to 

perform elementary arithmetical operations such as addition, multiplication, and division: 

- At the representational level, we individuate computational states through their 

representational properties. For instance, we might say that our computer divides the 

number 2 into the number 5 to yield remainder 1. This description implicitly 

presupposes that the computer’s states represent specific numbers. 
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- At the syntactic level, we individuate computational states non-representationally. We 

describe our computer as manipulating numerals, rather than performing arithmetical 

operations over numbers. For example, we might say that the computer performs 

certain syntactic operations over the numerals “2” and “5” and then outputs the 

numeral “1.” When offering this description, we do not presuppose that the 

computer’s states represent numbers. 

- At the hardware level, we describe the physical realization of computational states. 

We specify our computer’s components, how those components are assembled, and 

how the computer’s physical state evolves according to well-understood physical 

laws. 

A three-level picture along these lines figures prominently in many philosophical and scientific 

discussions (Chalmers, 2011; 2012), (Fodor, 1981; 1987; 1994; 2008), (Haugeland, 1985), 

(Pylyshyn, 1984). 

I will argue that the three-level picture works well for artificial computing systems (i.e. 

computing systems designed and built by intelligent agents) but less well for natural computing 

systems (i.e. computing systems that arise in nature without design or construction by intelligent 

agents). Philosophers and cognitive scientists have been too hasty to extrapolate lessons drawn 

from artificial computation to the much different case of natural computation. I discuss artificial 

computation in §§2-3 and natural computation in §4. I compare the two cases in §5. 

 

§2. Representational description of artificial computation 

 Hardware description figures indispensably within computing practice. Ultimately, we 

must describe the materials from which a machine is to be built, the way those materials are to be 
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combined, the intended physical evolution of the machine, and so on. Only then can we build the 

machine. A good hardware description serves as a blueprint, specifying how to construct a 

physical system with desired properties. Suitable hardware description is also needed for various 

modifications or repairs we might make. These points are evident, so I will not discuss them 

further. 

 I focus on the representational and syntactic levels. I will argue that representational 

description illuminates a wide range of artificial computations (§§2.1-2.2). I will then argue that 

syntactic description plays a key role in mediating between representational description and 

physical construction of artificial systems (§3). 

 

§2.1 Representation elucidated 

Researchers across philosophy, computer science (CS), and cognitive science use the 

phrase “representation” in various ways. Following common philosophical usage (e.g. Burge, 

2010, p. 9), I tie representation to veridicality-conditions. To illustrate: 

- Beliefs are evaluable as true or false. My belief that Barack Obama is president is 

true if Barack Obama is president, false if he is not. 

- Declarative sentences (e.g. “Barack Obama is president”) as uttered in specific 

conversational contexts are likewise evaluable as true or false. 

- Perceptual states are evaluable as accurate or inaccurate. A perceptual state that 

represents presence of a red sphere is accurate only if a red sphere is before me. 

- Intentions are evaluable as fulfilled or thwarted. My intention to eat chocolate is 

fulfilled if I eat chocolate, thwarted if I do not eat chocolate. 
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Truth-conditions, accuracy-conditions, and fulfillment-conditions are species of veridicality-

conditions. Complex representations decompose into parts whose representational properties 

contribute to veridicality-conditions. For example, the truth-condition of “John loves Mary” is 

determined by the denotation of “John,” the denotation of “Mary,” and the satisfaction-condition 

of “loves.” Representational description invokes veridicality-conditions or representational 

properties that contribute to veridicality-conditions. 

I distinguish two ways that a system may come to have representational properties: it may 

have representational properties at least partly by virtue of its own activity; or it may have 

representational properties entirely because some other system has imposed those properties 

upon it. For example, the human mind has representational properties at least partly due to its 

own activity. In contrast, words in a book represent entirely by virtue of their connection to our 

linguistic conventions. The book does not contribute to representational properties of its 

component words. 

Philosophers commonly evoke this distinction using the labels original versus derived 

intentionality (Haugeland, 1985) or intrinsic versus observer relative meanings (Searle, 1980). 

To my ear, these labels suggest that the main contrast concerns whether a system is solely 

responsible for generating its own representational properties. Yet Burge (1982) and Putnam 

(1975) have argued convincingly that the external physical and social environment plays a large 

role in determining representational properties of mental states, so that not even the mind is 

solely responsible for generating its own representational properties. I prefer the labels 

indigenous versus inherited, which seem to me to carry fewer misleading connotations. 

Representational properties of human mental states are indigenous, because human mental 

activity plays at least some role in generating representational properties of mental states. 



5 

 

Representational properties of words in a book are inherited, because the book plays no role in 

generating those properties. 

 Are representational properties of artificial computing systems inherited or indigenous? 

For the artificial computing systems employed in our own society, the answer is usually 

“inherited.” For example, a simple pocket calculator only represents numbers by virtue of our 

linguistic conventions regarding numerals. A similar diagnosis applies to many far more 

sophisticated systems. Some philosophers maintain that artificial computing machines in 

principle cannot have indigenous representational properties (Searle, 1980). I think that this 

position is implausible and that existing arguments for it are flawed. I see no reason why a 

sufficiently sophisticated robot could not confer representational properties upon its own internal 

states. We could equip the robot with sensors or motor organs, so that it causally interacts with 

the external world in a suitably sophisticated way. So equipped, I see no reason why the robot 

could not achieve indigenous representation of its external environment. Whether any actual 

existing artificial computing systems have indigenous representational properties is a trickier 

question that I set aside. 

 

§2.2 The value of representational description 

To what extent do we illuminate an artificial computing system by citing its 

representational properties (whether those properties are inherited or indigenous)? 

We often want to compute over a non-linguistic domain. Consider the Euclidean 

algorithm for computing greatest common divisors (gcds). The algorithm features arithmetical 

operations over natural numbers (Rescorla, 2013a). Numbers cannot be directly instantiated 

inside a computing system. Rather, the computing system must instantiate numerals that denote 
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natural numbers. More generally, a system can compute over non-linguistic items only if the 

system represents those items (Rescorla, 2015c). When we describe a machine as computing 

over a non-linguistic domain, we presuppose (at least implicitly) that the machine’s states 

represent elements of the domain. 

Non-linguistic domains studied within computability theory typically contain 

mathematical entities (e.g. natural numbers). Real-world applications just as often involve 

computation over a non-linguistic, non-mathematical domain. We might want a smartphone that 

computes the fastest route from one location to another; or a library catalog system that allows 

users to recall library books; or a robot that estimates current position based on sonar and 

odometer readings; or a program that retrieves an individual’s city of birth from a database; and 

so on. Each computation is defined at least partly over a non-linguistic, non-mathematical 

domain. To understand the computation, we must describe it as representing locations, books, 

people, cities, and so on. Representational description helps us articulate why we built the 

machine and what function it serves in our broader practices. 

Some philosophers assert or intimate that representational description is relatively 

unimportant to computing practice (Chalmers, 2011), (Piccinini, 2008; 2009). Why not instead 

employ syntactic descriptions? Rather than say that a machine computes the gcd of two numbers, 

why not say that it executes a syntactic operation over numerals? Rather than say that a machine 

retrieves an individual’s city of birth, why not say that the machine executes appropriate 

operations over names? Doesn’t the representational level become superfluous once we isolate 

an underlying syntactic description? 

I find such proposals jarringly divergent from actual practice within computability theory, 

CS, robotics, industry, and everyday life. In all these spheres, we are often primarily concerned 
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with representational aspects of computation. The representational level is not superfluous, 

because it captures the primary purpose served by underlying syntactic operations. 

Representational description is needed to articulate the main reason why we built the machine in 

the first place: computation over a non-linguistic domain. 

Accordingly, representational relations between computing systems and represented 

domains figure crucially within scientific inquiry. Three examples: 

- Computability theory studies computational properties of notations for various non-

linguistic domains (Rescorla, 2015c). Different notations embody different ways of 

representing the domain. For instance, computable analysis studies which operations 

over real numbers are computable relative to decimal notation and which are 

computable relative to alternative notations (Weihrauch, 2000). 

- Computer science offers rigorous computational models that describe computations in 

representational terms (Rescorla, 2013a; 2014c). For example, one can codify the 

Euclidean algorithm as a LISP program or as a register machine program (Abelson, 

Sussman, and Sussman, 1996, p. 49, p. 497). The resulting programs describe 

computation over natural numbers, just as the pre-theoretic Euclidean algorithm does. 

So the programs individuate computational states partly through their representational 

properties. 

- Probabilistic robotics delineates Bayesian algorithms describing how a robot 

navigates through its environment (Thrun, Burgard, and Fox, 2005). These algorithms 

presuppose that the robot maintains an internal map that represents spatial aspects of 

the environment (Rescorla, 2009). The algorithms dictate how to update probabilities 

over maps in light of sensor measurements and odometer readings. 
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We could not retain computability theory, computer science, or probabilistic robotics in anything 

resembling their current forms if we were to jettison representational description in favor of 

syntactic description. 

 Representational description usefully characterizes not just inputs and outputs to 

computation but also internal states. Suppose we describe a machine as executing the Euclidean 

algorithm. In doing so, we describe the machine as repeatedly executing the division operation 

and hence as representing a series of numbers intermediate between input and output (Rescorla, 

2013a). Or suppose we describe a robot as updating probabilities over maps. The robot’s updates 

involve internal representational states --- probability assignments to maps that represent the 

environment. In these examples, and many others, we want our machine to transit appropriately 

between internal computational states with suitable representational properties. 

 I do not say that representational description illuminates all artificial computing systems. 

I say only that it illuminates many artificial computing systems that figure prominently in science 

and everyday life. 

 

§3. Syntactic description of artificial computation 

 There has been considerable philosophical discussion surrounding the notion of “syntax.” 

I will assume that syntactic description has at least two properties: 

- Syntactic description is non-representational, i.e. it does not individuate 

computational states through their representational properties. If we say that a 

computer stores the numeral “13” in some memory register, then we have offered a 

non-representational description, because the numeral “13” might have had different 



9 

 

representational properties (or no representational properties at all) depending on the 

surrounding computational, physical, or social environment. 

- Syntactic description is multiply realizable in Putnam’s (1975) sense: physical 

systems with wildly heterogeneous physical properties may satisfy a given syntactic 

description. Because syntactic description is multiply realizable, it is much more 

abstract than hardware description. 

Syntactic descriptions with these two properties figure prominently in computing practice. 

Consider a Turing machine that manipulates stroke marks on a machine tape; or a system of 

logic gates that manipulate “0”s and “1”s; or a desktop computer that compiles a high-level 

programming language into machine code. In each case, we can describe how the machine 

manipulates syntactic items while ignoring representational and physical details. 

 Philosophers commonly gloss syntax in functionalist terms (Chalmers, 2011), (Field, 

2001, pp. 56-57), (Fodor, 1994, pp. 108-110), (Stich, 1983, pp. 149-151),: syntactic states are 

individuated through their characteristic relations to one another and to computational inputs and 

outputs. Chalmers develops the functionalist conception using the notion of causal topology: 

“the pattern of interaction among parts of the system, abstracted away from the make-up of 

individual parts and from the way the causal connections are implemented” (2011, p. 337). On 

Chalmers’s view, syntactic description specifies a causal topology. It thereby constrains abstract 

causal structure but not physical details. A variant functionalist view allows syntactic description 

to constrain both abstract causal structure and physical aspects of inputs and outputs (e.g. 

geometric shapes of a desktop computer’s inputs and outputs; physical properties of a robot’s 

sensor inputs and motor outputs). 
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 In everyday computing practice, we are often primarily concerned with computation over 

syntactic entities. We describe a computation by decomposing it into elementary syntactic 

operations (e.g. moving a word from one memory register to another) that transform syntactic 

inputs into syntactic outputs. For example, a compiler carries syntactic inputs (source code in a 

high-level programming language) into syntactic outputs (machine language code) through a 

series of syntactic manipulations. Typically, an artificial computing system falls under multiple 

levels of syntactic description. Syntactic description of a desktop computer is organized in a 

hierarchy, ranging from logic gates to machine code to assembly code to a high-level 

programming language. As we ascend the hierarchy, we describe progressively more abstract 

aspects of syntactic processing. 

Even when computer scientists are most fundamentally interested in representational 

aspects of computation, syntactic description plays a pivotal role. Suppose we want to build a 

machine that executes some computation as described in representational terms. 

Representational description, taken on its own, does not specify how to build such a machine. 

Even if we know how we want our machine to transit between representational states, we may 

have little idea how to build a machine that so transits. As Chalmers (2012, p. 245) puts it, “[o]ne 

cannot go straight from representational explanation to building a mechanism; one has some hard 

working to do in figuring out the right mechanism.” How do we ensure that our machine transits 

as desired between representational states? How do we build a machine that reliably transits from 

a computational state that bears some relation to the represented domain to a computational state 

that bears some other desired relation to the represented domain? For example, suppose we 

want a machine that executes the Euclidean algorithm. How do we ensure that our machine 
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divides numbers into one another as the algorithm requires? Representational description by 

itself does not supply anything like a workable blueprint for a physical machine. 

Turing’s (1936) brilliant solution: supplement representational description with syntactic 

description. To build a machine that transits appropriately between representational states, we 

build a machine that manipulates syntactic items. Suitable manipulation of syntactic items 

endowed with suitable representational properties ensures that the machine satisfies our desired 

representational description. To a build a machine that executes the Euclidean algorithm, we 

isolate an algorithm for manipulating numerals. Assuming that the numerals denote suitable 

numbers, the machine thereby computes gcds. 

 Syntactic description carries us much closer than representational description to a 

workable blueprint for a physical machine. In principle, we know how to build a machine that 

executes iterated elementary syntactic operations over syntactic items. This is especially true for 

low-level syntactic descriptions, such as logic gate descriptions or machine language 

descriptions. It is also true for more abstract syntactic descriptions, such as a LISP program that 

specifies manipulation of list structures. Syntactic description helps us design and construct 

machines in a way that representational description does not. 

 Why exactly does syntactic description carry us closer than representational description 

to a workable blueprint? Because we do not know helpful sufficient conditions for a machine to 

instantiate desired representational properties: 

- Indigenous representational properties typically depend upon complex causal 

interactions between the physical system and its surrounding environment --- causal 

interactions that we are currently unable to specify in an informative way. Even when 

the represented domain is mathematical, we do not have a good theory describing 
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what it takes for the system to bear appropriate relations to the represented domain. 

We have nothing like a useful blueprint for ensuring that a machine has suitable 

indigenous representational properties. 

- Inherited representational properties may initially seem less problematic, since it is 

easy enough to stipulate that a machine’s internal states have certain representational 

properties. However, we cannot ensure that other users of some machine will make 

the same stipulations. Once we release a machine into the wild, we have little control 

over which representational properties other people bestow upon it. Thus, we are not 

able to provide anything like a useful blueprint for ensuring that a machine has 

suitable inherited representational properties. 

Syntactic description avoids these problems. By focusing solely on “intrinsic” aspects of 

computation, without seeking to ensure that computational states bear appropriate relations to 

represented entities, syntactic description carries us much closer to a workable blueprint for a 

physical system. 

 Hardware description likewise supplies a workable blueprint. As Chalmers (2012) 

emphasizes, though, it includes numerous details that are irrelevant for many purposes. When 

designing or modifying a computing machine, we often do not care about the exact physical 

substrate that implements, say, memory registers. We would like a workable blueprint that 

prescinds from irrelevant hardware details. Syntactic description fulfills this desideratum. As 

Chalmers (2012, p. 245) puts it, syntactic description “yields a sweet spot of being detailed 

enough that a fully specified mechanism is provided, while at the same time providing the 

minimal level of detail needed for such a mechanism.” 
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Chalmers’s analysis illuminates why syntactic description figures so centrally within 

computing practice. Even when we are mainly concerned with representational aspects of 

computation, syntactic description helps us build a physical system that transits appropriately 

between representational states. Syntactic description helps because it is non-representational (so 

that it furnishes a workable blueprint) and multiply realizable (so that it suppresses irrelevant 

hardware details). 

Chalmers’s analysis is closely related to abstraction, a common technique in computer 

science (Abelson, Sussman, and Sussman, 1996, pp. 83-89). Abstraction is suppression of low-

level implementation detail. For example, one might model manipulation of list structures 

without specifying how list structures are implemented by memory registers. Abstraction has 

several virtues: 

- Abstraction helps us manage the enormous complexity of typical computing systems. 

Designing and modifying complex systems is much easier when we ignore details 

that do not bear upon our current design goals. 

- Abstraction increases flexibility, allowing us to remain non-committal about how 

exactly we will implement our high-level description. Flexibility is important if we 

are not sure which low-level implementation is best, or if we want to permit different 

implementation details at some future date. 

The advantages of syntactic description over hardware description are a special case of the 

general pressure towards abstraction. Good computer design manages complexity and promotes 

flexibility by suppressing irrelevant hardware details whenever possible. 

 I conclude that syntactic description advances our pragmatic computing goals in a 

distinctive way that representational description and hardware description do not. Syntactic 
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description helps us design and build physical machines that implement representationally-

specified computations. It plays a crucial role in mediating between representational description 

and physical construction of artificial computing machines.
1
 

 

§4. Natural computing systems 

 By a “natural system,” I mean one that arises in nature without design or oversight by 

intelligent agents. Whether a system counts as “natural” is a matter of its etiology, not its 

material constitution. A computing system constructed by humans from DNA or other 

biochemical material is not “natural,” because it is an artifact. A silicon-based creature that 

evolved through natural selection on another planet counts as “natural,” even though it is not 

constructed from terrestrial biochemical materials. 

 According to the computational theory of mind (CTM), the mind is a computing system. 

Classical CTM holds that the mind executes computations similar to those executed by Turing 

machines (Fodor, 1975; 1987; 1994; 2008), (Gallistel and King, 2009), (Putnam, 1975), 

(Pylyshyn, 1994). Connectionist CTM models mental activity using neural networks (Horgan 

and Tienson, 1996), (Ramsey, 2007), (Rumelhart, McClelland, and the PDP Research Group, 

1986). Both classical and connectionist CTM trace back to seminal work of McCulloch and Pitts 

(1943). In (Rescorla, 2015b), I surveyed classical, connectionist, and other versions of CTM. For 

present purposes, I do not assume any particular version of CTM. I simply assume that the mind 

in some sense computes. Under that assumption, it makes sense to talk about “natural computing 

                                                 
1
 When representational properties are inherited rather than indigenous, syntactic description offers further 

advantages over representational description. I argue in (Rescorla, 2014b) that inherited representational properties 

of computational states are causally irrelevant: one can freely vary inherited representational properties without 

altering the underlying syntactic manipulations, so representational properties do not make a difference to the 

computation. Representational description does not furnish genuinely causal explanations of a system whose 

representational properties are all inherited. No such analysis applies to a computational system whose 

representational properties are indigenous. In that case, I claim, representational properties can be causally relevant 

(Rescorla, 2014b). 
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systems.” We may therefore ask how §1’s levels of description apply to natural computation --- 

specifically, mental computation.
2
 

 Hardware description is vital to the study of mental computation. Ultimately, we want to 

know how neural tissue physically realizes mental computations. Everyone agrees that a 

complete cognitive science will include detailed hardware descriptions that characterize how 

neural processes implement mental activity. Unfortunately, satisfactory hardware descriptions 

are not yet available. Although we know quite a lot about the brain, we still do not know how 

exactly neural processing physically realizes basic mental activities such as perception, motor 

control, navigation, reasoning, decision-making, and so on. 

 What about representational and syntactic description? Will these also figure in any 

complete cognitive science? I discuss representation in §4.1 and syntax in §4.2. 

 

§4.1 Representational description of mental computation 

 Traditionally, philosophers have emphasized the mind’s representational capacity as one 

of its most important features. Perception, motor control, navigation, decision-making, language 

acquisition, problem solving, and many other core mental activities crucially involve 

representational mental states. For example: 

- Perception. Perceptual states represent the environment as being a certain way. They 

represent shapes, sizes, colors, locations, and other properties of distal objects. They 

are evaluable as accurate or inaccurate, depending on whether perceived objects 

actually have the represented distal properties (Burge, 2010), (Peacocke, 1992). 

                                                 
2
 For purposes of this paper, “mental computation” indicates computation by a natural system with a mind. I leave 

open the possibility that an artificial system (such as a sophisticated robot) might also have a mind. 
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- Motor control. The motor system transforms intentions into motor commands. When 

all goes well, the resulting motor commands promote fulfillment of the operative 

intention. For example, if I form an intention to pick up a nearby ball, then my motor 

system issues motor commands that hopefully result in my picking up the ball. 

- Navigation. We routinely navigate through the physical environment. In many cases, 

we do so by estimating the environment’s spatial layout and by planning a route to 

some destination (Evans, 1982). Estimates of spatial layout are evaluable as accurate 

or inaccurate. Representations of my desired destination are evaluable as fulfilled or 

thwarted, depending on whether I reach the destination. 

Perception, motor control, and navigation crucially involve mental states with veridicality-

conditions. So do numerous other core mental processes. 

 Cognitive scientists offer explanatorily successful theories that describe mental activity in 

representational terms: 

- Perceptual psychology studies how the perceptual system transits from proximal 

sensory stimulations (e.g. retinal stimulations) to perceptual states that estimate 

shapes, sizes, colors, locations, and other distal properties (Palmer, 1999). Perceptual 

modeling individuates perceptual states through their representational properties --- 

as estimates of specific distal shapes, sizes, locations, and so on (Burge, 2010), 

(Rescorla, 2015a). 

- Sensorimotor psychology studies how the motor system converts intentions into 

motor commands that promote fulfillment of those intentions (Rosenbaum, 2001), 

(Shadmehr and Mussa-Ivaldi, 2012). The science presupposes that individuals form 
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intentions with fulfillment-conditions (Jeannerod, 2006), (Pacherie, 2006), (Rescorla, 

2016a). 

- Beginning with Tolman (1948), many cognitive psychologists have postulated that 

mammals navigate using cognitive maps (Gallistel, 1990), (O’Keefe and Nadel, 

1978). Mammals update their cognitive maps based on sensory input and self-motion 

cues. Cognitive maps represent spatial aspects of the environment, including 

landmark locations as well as the individual’s own current location (Rescorla, 2009; 

forthcoming b). 

In these areas, and many others, cognitive science describes how representational mental states 

interact with one another, with sensory inputs, and with motor outputs. A psychological theory 

that cites representational aspects of mentality is often called intentional psychology. 

 Recently, Bayesian cognitive science has elevated intentional psychology to new heights 

of mathematical rigor, precision, and explanatory power. The basic idea is to model mental 

activity using tools of Bayesian decision theory: 

- According to Bayesian perceptual psychology, the perceptual system executes an 

unconscious Bayesian inference from proximal sensory stimulations to perceptual 

states that estimate distal conditions (Feldman, 2015), (Knill and Richard, 1996), 

(Rescorla, 2015a). 

- According to Bayesian sensorimotor psychology, the sensorimotor system selects 

motor commands through unconscious Bayesian inference and decision-making 

(Bays and Wolpert, 2007), (Rescorla, 2016a), (Wolpert, 2007). 

- Bayesian models of navigation posit Bayesian updating over cognitive maps that 

represent the spatial environment (Cheng, Shuttleworth, Huttenlocher, and Rieser, 
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2007), (Madl, Franklin, Chen, Montaldi, and Trappl, 2014; 2016), (Penny, Zeidman, 

and Burgess, 2013), (Rescorla, 2009). 

On a Bayesian approach, the individual (or her subsystems) assigns probabilities to “hypotheses” 

drawn from a hypothesis space. Bayesian models typically individuate hypotheses in 

representational terms --- as representations of specific distal shapes, sizes, colors, locations, and 

so on. Bayesian cognitive science describes how representational mental states (probability 

assignments to hypotheses that represent the world) interact with one another, with sensory 

inputs, and with motor outputs. 

 The past century has witnessed successive waves of anti-representationalist sentiment. 

Advocates of behaviorism (Skinner, 1938), connectionism (Ramsey, 2007), eliminative 

materialism (Churchland, 1981), (Quine, 1960), (Stich, 1983), interpretivism (Davidson, 1980), 

(Dennett, 1971), embodied cognition (van Gelder, 1992), and dynamical systems theory 

(Chemero, 1990) frequently reject intentional psychology as unscientific, unconfirmed, 

unexplanatory, vacuous, or otherwise problematic. Anti-representationalists recommend that 

scientific psychology eschew representational discourse, relying instead upon stimulus-response 

psychology, or neuroscience, or some other non-representational scientific framework. In many 

cases, anti-representationalists launch highly abstract philosophical critiques of intentional 

psychology (Dennett, 1971), (Quine, 1960), (Stich, 1983). I think that anti-representationalism 

has dramatically failed. Anti-representational theories have repeatedly shown themselves 

unequipped to explain even very basic mental phenomena that intentional psychology readily 

explains. Abstract philosophical critiques of intentional psychology tend to be much less 

convincing than the representationalist theorizing they purportedly undermine. 
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I henceforth assume that intentional psychology illuminates perception, motor control, 

navigation, decision-making, and many other core mental phenomena. We reap substantial 

explanatory benefits by describing these phenomena in representational terms. 

 

§4.2 Syntactic description of mental computation 

 Should syntactic description of mental activity likewise play an important role in 

cognitive science? 

Fodor (1975; 1987; 1994; 2008) holds that mental computation manipulates items drawn 

from the language of thought --- an internal system of mental representations. Mental 

representations have formal syntactic properties, i.e. properties individuated without regard to 

representational import. Mental computation is sensitive to formal syntactic properties but not 

representational properties. Fodor holds that a complete scientific psychology should delineate 

intentional laws, which describe how mental states as individuated representationally interact 

with one another, with sensory inputs, and with motor outputs. Intentional laws are implemented 

by computations describable in syntactic terms. On Fodor’s picture, syntactic manipulation of 

mental representations ensures that mental computation transits appropriately between 

representational mental states. Fodor also recognizes that any compete cognitive science will 

assign a prominent role to neuroscientific description. In this way, he applies §1’s three-level 

picture to mental computation. Representational mental activity is implemented by syntactic 

manipulations, which are physically realized by neurophysiological processes. 

Chalmers (2011; 2012) espouses a similar three-level picture of mental activity, although 

he places less emphasis than Fodor on representational aspects of psychological explanation. 

Field (2001) and Stich (1983) embrace the syntactic and hardware levels while rejecting the 
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representational level. They hold that cognitive science should describe mental computation 

syntactically while ignoring representational aspects of mentality. Fodor, Chalmers, Field, and 

Stich all agree that syntactic description of mental computation should figure crucially within 

any complete cognitive science.
3
 

 Fodor (1981; 2008) maintains that cognitive science already prioritizes syntactic 

description of mental activity. I disagree. Contrary to what Fodor suggests, formal syntactic 

description does not figure in current scientific theorizing about numerous mental phenomena, 

including perception, motor control, deductive inference, decision-making, and so on (Rescorla, 

2012; 2014b; forthcoming a). Bayesian perceptual psychology describes perceptual inference in 

representational terms rather than formal syntactic terms (Rescorla, 2015a). Bayesian 

sensorimotor psychology describes motor control in representational terms rather than formal 

syntactic terms (Rescorla, 2016a). There may be some areas where cognitive science offers 

syntactic explanations. For example, certain computational models of low-level insect navigation 

look both non-neural and non-representational (Rescorla, 2013b). But formal syntactic 

description is entirely absent from many core areas of cognitive science. 

 Plausibly, one always can describe mental activity in syntactic terms. The question is 

whether one thereby gains any explanatory benefits. There are innumerable possible ways of 

taxonomizing mental states. Most taxonomic schemes offer no explanatory value. For instance, 

we can introduce a predicate true of precisely those individuals who believe that snow is white or 

who want to drink water. However, it seems unlikely that this disjunctive predicate will play any 

                                                 
3
 Piccinini (2015) assigns a central role to non-representational, multiply realizable descriptions of artificial and 

natural computation, including mental computation. He declines to call these descriptions “syntactic.” Nevertheless, 

the worries developed below regarding syntactic description of mental computation also apply to Piccinini’s 

approach. For further discussion, see (Rescorla, 2016b). 
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significant explanatory role within a finished cognitive science. Why expect that syntactic 

taxonomization will play any more significant a role? 

To focus the discussion, consider Chalmers’s functionalist conception of syntax. Given a 

true representational or neurophysiological theory of a mental process, we can abstract away 

from representational and neural details to specify a causal topology instantiated by the process. 

But why suspect that we thereby gain any explanatory benefits? We can abstract away from a 

true scientific theory of any phenomenon to specify a causal topology instantiated by the 

phenomenon. In most cases, we do not thereby improve our explanations of the target 

phenomenon. 

Here is a non-psychological example. The Lotka-Volterra equations are first-order 

nonlinear differential equations used in ecology to model simple predator-prey systems (Nowak, 

2006): 

(LV)  

)(

)(

cdxy
dt

dy

byax
dt

dx





 

where x is prey population level, y is predator population level, t is time, ax is prey reproduction 

rate, bxy is the rate at which predators eat prey, cy is predator death rate, and dxy is predator 

reproduction rate. Lotka (1910) introduced LV in order to model oscillating chemical reactions. 

Researchers have subsequently used LV to model epidemics (Kermack and McKendrick, 1927), 

economic interaction (Goodwin, 1967), combustion (Semenov, 1935), and other unrelated 

phenomena. So LV applies not just to ecological systems but also to diverse non-ecological 

systems provided that we reinterpret x and y as suitable non-ecological variables. These diverse 
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systems instantiate the same causal topology. We can specify their shared causal topology more 

explicitly by taking LV’s Ramsey sentence, thereby suppressing all ecological details. 

 Ecologists explain predator/prey population levels by using LV where x and y are 

interpreted as prey and predator population levels. We do not improve ecological explanation by 

noting that LV describes some chemical or economic system when x and y are reinterpreted as 

chemical or economic variables, or by supplementing LV with LV’s Ramsey sentence.
4
 What 

matters for ecological explanation are the ecological interactions described by LV, not the causal 

topology obtained by suppressing ecological details. That some ecological system shares a causal 

topology with certain chemical or economic systems is an interesting coincidence, not an 

explanatory significant fact that illuminates population levels. The causal topology determined 

by LV is not itself explanatory. It is just a byproduct of underlying ecological interactions 

described by LV when x and y are interpreted as prey and predator population levels. 

Cognitive science describes causal interactions among representational mental states. By 

suppressing representational and neural properties, we can specify a causal topology instantiated 

by mental computation. But this causal topology looks like a mere byproduct of causal 

interactions among representational mental states. In itself, it does not seem explanatory. 

Certainly, actual cognitive science practice does not assign an explanatorily significant role to 

abstract descriptions of the causal topology instantiated by perception, motor control, or 

numerous other mental phenomena. 

 Philosophers have offered various arguments why cognitive science requires syntactic 

description of mental activity. I will quickly address a few prominent arguments. I critique these 

and other arguments more thoroughly in (Rescorla, forthcoming a). 

                                                 
4
 See (Morrison, 2000) for further examples along similar lines. 
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 Argument from computational formalism (Fodor, 1981, p. 241), (Gallistel and King, 

2009, p. 107), (Haugeland, 1985, p. 106): Standard computational formalisms found in 

computability theory operate at the syntactic level. We can model the mind as a computational 

system only if we postulate formal syntactic items manipulated during mental computation. 

Reply: The argument misdescribes standard computational formalisms. Contrary to what 

the argument maintains, many standard formalisms are couched at an abstract level that remains 

neutral regarding the existence of formal syntactic items. We can construe many standard 

computational models as defined over states that are individuated representationally rather than 

syntactically. Computational modeling per se does not require syntactic description. My previous 

writings have expounded this viewpoint as applied to Turing machines (Rescorla, forthcoming 

a), the lambda calculus (Rescorla, 2012), and register machines (Rescorla, 2013a). 

 Argument from causation (Egan, 2003), (Haugeland, 1985, pp. 39-44): Representational 

properties are causally irrelevant to mental activity. Thus, intentional psychology cannot furnish 

causal explanations. We should replace or supplement intentional psychology with suitable non-

representational descriptions, thereby attaining genuinely causal explanations of mental and 

behavioral outcomes. 

 Reply: The argument assumes that representational properties are causally irrelevant to 

mental activity. This assumption conflicts with pre-theoretic intuition and with scientific 

psychology (Burge, 2007, pp. 344-362), which both assign representational aspects of mentality 

a crucial causal role in mental activity. We have no good reason to doubt that representational 

properties are causally relevant to mental activity. In (Rescorla, 2014a), I argue that indigenous 

representational properties of a computing system can be causally relevant to the system’s 
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computations. Since mental states have indigenous representational properties, it follows that 

representational properties can be causally relevant to mental computation. 

 Argument from implementation mechanisms (Chalmers, 2012), (Fodor, 1987, pp. 18-

19): We would like to describe in non-representational terms how the mind reliably transits 

between representational mental states. In other words, we would like to isolate non-intentional 

implementation mechanisms for intentional psychology. We should delineate a syntactic theory 

of mental computation, thereby specifying non-intentional mechanisms that implement 

transitions among representational mental states. 

Reply: I agree that we should isolate non-intentional implementation mechanisms for 

intentional psychology. However, we can take the implementation mechanisms to be neural 

rather than syntactic (Rescorla, forthcoming a). We can correlate representational mental states 

with neural states, and we can describe how transitions among neural states track transitions 

among representationally-specified states. As indicated above, we do not yet know how to do 

this. We do not yet know the precise neural mechanisms that implement intentional mental 

activity. In principle, though, we should be able to isolate those mechanisms. Indeed, discovering 

the neural mechanisms of cognition is widely considered a holy grail for cognitive science. What 

value would mental syntax add to an eventual neural theory of implementation mechanisms? 

Argument from explanatory generality (Chalmers, 2012): Syntactic description 

prescinds from both representational and neural properties. Thus, it offers a degree of generality 

distinct from intentional psychology and neuroscience. This distinctive generality provides us 

with reason to employ syntactic description. In particular, a syntactic theory of implementation 

mechanisms offers advantages over a neural theory of implementation mechanisms by supplying 

a different degree of generality. 
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 Reply: The argument relies on a crucial premise: that generality is always an explanatory 

virtue. One can disambiguate this premise in various ways, using different notions of 

“generality.” I doubt that any disambiguation of the premise will prove compelling. As 

Potochnik (2010, p. 66) notes, “Generality may be of explanatory worth, but explanations can be 

too general or general in the wrong way.” One can boast generality through disjunctive or 

gerrymandered descriptions that add no explanatory value to one’s theorizing (Rescorla, 

forthcoming a), (Williamson, 2000). To illustrate, suppose we want to explain why John failed 

the test. We might note that 

John did not study all semester. 

Alternatively, we might note that 

John did not study all semester or John was seriously ill. 

There is a clear sense in which the second explanation is more general than first. Nevertheless, it 

does not seem superior. One might try to disbar such counterexamples by saying that generality 

is a virtue when achieved in a non-disjunctive or non-gerrymandered way.
5
 But then one would 

need to show that syntactic description is itself non-disjunctive and non-gerrymandered, which 

carries us back to the question whether syntactic description is explanatorily valuable. Thus, I 

doubt that generic methodological appeals to explanatory generality support syntactic modeling  

                                                 
5
 Strevens (2008) offers a detailed theory of explanation based on the core idea that good explanation abstracts away 

from as many details as possible. However, his finished theory significantly compromises that core idea, precisely so 

as to impugn disjunctive explanations. Strevens seeks to eliminate disjunctive explanations through a causal 

contiguity condition on good explanation (2008, pp. 101-109): when we explain some phenomenon through a causal 

model, all the model’s realizers should form a “contiguous set” in “causal similarity space.” He says that we should 

pursue greater abstraction only to the extent that we preserve cohesion. He says that overly disjunctive explanantia 

violate cohesion, because they have non-cohesive realizers. Strevens’s causal contiguity condition has dramatic 

consequences for scientific psychology. Psychological properties are multiply realizable, so psychological 

explanations are apparently realized by processes that form a “non-contiguous set” in “causal similarity space.” 

Hence, as Strevens admits (pp. 155-165, p. 167), the cohesion requirement prohibits causal models from citing 

psychological properties. This prohibition applies just as readily to syntactic description as to representational 

description. So Strevens’s treatment does not provide any support for syntactic explanation of mental activity. He 

castigates both syntactic explanation and intentional explanation as non-cohesive. 
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of the mind.
6
 

  

 Overall, philosophical discussion of mental computation has vastly overemphasized 

formal mental syntax. Certain areas of cognitive science may posit formal syntactic mental 

items, but there is no clear reason to believe that mental computation in general is fruitfully 

described in syntactic terms. 

  

§4.3 A case study: mammalian cognitive maps 

 To illustrate the themes of this section, let us consider mammalian cognitive maps. These 

have veridicality-conditions. For example, a cognitive map that represents a landmark as present 

at some physical location is veridical only if the landmark is indeed present at that location. 

Detailed, empirically fruitful theories describe how mammalian cognitive maps interface with 

sensory inputs, motor commands, and self-motion cues. The theories describe computations 

through which mammals form, update, and deploy cognitive maps. In describing the 

computations, researchers cite representational properties that contribute to veridicality-

conditions --- e.g. they cite the physical location that a cognitive map attributes to a landmark. 

Thus, representational description plays a central role within current theories of mammalian 

navigation (Rescorla, forthcoming b). 

                                                 
6
 Potochnik (2010) argues that generality is an explanatory virtue only when it advances the research program to 

which an explanation contributes. Theoretical context heavily shapes whether it is explanatorily beneficial to 

abstract away from certain details. On this conception, one cannot motivate syntactic description through blanket 

appeal to the virtues of explanatory generality. One would instead need to cite specific details of psychological 

inquiry, arguing that the generality afforded by syntactic description promotes psychology’s goals. I doubt that any 

such argument will prove compelling.  
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Neurophysiological description also plays a central role. In comparison with other areas 

of cognitive science, we know a fair amount about the neural underpinnings of map-based 

navigation. For example: 

- The rat hippocampus contains place cells, each responding selectively to a specific 

spatial location. 

- The rat entorhinal cortex contains grid cells, each responding selectively to multiple 

spatial locations in the available environment. They are called “grid cells” because 

the locations where a given cell fires form a periodic grid that covers the 

environment. 

Neuroscientists have developed mathematical models describing how place cells, grid cells, and 

other such cells support mammalian navigation (Evans, Bicanski, Bush, and Burgess, 

forthcoming), (Giacomo, Moser, and Moser, 2011). The models aim to illuminate the 

neurophysiological mechanisms that underlie formation, updating, and deployment of cognitive 

maps. To be sure, we are still a long way from completely understanding those mechanisms. 

 Conspicuously lacking from current scientific research into mammalian navigation: 

anything resembling syntactic description. The science describes navigational computations in 

representational terms, and it explores the neural mechanisms that implement those 

representationally-described computations. It does not describe the mechanisms in multiply 

realizable, non-representational terms. It does not abstract away from neural details of the 

mechanisms. On the contrary, neural details are precisely what researchers want to illuminate. Of 

course, one might propose that we supplement representational and neurophysiological 

description of mammalian navigation with syntactic description. For example, one might 

articulate a causal topology that prescinds from representational and neural details. But we have 
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yet to identify any clear rationale for the proposed supplementation. Certainly, current scientific 

practice provides no such rationale. Taking current science as our guide, syntactic description of 

mammalian navigation looks like an explanatorily idle abstraction from genuinely explanatory 

representational and neural descriptions. 

 

§5. Contrast between artificial and natural computation 

I have drawn a sharp distinction between artificial and natural computing systems. 

Syntactic description plays a vital role in mediating between representational description and 

physical construction of artificial computing systems. In contrast, many mental computations are 

usefully described in representational terms rather than syntactic terms. Why the disparity? Why 

is syntactic description so much more important for artificial computation than natural 

computation? 

 §3 emphasized the crucial pragmatic role that syntax plays within computing practice. By 

abstracting away from representational properties, syntactic description offers a workable 

blueprint for a physical machine. By abstracting away from physical properties, syntactic 

description ignores hardware details that are irrelevant for many purposes. These are practical 

advantages that immeasurably advance a practical task: design and construction of physical 

machines. 

 Admittedly, we can imagine a computing practice that eschews syntactic description. 

However, our own reliance on syntactic description secures important advantages over any such 

hypothetical practice. To illustrate, suppose an agent designs and builds a machine to execute the 

Euclidean algorithm. Suppose the agent describes his machine in representational terms and 

hardware terms but not syntactic terms. Now consider a second machine that has very different 
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hardware but instantiates the same causal topology. Both duplicates satisfy a common abstract 

causal blueprint. This commonality is notable even if the agent does not register it. The agent 

could have achieved his computing goals by building the second machine rather than first. In 

eschewing talk about syntax, the agent foregoes valuable descriptions that promote his own 

computing ends. He does not employ syntactic descriptions, but he should. 

 Thus, norms of good computing design ensure a key role for syntactic description of 

artificial computing systems. Syntactic description enables pragmatically fruitful suppression of 

representational and hardware properties. 

No such rationale applies to the scientific study of mental computation. Psychology is not 

a practical enterprise. Cognitive scientists are not trying build a computing system. Instead, they 

seek to explain activity in pre-given computing systems. Constructing an artificial computing 

system is a very different enterprise than understanding a pre-given computing system. That 

formal syntactic description advances the practical task of designing and constructing artificial 

computers does not establish that it advances the explanatory task of understanding a pre-given 

computational system. We have seen no reason to think that suppressing representational and 

hardware properties of natural computing systems advances our study of those systems. We have 

seen no reason to think that formal syntactic description adds explanatory value to 

representational and neural description of mental computation. 

Any artificial computing machine was designed by intelligent agents. Good design 

practice dictates that those agents sometimes adopt a syntactic viewpoint even when they are 

mainly concerned with representational aspects of computation. No such rationale applies to 

natural systems, which are not designed by intelligent agents. That is why syntactic description is 
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central to our understanding of artificial computing systems but much less central to our 

understanding of natural computing systems. 

 Consider a concrete example: perception. If Bayesian perceptual psychology is even 

remotely on the right track, then a finished perceptual psychology will treat the perceptual 

system as approximately implementing Bayesian inferences over hypotheses that represent distal 

properties (e.g. shapes, sizes, color, etc.). A finished perceptual psychology will also identify the 

neural underpinnings of Bayesian perceptual inference. It will reveal how populations of neurons 

approximately encode probability distributions and how neural activity approximately 

implements Bayesian inference. Current science already offers tentative neuroscientific 

conjectures in that vein (Pouget, Beck, Ma, and Latham, 2013). Will a finished perceptual 

psychology also offer formal syntactic descriptions? There is no evident reason to expect so. 

Formal syntactic description would suppress the two aspects of perceptual activity that figure 

most prominently in contemporary science: representational relations to distal properties; and 

neural underpinnings. Ignoring perception’s most scientifically important features does not seem 

like a promising strategy for good scientific explanation of perception. 

Now suppose we want to build an artificial perceiver that replicates Bayesian 

computations executed by the human perceptual system. We connect our artificial perceiver to 

artificial sensory organs that suitably resemble human sensory organs (e.g. the retina). We want 

to ensure that our artificial perceiver transits from sensory input to perceptual states through the 

same representationally-specified computations as the human perceptual system. More 

specifically, our artificial perceiver should execute the same approximate Bayesian inferences 

specified by a finished Bayesian model of human perception. As we try to build a machine that 

executes these Bayesian computations, the design considerations emphasized in §2.2 apply. 
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Syntactic description plays a valuable mediating role, helping us convert our representational 

description into an actual physical machine. So syntactic description greatly facilitates design 

and construction of our artificial perceiver, whereas syntactic description does not make any 

evident contribution to scientific theorizing about the human perceptual system itself. 

 My analysis may remind some readers of Dennett’s (1987) famous distinction between 

the design stance and the intentional stance. When we adopt the design stance towards a system, 

we take the perspective of a designer trying to satisfy certain constraints, optimize certain 

factors, and so on. When we adopt the intentional stance, we view the system as an agent whose 

representational mental states interact in approximate accord with rational norms. Doesn’t my 

position amount to saying that we should adopt the design stance towards artificial computation 

and the intentional stance towards mental computation? 

 No. First, I have repeatedly stressed that representational description is crucial for 

understanding many artificial computing systems. Second, representational description does not 

necessarily implement Dennett’s “intentional stance,” because representationally described 

activity need not conform even approximately to rational norms. Third, one might describe 

mental computation in syntactic terms without adopting the design stance. Fourth, I have allowed 

that certain mental computations (e.g. low-level navigational computations) may be fruitfully 

described in syntactic rather than representational terms. 

 The “design stance” is not just one perspective we happen to adopt when discussing 

artificial computation. Any artificial computing machine was in fact designed. Actual computer 

designers adopted the design stance towards it. If they had not done so, the machine would not 

have come into existence. In contrast, a natural computing system was not designed by anyone. 

For that reason, norms of good design practice do not transfer from artificial computing systems 
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to natural computing systems. One cannot legitimately deploy design considerations to motivate 

syntactic description of mental computation.
7
 

We have seen that proponents of §1’s three-level picture often motivate syntactic 

description by invoking implementation mechanisms (Chalmers, 2012), (Fodor, 1987). The basic 

idea is to ground representational description in syntactic description, thereby clarifying how 

representational activity is physically realized. I submit that we must distinguish two endeavors, 

both involving “implementation mechanisms.” First, one might want to design and construct a 

physical machine that realizes representational description R. Second, one might want to explain 

how a given physical system (e.g. the human brain) realizes representational description R. When 

we engage in the first endeavor, hardware details are fairly inessential. Good design practice 

dictates that we suppress hardware details whenever possible, articulating an abstract syntactic 

blueprint compatible with diverse physical realizations. When we engage in the second endeavor, 

hardware details become much more central. We want to understand how a specific system with 

specific fixed hardware succeeds in transiting between representational states as R dictates. In the 

first context, suppressing hardware details promotes good design. In the second context, 

suppressing hardware details offers no comparable advantages. On the contrary, hardware details 

are precisely what we want to illuminate! The first endeavor mandates an abstract syntactic 

viewpoint in a way that the second does not. 

 

§6. Minds and machines 

                                                 
7
 Even if a terrestrial biological computing system wasn’t designed by an intelligent agent, wasn’t it “designed” by 

Mother Nature? And doesn’t this show the norms of good design still apply to biological computing systems, 

thereby motivating an important role for formal mental syntax? This is a suspect line of argument. The design stance 

towards biological creatures may be useful for certain heuristic or pedagogical  purposes. Strictly speaking, though, 

biological creatures were not designed. They evolved through natural selection. All legitimate talk within 

evolutionary theory about design is eliminable. Thus, any legitimate arguments based upon evolutionary theory 

should be statable without any talk about design, intentions, or the like. I doubt that, once we eliminate all such talk, 

we will be able to motivate syntactic description by citing anything like norms of good design. 
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 The stunning success of the computer revolution has inspired many scientists and 

philosophers to pursue computational models of mental activity. Unfortunately, researchers have 

been too quick to extrapolate from artificial computing systems to natural computing systems. 

Attempts to transfer §1’s three-level picture from artificial computation (where it seems quite 

apt) to natural computation (where it seems much less apt) are particularly suspect. Syntax plays 

a valuable pragmatic role in the design and construction of artificial computing systems: it helps 

us convert desired representational descriptions into actual physical machines. Syntax plays no 

comparable role in mediating between representational description and physical realization of 

mental computation. In many cases, syntactic description of mental activity seems like an 

explanatorily idle abstraction from what really matters: representational mental activity and the 

neural processing that implements it. 

Philosophers commonly cite the computer revolution as evidence for a formal syntactic 

conception of mental activity. Chalmers (2012), Fodor (1987), Haugeland (1985), and others 

emphasize the key role that syntactic manipulation plays within artificial computation, arguing 

on that basis that cognitive science should postulate mental syntactic manipulation. They usually 

add that syntactic description of mental computation enjoys some kind of causal, explanatory, or 

metaphysical priority over representational description. I think that these authors distort 

explanatory practice within actual cognitive science, which evinces no tendency to ground 

representational description in syntactic description. They also neglect the essentially pragmatic 

nature of the advantages that syntactic description affords. By heeding the notable differences 

between artificial and natural computing systems, we may yet articulate more compelling 

computational theories of mind. 
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