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Abstract: Turing computation over a non-linguistic domain presupposes a notation for the 

domain. Accordingly, computability theory studies notations for various non-linguistic domains. 

It illuminates how different ways of representing a domain support different finite mechanical 

procedures over that domain. Formal definitions and theorems yield a principled classification of 

notations based upon their computational properties. To understand computability theory, we 

must recognize that representation is a key target of mathematical inquiry. We must also 

recognize that computability theory is an intensional enterprise: it studies entities as represented 

in certain ways, rather than entities detached from any means of representing them. 

 

1. A COMPUTATIONAL PERSPECTIVE ON REPRESENTATION 

Intuitively speaking, a function is computable when there exists a finite mechanical procedure 

that calculates the function’s output for each input. In the 1930s, logicians proposed rigorous 

mathematical formalisms for studying computable functions. The most famous formalism is the 

Turing machine: an abstract mathematical model of an idealized computing device with 

unlimited time and storage capacity. The Turing machine and other computational formalisms 

gave birth to computability theory: the mathematical study of computability. 
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 A Turing machine operates over strings of symbols drawn from a finite alphabet. These 

strings comprise a formal language. In some cases, we want to study computation over the 

formal language itself. For example, Hilbert’s Entscheidungsproblem requests a uniform 

mechanical procedure that determines whether a given formula of first-order logic is valid. Items 

drawn from a formal language are linguistic types, whose tokens we can inscribe, concatenate, 

and manipulate [Parsons, 2008, pp. 34-36, pp. 160-164]. Most of modern mathematics concerns 

non-linguistic entities, such as natural numbers or real numbers. These entities do not have 

tokens that we can inscribe, concatenate, or manipulate [Parsons, 2008, pp. 37-39]. Thus, they do 

not comprise a formal language over which a Turing machine can directly operate. Nevertheless, 

we would like to extend the notion of Turing computability to subsume natural numbers, real 

numbers, and other non-linguistic domains. 

Our interest in non-linguistic domains of computation ensures a central theoretical role 

for representation, as the following argument makes explicit: 

A Turing machine manipulates linguistic items, but we sometimes want to study 

computation over non-linguistic domain X. So there is a gap between the domain of items 

manipulated by the Turing machine and our desired domain of computation X. To bridge 

the gap, we must interpret linguistic items manipulated by the Turing machine as 

denoting items drawn from X. A Turing machine computes over X only if linguistic items 

manipulated by the Turing machine represent elements of X. Thus, any complete theory 

of computation must cite representational relations between linguistic items and non-

linguistic items. 

This argument, which I will call the Gap Argument, is quite robust. It does not assume any 

special conception of the ‘symbols’ comprising the Turing machine ‘alphabet.’ It does not 
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presuppose contentious details about the distinction between ‘linguistic’ and ‘non-linguistic’ 

domains. Computability theorists almost universally endorse the Gap Argument [Boolos and 

Jeffrey, 1980, p. 43; Davis, 1958, p. 9; Rogers, 1987, pp. 1-2, pp. 27-29; Weihrauch, 2000, p. 3, 

p. 13, p. 51], with varying degrees of explicitness. 

 My goal is to explore the central role that representation occupies within computability 

theory. Taking the Gap Argument as my starting point, I will highlight how representational 

notions shape the theory’s most basic elements (Section 2). As I will explain, computability 

theorists investigate representation from a computational perspective. They assign prime 

importance to notations for representing entities. Sufficiently different notations support 

different notions of computability over a domain (Sections 2.2 and 2.3). Computability theory 

investigates the interplay between notation and computation, illuminating how different ways of 

representing a domain support different finite mechanical procedures over that domain. Formal 

definitions and theorems yield a principled classification of notations based upon their 

computational properties. To understand the aims and methods of computability theory, we must 

recognize that representation is a key target of mathematical inquiry (Section 3). We must also 

recognize that computability theory is an intensional enterprise (Sections 4 and 5): it studies 

entities as represented in certain ways, rather than entities detached from any means of 

representing them. 

 Notational conventions: I use the notation f: X  Y to signify that f is a partial function 

from X to Y, so that f(x) may be defined only for some xX. I say that xX belongs to f’s domain, 

or xdom(f), iff f(x) is defined. I say that f: X  Y is total iff dom(f) = X. ‘Function’ means 

‘partial function,’ unless I explicitly specify that the function is total. ‘f(x) = g(x)’ is true iff both 

sides are defined and equal to one another or neither side is defined. 
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2. COMPUTATION OVER NON-LINGUISTIC DOMAINS 

A Turing machine contains a scanner that moves along a machine tape divided into cells. 

Depending on the scanner’s state and the contents of its current cell location, the scanner either 

erases a symbol, inscribes a symbol, or moves to the left or right. Symbols belong to a fixed 

finite alphabet  that contains at least two elements. Let * be the set of finite strings over . A 

Turing machine halts when it reaches a point where its instructions dictate no further action.  

For x, y *, say that Turing machine T yields output y on input x iff 

If T begins computation with x inscribed on an otherwise blank machine tape and with 

the scanner located at the beginning of x, then T eventually halts with y inscribed on an 

otherwise blank machine tape. 

Say that Turing machine T computes : *  * iff 

T yields output (x) on any input xdom(), and T yields no output on any input 

xdom(). 

: *  * is partial recursive iff some Turing machine computes it. One can easily extend 

these definitions to functions with multiple arguments. 

 Computability theory is important partly because it illuminates computation over non-

linguistic domains, such as the natural numbers and the real numbers. However, applying the 

Turing machine formalism to non-linguistic domains raises various complications. This section 

surveys several notable complications. Subsequent sections draw philosophical morals. 

 

2.1. Relativity 

Classical recursion theory emphasizes the intuitive concept computable function from natural 

numbers to natural numbers. If we want to elucidate this concept through the Turing machine 
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formalism, then the Gap Argument shows that we must introduce a semantic interpretation over 

strings. Let d: *   be a surjective function, where  is the natural numbers. If d(x) is 

defined, then x is a d-name for d(x).
1
 Say that Turing machine T computes f:    relative to d 

iff there is a function : *  * such that T computes  and 

f(d(x) = d((x)), 

for all x*. Informally, T converts a d-name for any xdom(f) into a d-name for f(x). Pick any 

standard notation for the natural numbers. For example, let dbinary: *   be binary notation. 

Then f:    is partial recursive iff it is Turing-computable relative to dbinary. Church’s thesis 

(sometimes called the Church-Turing thesis) states that a number-theoretic function is intuitively 

computable iff it is partial recursive. 

 One might try to avoid the Gap Argument by characterizing numerical computability 

through notions defined directly over the natural numbers, rather than linguistic intermediaries. 

To illustrate, say that a numerical function is Kleene-computable iff we can obtain it from the 

primitive recursive functions through function composition and application of the minimization 

operator . Kleene’s Normal Form Theorem entails that a function is partial recursive iff it is 

Kleene-computable. We define Kleene-computability without mentioning symbol manipulation, 

so the Gap Argument does not apply. 

However, few commentators would recommend Kleene-computability as a satisfactory 

foundation for computability theory. As Gödel [1934/1986, pp. 369-370] maintained, Turing 

analyzes not just computability but computation itself. Turing thereby connects formal 

                                                 
1
 Philosophers and computability theorists typically assume that ’s elements are individuated non-semantically, 

through factors such as geometric shape. Under this assumption, the string language taken on its own is equally 

compatible with any arbitrary semantic interpretation d. In [Rescorla, forthcoming], I question whether the Turing 

formalism mandates an alphabet  whose elements are individuated non-semantically. For present purposes, I set 

these issues aside. I assume an alphabet  whose elements are individuated non-semantically. 
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mathematical theorizing with our pre-theoretic conception of computation. In contrast, a 

characterization through Kleene-computability does not even purport to analyze computation. 

That is why Turing’s analysis supports Church’s thesis while an analysis citing Kleene-

computability does not. If we follow Turing by analyzing computation as symbol manipulation, 

then the Gap Argument gains a foothold.
2
 

 Classical recursion theory extends Turing computability beyond the natural numbers to 

other countable non-linguistic domains: integers; rational numbers; finite sets of natural 

numbers; and so on. In each case, the Gap Argument shows that we must introduce a semantic 

mapping from the string language to the desired domain. 

A particularly important example: computation over the partial recursive functions 

themselves. Through Gödelization, we can code Turing machine programs using strings drawn 

from *. We then map each string to the partial recursive function computed by the 

corresponding program. This procedure yields a canonical total function : *  , where  is 

the set of partial recursive string-theoretic functions : *  *.
3
 Abbreviate (x) as x. Thus, x 

is the partial recursive function named by index x. Having introduced canonical names for partial 

recursive functions, we can study mechanical procedures that take those functions as inputs or 

outputs. For example, Turing proved the existence of a ‘Universal Turing Machine’ (UTM) that 

mimics any partial recursive function when provided with a name for that function: 

Enumeration (or UTM) theorem: There exists a partial recursive function U: *×*  

* such that, for all x, y*, U(x, y) = x(y). 

                                                 
2
 The mathematical literature offers various alternative analyses of numerical computability, such as the lambda 

calculus [Church, 1936] or the equation calculus [Kleene, 1936]. Famously, all these alternative analyses are 

extensionally equivalent. Most analyses, although not all, assign a crucial role to symbol manipulation. 
3
 Computability theorists typically index partial recursive functions by numbers, not strings. For mathematical 

purposes, the difference does not matter. From a philosophical perspective, it is more fitting to use strings as indices 

[Rogers, 1987, p. 28]. Ultimately, we must represent partial recursive functions by using concrete names. Using 

numbers as indices only postpones an inevitable appeal to concrete names and their representational properties. 
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Kleene proved that one can computably incorporate arguments of partial recursive functions into 

indices for partial recursive functions: 

Parameterization (or s-m-n) theorem: There exists a partial recursive function s: *×* 

 * such that, for all x, y, z *, x(y, z) = s(x, y) (z). 

Indexing of partial recursive functions underlies most of recursion theory’s basic results: Rice’s 

theorem; the Kleene recursion theorem; and so on.
4
 

 In general, suppose we want to model Turing computations that take inputs drawn from 

countable domain X and yield outputs drawn from countable domain Y. Suppose that neither X 

nor Y contains strings drawn from a finite alphabet of symbols. Then we must introduce 

notations for X and Y. For present purposes, we construe notations as surjective functions d: 

* X and e: * Y. We say that f: X  Y is computable relative to d and e iff there is a partial 

recursive : *  * such that f(d(x)) = e((x)), for all x*. Informally,  converts a d-name for 

each xdom(f) into an e-name for f(x).
5
 

Our definitions reflect a crucial relativity inherent to Turing-computation over a non-

linguistic domain: 

Relativity: Turing computation over non-linguistic domains is relative to a notation. The 

same Turing machine T computes different non-linguistic functions, depending upon the 

semantic interpretation of strings manipulated by the Turing machine. 

To illustrate, consider a machine T that doubles the number of stroke marks on the tape, and let 

m be a string of m strokes. If m denotes the number m, then T computes the function f(n) = 2n. If 

                                                 
4
 Similarly, one can introduce a canonical indexing for numerical partial recursive functions f:   . The results 

mentioned in this paragraph are typically proved for that case, rather than for string-theoretic functions. But the 

proofs are essentially the same in either case. 
5
 This definition captures a notion sometimes called strong computability. In contrast, weak computability demands 

only that f(d(x)) = e((x)) for all xdom(f  d). See [Weihrauch, 2000, pp. 53-54, p. 59]. Outside recursion theory, 

computability theorists assign more weight to weak computability than strong computability. For our purposes, the 

difference is not important. 
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m denotes the number m-1, then T computes g(n) = 2n + 1. Lacking a determinate interpretation 

of strings, we cannot treat a Turing machine as computing a determinate function over the 

natural numbers. Similarly, consider any UTM. Relative to our canonical indexing , the UTM 

computes the function :  ×*  * that carries x  and y* to x(y), assuming x(y) is 

defined. Yet the UTM does not compute  relative to a suitably different notation for . As these 

examples illustrate, a change in notation typically alters the non-linguistic function computed by 

a Turing machine. Lacking a determinate semantic interpretation of strings, a Turing machine 

does not compute a determinate function over a non-linguistic domain. 

 

2.2. Admissible versus deviant notations 

There exist ‘deviant’ notations relative to which intuitively non-computable functions become 

Turing-computable [Copeland and Proudfoot, 2010; Montague, 1960; Shapiro, 1982]. In 

[Rescorla, 2007], I considered the following simple example. Let A   have a non-recursive 

characteristic function. Let A = {x0, x1, x2, …} and  \ A = {y0, y1, y2, …}. Define dA: *   by 






 oddisnify

evenisnifx
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A’s characteristic function is Turing computable relative to dA. Yet A’s characteristic function is 

not recursive and hence (by Church’s thesis) not intuitively computable. 

Recursion theory textbooks invariably ignore deviant notations for . They select a single 

notation (such as dbinary) and develop recursion theory relative to that privileged notation. For 

many purposes, this procedure is entirely legitimate. However, if we desire a general theory of 

computation over natural numbers, then the procedure seems arbitrary and unsatisfying. 

Numerical computation can proceed relative to diverse reasonable notations. There is no clear 
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basis for privileging one specific notation as fundamental [Rescorla, 2007]. We want a general 

distinction between ‘acceptable’ notations, such as dbinary, and ‘deviant’ notations, such as dA. A 

good account should demarcate those notations that are ‘admissible’ for numerical computation 

from those that are not. One does not explicate admissibility by giving examples of admissible 

notations, any more than one explicates wisdom by giving examples of wise people. We would 

like an analysis of what it is to be admissible. What do all admissible notations have in common 

that distinguishes them from deviant notations such as dA? 

Deviant semantic interpretations arise whenever we consider Turing computation over a 

non-linguistic countably infinite domain X: 

Deviancy: There exist deviant semantic interpretations from strings to X. Relative to a 

deviant notation, Turing machines can ‘compute’ functions over X that are intuitively 

uncomputable. 

To illustrate, consider the Totality Problem: is there a uniform mechanical procedure that decides 

whether a partial recursive function is total? One can prove that there is no Turing machine T 

such that: 

Given input x, T outputs 1 if x is total and 0 if x is not total, 

where  is our canonical indexing of . Based on this theorem, we conclude that the Totality 

Problem is undecidable. However, one can easily construct a notation η: *  such that, for 

some Turing machine T: 

Given input x, T outputs 1 if ηx is total and 0 if ηx is not total. 

Should we conclude that the Totality Problem is decidable after all? Of course not, because the 

requisite notation η is highly deviant. 
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 More generally, consider any countably infinite domain X. There exist uncountably many 

notations d: *  X. For any notations d1: *  X and d2: *  X, say that d1 is reducible to d2, 

or d1  d2, iff there exists a partial recursive : *  * such that 

d1(x) = d2((x)), 

for all xdom(d1). Informally,  is a computable translation from d1 to d2: it carries each d1-name 

to a co-referring d2-name. Say that d1 and d2 are equivalent (or d1  d2) iff d1  d2 and d2  d1. We 

can partition the notations d: *  X into equivalence classes. There are countably many 

recursive : *  *, so each equivalence class is countable. It follows that there are 

uncountably many equivalence classes. One can easily show that distinct equivalence classes 

induce distinct notions of computable function from X to X: 

If (d1  d2), then there are functions computable relative to d1 and d1 that are not 

computable relative to d1 and d2. 

For example, the identity mapping is computable relative d1 and d1 (when we use d1-names for 

both inputs and outputs) but not relative to d1 and d2 (when we use d1-names for inputs and d2-

names for outputs). Thus, one can define uncountably many concepts of computability over X. 

Of course, we do not have uncountably many intuitive concepts of computability over a domain. 

An intuitive notion of computability arises only when the relevant notations are ‘admissible’ 

rather than ‘deviant.’ 

 A theory of Turing computation over any non-linguistic countably infinite domain must 

address the distinction between admissible and deviant notations for the domain. Unfortunately, 

analyzing this distinction in satisfying terms is not so easy. 

To illustrate, suppose one says that a notation is admissible iff there is an effective 

procedure that maps strings into values denoted by strings. On this analysis, admissibility 
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requires a computation that takes strings drawn from * and yields appropriate denotations 

drawn from X. Assuming that X is a non-linguistic domain, we need a notation to represent its 

elements. Which notations for X may we use when computing denotations of strings? Not just 

any notation will do. For example, many deviant notations will be incorrectly ruled admissible if 

we allow computations relative to dA. But why should we disallow computations relative to dA? 

Well, because dA itself is deviant. Unfortunately, that answer presupposes the distinction between 

admissible and deviant notations. In other words, suppose we say: 

d: *  X is admissible iff there is an admissible notation e: *  X and a Turing 

machine T such that T carries each d-name to a co-referring e-name. 

Then we assume that we have already demarcated the admissible notations for X, which renders 

our procedure circular. 

 To avoid circularity, we can demand that some effective procedure carry strings to 

denoted values as represented by a fixed privileged notation. More precisely: 

(1)  d: *  X is admissible iff there is a Turing machine T that carries each d-name to a co-

referring dX-name, 

where dX: *  X is some fixed privileged notation for X. We may rephrase (1) as follows: 

(2)  d: *  X is admissible iff d  dX. 

For example, we might explicate admissibility over the natural numbers by taking dbinary as our 

privileged notation: 

(3) d: *   is admissible iff d  dbinary. 

According to (3), a numerical notation is admissible just in case we can computably translate it 

into binary notation. (3) seems implicit in the practice of recursion theory, which dismisses 

without consideration all numerical notations not reducible to dbinary. Similarly, we might 
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explicate admissibility over the partial recursive functions by taking the canonical indexing  as 

our privileged notation: 

(4) : * is admissible iff   . 

According to (4),  is admissible just in case we can computably translate a -name for a partial 

recursive function into a Turing machine program that computes the function. 

 (2) requires that we can computably translate an admissible notation into some fixed 

privileged notation. A more demanding definition requires that we can also computably translate 

back from the privileged notation: 

(5)  d: *  X is admissible iff d  dX. 

Applying this more demanding definition to the natural numbers yields: 

(6) d: *   is admissible iff d  dbinary. 

(3) and (6) are extensionally equivalent, because d  dbinary iff d  dbinary. Applying the more 

demanding definition to the partial recursive functions yields: 

(7) : * is admissible iff   , 

which requires that one can computably recover a -name for a partial recursive function from a 

Turing machine program that computes the function. (4) and (7) are not extensionally equivalent, 

because there are notations  such that    and (  ). One can show that the 

Parameterization theorem fails for any such , i.e. the theorem fails if we substitute  for  

[Rogers, 1987, pp. 41-42]. Since the Parameterization theorem is needed for developing a fruitful 

recursion theory,  does not yield a useful notion of computation over . Accordingly, Rogers 
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[1987, p. 41] advocates (7) rather (4) as the proper definition of admissibility for partial recursive 

functions (although he uses the phrase ‘acceptable’ rather than ‘admissible’).
6
 

 Setting aside the differences between (2) and (5), each definition faces the same 

fundamental worry: it ties admissibility to a privileged notation arbitrarily chosen from among 

many equally worthy competitors [Rescorla, 2012]. Consider the special case of (3). I grant that 

(3) yields an extensionally adequate, non-circular characterization of admissible numerical 

notations. However, one can represent natural numbers using many legitimate notations besides 

dbinary. There is no principled basis for privileging dbinary over these alternative notations when 

elucidating admissibility. A good elucidation should instead isolate desirable features shared by 

dbinary and all the legitimate alternatives. Since (3) does not do so, it does not reveal what it is for 

numerical notations to be admissible. These worries become even more pronounced when we 

consider computation over an arbitrary domain. Definitions (2) and (5) offer no clue what 

desirable features are shared by the privileged notation dX for domain X and the privileged 

notation dY for domain Y. The definitions prioritize certain privileged notations without 

explaining why those notations deserve privileged status. 

 An alternative strategy for elucidating admissibility is to isolate some ‘intrinsic’ property 

shared by all admissible notations. For example, we can easily prove the following result 

[Weihrauch, 2000, p. 73]: for any notation d: *  , 

                                                 
6
 Some readers may insist that    suffices for admissibility. If this verdict were correct, then it would be an 

example of Multiplicity (discussed in Section 2.3), so it would actually strengthen my overall argument. However, I 

find the verdict implausible. Rogers [1987, p. 42] adduces a notation  such that    and (  ) with the 

following property: there is a Turing machine that responds to input x with output 1 if x(0) is defined and output 0 if 

x(0) is undefined. In other words, we can ‘decide’ relative to  whether a given partial recursive function is defined 

on input 0. We cannot decide this question relative to our canonical indexing , and normally that is taken as 

powerful evidence that the question is intuitively undecidable. Computation relative to  does not seem to me to 

yield a mechanical procedure for deciding whether partial recursive functions are defined on input 0. At the very 

least, classifying  as admissible would be a major revision to current mathematical practice. 
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d  dbinary iff the successor function is computable relative to d and de for any notation 

e: *   relative to which the successor function is computable. 

In a similar vein, Rogers [1987, pp. 41-42] proves that, for any notation : *  , 

   iff the Enumeration theorem and Parameterization theorems are true for  (i.e. the 

theorems remain true when one substitutes  for ). 

These ‘intrinsic’ characterizations of admissibility for  and  seem helpful. At least they avoid 

any appeal to an arbitrarily chosen privileged notation. However, neither characterization yields 

anything resembling an analysis of admissibility for the relevant domain. Neither 

characterization reveals why certain notations are suitable for computing over the relevant 

domain while others are not. Moreover, neither characterization even tries to characterize 

admissible notations over an arbitrary domain. 

Can we provide a satisfying analysis of admissibility for arbitrary domains? Or, failing 

that, a satisfying analysis of admissibility for certain salient domains? For present purposes, we 

may leave these questions unanswered. What matters is simply that the distinction between 

admissible and deviant notations plays an important role within computability theory. The 

distinction arises whenever we model computation over a countably infinite non-linguistic 

domain. In certain cases (such as ), the distinction is an explicit target of mathematical study. 

 

2.3. Multiplicity 

Most domains studied within classical recursion theory support only a single fruitful notion of 

computability. But some countably infinite domains X satisfy 
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Multiplicity: There exist non-equivalent notations that are both admissible for 

computation over X. These distinct notations yield distinct yet equally legitimate notions 

of Turing computation over X. 

A good example is computation over finite subsets of  [Rogers, 1987, pp. 69-71]. There are at 

least three admissible ways of naming a finite A  : 

 dlist: We can name A by an index that codes A’s elements. 

dchar: Since A is finite, its characteristic function is recursive. We can name A by an index 

that codes A’s characteristic function. 

dr.e.: Since A is recursive, it is recursively enumerable (i.e. it is the domain of a partial 

recursive function). We can name A by an index that codes some partial recursive 

function f with dom(f) = A. 

All three notations figure prominently in recursion theory. One can show that dlist  dchar and dchar 

 dr.e. but that (dchar  dlist), (dr.e.  dchar), and (dr.e.  dlist). The three notations yield distinct 

notions of computability over finite subsets of . It seems pointless to debate which notion is the 

‘true’ one. One must simply evaluate which notion is more fruitful in a given theoretical setting. 

 Multiplicity is relatively rare within classical recursion theory. It pervades computable 

analysis, which studies computation over the real numbers  and other uncountable structures. 

 Computable analysis originates with Turing’s 1936 paper. Indeed, Turing’s explicit 

concern in that paper is computation involving real numbers, rather than computation involving 

natural numbers. A basic challenge facing computable analysis is the cardinality disparity 

between our representational system and the represented domain: there are only countably many 

finite strings drawn from a finite alphabet, but the target domain is uncountable. The solution 
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employed in computable analysis, as in everyday life, is to employ ‘infinitary names’ for real 

numbers. A few notable examples: 

Base-n notation: Decimal notation, dbase-10, is familiar to anyone with a grade school 

education. More generally, one can introduce a notation dbase-n that uses natural number n 

as its base. Turing [1936] uses dbase-2.
7
 

Rational open interval notation (dinterval): Assume some canonical notation for rational 

numbers. Then we can name a real number x by listing names of all rational numbers a 

and b such that a<x<b. In a 1937 correction to the 1936 paper, Turing replaced dbase-2 

with dinterval, crediting the latter notation to Brouwer. 

Rational lower or upper bounds (d< and d>): We can name a real number x by listing 

names of all rational numbers a<x. Alternatively, we can name x by listing names of all 

rational numbers a>x. 

There are many other viable notations, including notations inspired by the familiar Cauchy 

sequence and Dedekind cut constructions. Formally, we model all these notations as surjective 

functions d: 
ω
  , where 

ω
 is the set of infinite strings over .

8
 

Turing computation normally operates over finite strings. Thus, one must alter the Turing 

formalism if one wants to model computation over infinitary names. A particularly appealing 

framework is Weihrauch’s [2000] Type-2 Theory of Effectivity, which builds upon earlier work 

by Grzegorczyk [1955], Hauck [1973], Lacombe [1955], and others. Weihrauch introduces 

                                                 
7
 dbase-2 is non-injective, since every dyadic rational number has two names: one name terminates with infinitely 

many ‘0’s, and the other name terminates with infinitely many ‘1’s. Turing seems to have envisioned a slightly 

modified notation that includes only names of the first kind, so that each dyadic rational number has a unique name. 

See Gherardi [2011] for detailed analysis of Turing’s approach to computable analysis. 
8
 Weihrauch uses the term ‘notation’ for surjective d: *  X with X countable and the term ‘representation’ for 

surjective d: 
ω
  X with X uncountable. I use the term ‘notation’ for both kinds of mapping. 
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Turing-style machines that respond to infinite strings on a read-only input tape by progressively 

writing infinite strings onto a write-only output tape. He defines: 

f:    is computable relative to d iff there exists a machine T such that, when supplied 

with a d-name for xdom(f) on the input tape, T progressively writes a d-name for f(x) 

onto the output tape. 

Intuitively: T can compute any finite initial portion of a d-name for f(x), given a sufficiently long 

finite initial portion of a d-name for xdom(f). Developing these ideas rigorously requires 

various technicalities that need not concern us. The important point is that computable analysis 

offers a rigorously defined notion of Turing computability relative to d for functions over . 

One can also rigorously define reducibility  over notations d: 
ω
   and e: 

ω
  , 

similar to reducibility over notations for countable domains. Intuitively: de iff some machine 

computes any finite initial portion of an e-name for z , given a sufficiently long finite initial 

portion of a d-name for z. As Turing in effect observed, dbase-n  dinterval but (dinterval  dbase-n). 

Computable analysis studies computational properties of notations d: 
ω
  . For 

example, addition is not Turing-computable relative to dbase-10. To illustrate, suppose that the 

input base-10 names are ‘1.444…’ and ‘1.555…’ The sum has two base-10 names: ‘2.999…’ 

and ‘3.000…’. One cannot determine from any finite initial portion of the input names that a 

corresponding output name should begin ‘2’, since any finite initial portion is consistent with the 

sum being > 3. Nor can one determine from any finite initial portion of the input names that the 

output name should begin ‘3’, since any finite initial portion is consistent with the denotation 

being < 3. Thus, no Turing-style machine can compute even the first digit of a dbase-10-name for 

x+y, given arbitrary finite initial portions of dbase-10-names for x and y. 
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In contrast, many familiar functions (e.g. addition, multiplication, exponentiation, 

trigonometric functions) are computable relative to dinterval. In fact, dinterval is the unique notation 

(up to equivalence) that makes certain basic operations over  computable [Hertling, 1999]. On 

the other hand, dinterval also has some disadvantages. Notably, the step function 

 


 


otherwise

xif
xstep

1

00
)(  

is not computable relative to dinterval, since no finite set of open rational intervals containing x = 0 

determines whether step(x) should assume value 0 or 1. But step becomes computable if one 

represents outputs using d>-names rather than dinterval-names. 

 As these examples illustrate, Multiplicity pervades computable analysis. There are many 

non-equivalent notations for , inducing distinct notions of computation over . It seems 

pointless to debate which notation yields ‘true’ computability over the reals. A notation may be 

more useful for certain mathematical purposes, but no one notation seems uniquely qualified 

above the others to deserve exclusive status. 

 A real number x is computable relative to d iff some Turing machine enumerates a d-

name for x. Since there are countably many Turing machine programs, only countably many 

reals are computable relative to d. A real number is computable simpliciter iff it is computable 

relative to dinterval. c is the set of computable real numbers. Whenever c is the set of real 

numbers computable relative to d: 
ω
  , one can easily transform d into a notation 

d
: 

*
   

c, where a 
d
-name for x encodes a Turing machine program that enumerates a d-name for x. 

Different notations d: 
ω
   can yield non-equivalent notations 

d
: 

*
   c, inducing distinct 

notions of computability over c. For example, dinterval and dbase-10 yield non-equivalent notations 
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for c. In this manner, computable analysis yields numerous examples of Multiplicity over a 

countable domain. 

  

3. REPRESENTATION AS CENTRAL TO COMPUTABILITY THEORY 

My survey of computability theory showcases the central role played by representation. Given 

the Gap Argument, we can study Turing computation over a non-linguistic domain only if we 

furnish a semantics for strings. Given Relativity, the non-linguistic function computed by a 

Turing machine depends upon our semantic interpretation. Some of the discipline’s most basic 

concepts --- including computation over , computation over , and computation over  --- 

emerge only once we endow strings with representational import. Hence, many of the core 

phenomena studied by computability theory arise only once suitable representational relations 

are in place. 

 When the domain of computation is both infinite and non-linguistic, representation 

occupies an especially central role. Since Deviancy prevails, a satisfying account must address 

which notations are admissible for computation over the domain. What distinguishes acceptable 

and deviant notations? When Multiplicity prevails, further questions arise. How do various 

equivalence classes of notations relate to one another? What notion of computability does each 

equivalence class induce? Which such notions hold any interest? The representation relation 

becomes a central object of study. Reducibility serves as a vital tool, sorting notation systems 

into equivalence classes according to their computational properties. Thus, systematic 

investigation of notation systems is integral to mathematical theorizing about computation. 

 We may instructively compare computability theory with other developed branches of 

mathematics, such as number theory, analysis, set theory, algebra, and topology. Those fields 
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study a fixed mathematical structure (such as the natural numbers or the real numbers) or 

collection of mathematical structures (such as structures satisfying the axioms of a group or a 

topological space). One studies mathematical structures in themselves, without studying our 

representational access to those structures. Of course, one must represent a structure in order to 

study it. But number theory, algebra, analysis, topology, and set theory do not explicitly address 

our representational interface with the relevant structures. For example, number theory studies 

the natural numbers, without explicitly considering how we represent natural numbers. In 

contrast, computability theory studies human and machine computation over mathematical 

structures. This subject matter ensures a essential role for the representational interface between 

humans (or machines) and salient mathematical structures. Representation becomes an object of 

explicit study, in a way that it does not for most branches of mathematics. 

   

3.1. Previous philosophical treatments of computation and representation 

Many philosophers have emphasized the links between computation and representation. Indeed, 

philosophers sometimes overstate those links. Most dramatically, Fodor [1975] insists that all 

computation operates over entities with representational properties. He encapsulates his view 

through the slogan ‘no computation without representation.’ As Chalmers [2011] and Piccinini 

[2008] observe, Fodor’s analysis seems implausible. Some computations do not require 

representation. A Turing machine might compute a string-theoretic function : *  *. Strings 

manipulated by the machine need not have any semantic interpretation. For example, 

representational notions are irrelevant to Turing’s discovery that the Entscheidungsproblem is 

unsolvable, because the Entscheidungsproblem concerns computation over strings drawn from a 

finite alphabet. A significant role for representation arises only when we consider computation 
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over non-linguistic domains. Only then do the Gap Argument and Relativity apply. Thus, a more 

accurate version of Fodor’s slogan would be: ‘no computation over a non-linguistic domain 

without representation.’ 

 On the other hand, I think that Chalmers and Piccinini underplay the importance of 

representation to mathematical theorizing about computability. Chalmers writes: ‘computations 

are specified syntactically, not semantically’ [2011, p. 334], and ‘the standard mathematical 

theory of computation, involving Turing machines and the like… seems to be largely 

nonsemantic’ [2012, p. 218]. Similarly, Piccinini writes: ‘representation does not seem to be 

presupposed by the notion of computation employed in computability theory and computer 

science’ [2009, p. 519], and ‘the whole mathematical theory of computation can be formulated 

without assigning any interpretation to the strings of symbols being computed’ [2008, p. 212]. 

These passages omit much of what happens in the mathematical study of computability. 

Many computations of tremendous interest operate over non-linguistic domains. The Gap 

Argument and Relativity already show that we can describe those computations adequately only 

if we cite representational properties. If the domain is infinite, then Deviancy impels us to study 

computational properties of the representation relation. When Multiplicity prevails, comparative 

study of notation systems becomes even more essential. Mathematical theorizing is deeply 

concerned with computational phenomena that hinge upon representation, and it offers a 

systematic treatment of the requisite representational relations. 

Let us distinguish between computability theory in the narrow sense and computability in 

the broad sense. Computability theory in the narrow sense studies computability over linguistic 

domains, such as strings drawn from a formal language. Computability theory in the broad sense 

studies computability in general, including computability over , , , and other non-linguistic 
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domains. One might object that, even if I have accurately described computability theory in the 

broad sense, Chalmers and Piccinini accurately describe computability theory in the narrow 

sense. 

I happily agree that Chalmers and Piccinini accurately describe computability theory in 

the narrow sense. But I insist that computability theory in the narrow sense comprises a limited 

(albeit important) subset of overall mathematical research into computability. Mathematicians 

use computational tools to illuminate the representational relations that strings bear to natural 

numbers, partial recursive functions, real numbers, and other non-linguistic entities. One cannot 

define away this mathematical research by using the phrase ‘computability theory’ to mean 

‘computability theory in the narrow sense.’ 

In my opinion, it is far more natural to use the phrase ‘computability theory’ to denote the 

study of computability in general, rather than the study of computability over linguistic domains. 

I will therefore use the phrase ‘computability theory’ in the broad sense. However, my primary 

point here is not terminological. My primary point is that computation over certain important 

domains can be properly understood only when one elucidates computational properties of 

notations for those domains. By disregarding this point, Chalmers and Piccinini neglect vital 

computational phenomena. 

Sieg’s [2009] axiomatic treatment of computation likewise underplays representation. 

Sieg’s axioms enshrine Turing-inspired constraints upon symbol manipulation by an idealized 

human computing agent. Sieg calls an agent satisfying those constraints a ‘Turing computor.’ In 

an implicit nod to the Gap Argument, Sieg writes: ‘[a] function F is (Turing) computable if and 

only if there is a Turing computor M whose computation results determine --- under a suitable 

encoding and decoding --- the values of F for any of its arguments’ [2009, p. 599]. Sieg says 
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nothing about what makes an encoding ‘suitable’ even in the case of , let alone  or . He does 

not mention the mathematical literature on this topic. Sieg’s axioms describe symbol 

manipulation in purely non-semantic terms, i.e. the axioms ignore any semantic relations 

between symbols and what symbols represent. Representation figures in his discussion as a 

casual afterthought. Reading Sieg, one would never guess how thoroughly representational 

notions pervade the mathematical study of computability. In particular, one would never guess 

the central role assigned to computational properties of notation systems. 

By highlighting that central role, I have sought to fill a notable gap in the philosophical 

literature. I have showcased crucial aspects of mathematical practice heretofore underappreciated 

by philosophers. 

 

3.2. The string-theoretic reinterpretation strategy 

One might hope to construe recursion theory as concerned solely with computable functions over 

*. What would we lose by studying string-theoretic functions : *  * rather than numerical 

functions f:   ? Why bother studying computation over numbers when we can instead study 

computation over numerals? More generally, one might hope to construe the mathematical study 

of computability in non-semantic terms. Why not concentrate entirely on string manipulation, 

considered in detachment from any semantic interpretation of strings? In short, why not simply 

confine ourselves to computability theory in the narrow sense? 

Let us call this approach the string-theoretic reinterpretation strategy. Note that the 

strategy is revisionary regarding mainstream mathematical practice. Since the 1930s, recursion 

theorists have studied computability over natural numbers in addition to computability over 
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strings. Thus, the string-theoretic reinterpretation strategy jettisons a fundamental, longstanding 

commitment of mathematical research into computability [Rescorla, 2007]. 

 Even if we were to replace computation over numbers with computation over strings, the 

string-theoretic reinterpretation strategy would be untenable for recursion theory as a whole. As 

we have seen, indexing of partial recursive functions is a central plank of recursion theory, 

underlying most of the field’s basic results: the Enumeration theorem; the Parameterization 

theorem; undecidability of the Totality Problem; Kleene’s recursion theorem; and so on. These 

theorems involve computations that take partial recursive functions as inputs or outputs. In that 

sense, recursion theory presupposes a representational mapping from strings to partial recursive 

functions. Crucially, the presupposition persists even if we ignore number-theoretic computation 

and focus instead on string-theoretic computation. Suppose we eschew all reference to numerical 

functions f:   , instead developing recursion theory for string-theoretic functions : *  

*. We still want to prove standard recursion-theoretic results such as the Enumeration and 

Parameterization Theorems. We must therefore introduce an indexing scheme : *  . 

 If we attend solely to string manipulation, then we cannot express basic results such as 

the Enumeration and Parameterization theorems. Stating those results requires us to cite a 

mapping from * to . Only when we cite this mapping can we fully describe key properties of 

the relevant computations --- such as that some computation converts inputs x and y into the 

value (if any) that x assumes on input y. The mapping : *   reflects a semantic 

interpretation on which strings denote partial recursive functions. 

 The string-theoretic reinterpretation strategy seems equally untenable when applied to 

computable analysis. A top research priority in that field is to compare different ways of 

representing real numbers. More specifically, researchers compare diverse notions of 
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computability induced by diverse notations d: 
ω
  . If we were to focus exclusively on 

computation over infinite strings, then we would abandon all this mathematical research. 

Computable analysis would cease to exist in anything resembling its current form. We could still 

describe the same underlying manipulations of infinite strings, but many elementary discoveries 

would no longer expressible. For example, we could no longer say that addition and 

multiplication over  are uncomputable relative to base-10 notation. Stating these results 

requires explicit comparison of notation systems. 

 

3.3. Formal apparatus versus intuitive grounding 

Readers may protest that we can formulate the definitions and theorems of computability theory 

even construed in the broad sense without deploying semantic notions. After all, how does 

semantics enter computability theory? Through surjective functions d: *  X or d: 
ω
  X. We 

can model these functions as sets of ordered pairs. One might insist that we can pursue 

computability theory even construed in the broad sense by citing appropriate set-theoretic 

entities, without any official talk about ‘representation,’ ‘semantic interpretation,’ ‘naming,’ or 

the like. Representational locutions are a heuristic crutch that we discard when formulating 

computability theory more rigorously. 

 I concede that the formal definitions and theorems of computability theory do not cite 

representation. The official definitions only mention set-theoretic functions d: *  X and d: 
ω
 

 X,  without explicitly mentioning representational relations between linguistic and non-

linguistic items. Nevertheless, I will now argue that representational concepts play an 

indispensable role within computability theory. 
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As many authors have stressed [Gödel, 1972/1990, p. 275, fn. 5; Rogers, 1987, pp. 1-20; 

Soare, 1996], computability theory is fundamentally concerned with intuitive notions of 

computation over various structures, including , , and so on. What makes the formal theory so 

important are its links to our intuitive notions. As Kripke puts it: ‘independently of any idea of 

intuitive computability, one can state the formal definitions of the theory… However, without 

the idea of intuitive computability, the entire motivation of the theory would be lost’ [2011, p. 

344]. Even though one can state computability theory’s formal definitions and theorems without 

mentioning intuitive computability, one fully understands the significance of these definitions 

and theorems only when one relates them to intuitive computability. 

Classical recursion theory provides a clear illustration. We begin with an intuitive 

concept (computable number-theoretic function), and we then isolate a corresponding formal 

definition (partial recursive function). Church’s thesis asserts that the intuitive concept and the 

formal definition are extensionally equivalent. The formal definition commands so much interest 

precisely due to this putative extensional equivalence. When we prove a theorem involving the 

formal definition, we feel confident that our theorem illuminates intuitive computability over . 

The links between intuitive concepts and formal definitions are less straightforward but 

no less important for other domains. For example, we have not one but numerous intuitive 

notions of computation over , corresponding to non-equivalent notations for real numbers. 

Computable analysis elucidates these informal notions through formal definitions. It reveals that 

certain informal notions (e.g. computability relative to base-10 notation) are not as 

mathematically fruitful as we might have hoped, thereby leading us to prioritize others (e.g. 

computability relative to rational open interval notation). Thus, the relations between formal 

apparatus and informal grounding are typically more dynamic than the special case of  might 
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suggest. What matters at present is that those relations are fundamental to computability theory. 

The field’s definitions and theorems merit such intense interest because they purportedly 

explicate, refine, or illuminate various intuitive notions of computability. Absent such ties to our 

intuitive notions, the definitions and theorems would articulate a formal mathematical structure 

lacking the profound significance that computability theory in fact enjoys. 

 Representational concepts play a key role in connecting formal mathematical theorizing 

with our intuitive conception. Admittedly, we can define the formal notion f: X  Y is 

computable relative to d and e while treating d and e as purely set-theoretic functions, without 

any appeal to representation. But our choice of definition reflects our conviction, codified by the 

Gap Argument, that string manipulation implements computation over a non-linguistic domain 

only if the strings represent non-linguistic items. The surjective functions d: *  X and d: 
ω
 

 X serve as formal mathematical counterparts to representational relations between strings and 

non-linguistic items. We regard the formal notion f: X  Y is computable relative to d and e as a 

good formal proxy for our pre-theoretic notion of computability only because we regard the 

functions d and e as good formal proxies for pre-theoretic representational relations between 

strings and non-linguistic items. Until we connect the formal apparatus to our pre-theoretic 

concept of representation, we cannot link it to our pre-theoretic concept of computation over a 

non-linguistic domain. 

 Representational concepts also shape which surjective functions d: *  X and d: 
ω
  

X computability theorists investigate. There are uncountably many equivalence classes of 

functions d. Mathematical inquiry centers upon a relatively small number of equivalence classes. 

How do mathematicians choose which equivalence classes to study? By reflecting upon standard 

representational schemes, such as dbinary. Turing-computability relative to dbinary is a more 
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important formal notion than Turing-computability relative to the deviant notation dA, partly 

because the former notation aligns much more closely with our normal way of representing 

natural numbers for computational purposes. 

 To illustrate the crucial importance of representation, consider the Totality Problem. 

There is no Turing machine T such that 

Given input x, T outputs 1 if x is total and 0 if x is not total, 

where : *   is our canonical notation for partial recursive functions. We can state and prove 

this theorem without deploying intuitive notions of computation or representation. But the 

theorem is so significant only because it illuminates an intuitive notion of computation over the 

partial recursive functions. Based on the theorem, we conclude that the Totality Problem is 

‘undecidable,’ i.e. there is no mechanical procedure for deciding whether a partial recursive 

function is total. Our conclusion involves the pre-theoretic notion of mechanical procedure. It 

reflects our conviction that  is a good formal proxy for all representational schemes one might 

legitimately employ when computing over partial recursive functions. We presume that any 

admissible notation for  is computably intertranslatable with . Only given this presumption 

does the formal theorem entail that the Totality Problem is ‘undecidable.’ 

 The interconnections between formal apparatus, intuitive computability, and 

representation become particularly salient when Multiplicity prevails. Turing’s original 

discussion already highlights the interconnections. His 1936 paper uses dbase-2. In the 1937 

correction, he argues that dbase-2 notation does not let us compute an operation that we would like 

to compute (roughly, computation of a real number r from arbitrarily tight rational upper and 
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lower bounds for r).
9
 He recommends that we replace dbase-2 with dinterval, which renders the 

desired operation computable. So Turing motivates a shift in his formal theory by reflecting upon 

intuitive computability, and he implements the shift by considering rival schemes for 

representing real numbers. Subsequent research within computable analysis employs similar 

methodology. Researchers routinely assess and revise formal definitions by adducing pre-

theoretic notions of computation and representation. Many key results (e.g. uncomputability of 

addition relative to dbase-10) are so interesting precisely because they illuminate which ways of 

representing real numbers support which mechanical operations. 

 In summary, representational concepts crucially inform the aims and methods of 

computability theory. Talk about ‘representation,’ ‘notational systems,’ and ‘names’ is no mere 

heuristic gloss. Computability theorists advance their formal definitions and theorems so as to 

illuminate computations that presuppose representational relations between linguistic and non-

linguistic items. To explain why this particular formal apparatus merits special attention, and to 

articulate how the formal apparatus bears upon our intuitive conception of computability, we 

must consider the relevant representational relations. 

 Over the past century, philosophers, logicians, and mathematicians have often discussed 

whether set theory can provide a unifying framework for mathematics. Researchers widely agree 

that one can model all ‘normal’ mathematics within a sufficiently powerful set theoretic system, 

such as ZFC. Quine concludes that ‘all mathematical truth can be seen as truth of set theory’ 

[1966, p. 31]. However, some authors worry that formalization with set theory distorts important 

mathematical phenomena. Our discussion bolsters this worry for the special case of 

computability theory. Granted, set theory can model the formal mathematical structures studied 

                                                 
9
 As Gherardi [2011] notes, Turing’s argument is unsatisfactory. The argument presupposes Turing’s modified 

injective version of dbase-2 (see note 7), rather than normal non-injective dbase-2. Despite this expository flaw, it is 

clear that Turing perceived the computational deficiencies of dbase-2. 
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by computability theory. But formalization within set theory omits crucial ties between those 

structures and our intuitive starting point. The formal apparatus illuminates how different ways 

of representing a domain support different mechanical operations over that domain. It thereby 

illuminates which functions over the domain are intuitively computable. If we restrict ourselves 

to the language of set theory, we cannot describe these ties between formal apparatus and pre-

theoretic notions. We cannot even state Church’s thesis. Formalization within set theory does not 

capture the full scientific content of computability theory.
10

 

 

3.4. Worries about mathematical representation 

Philosophers have extensively debated how we are able to represent mathematical entities and 

even whether we succeed in doing so. I want to clarify my analysis of computability theory by 

briefly engaging with these debates. 

 Modern mathematics routinely postulates numbers, functions, sets, and other 

mathematical entities. At first blush, anyone who accepts modern mathematics is committed to 

the existence of these entities. Some philosophers disagree. They recommend that we interpret 

(or reinterpret) mathematical discourse in nominalist terms that avoid all apparent reference to 

mathematical entities. As many critics have noted, it is unclear whether one can develop a 

satisfying nominalist construal of mathematical discourse. In any case, I assume the existence of 

natural numbers, real numbers, partial recursive functions, etc. 

 Some philosophers grant the existence of mathematical entities while denying that we 

achieve determinate reference to them. Consider true arithmetic: the theory containing all true 

sentences of the language of first-order arithmetic. The standard model of true arithmetic is 

                                                 
10

 Kripke [2013, p. 95] makes a similar point, focusing on the ‘easy half’ of Church’s thesis (that all partial recursive 

functions are intuitively computable). 
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given by the familiar natural number sequence: 0, 1, 2, … There also exist models of true 

arithmetic that are not isomorphic to the standard model. Thus, first-order arithmetical truth does 

not privilege the standard model as the intended interpretation of arithmetical discourse. But then 

what makes the standard model ‘intended’? Perhaps mathematical practice does not fix any 

determinate structure as ‘the’ natural numbers. Similar worries arise for other domains, including 

real analysis. The standard model of first-order analysis has an uncountable domain, 

corresponding to the familiar real number line. The Löwenheim-Skolem theorem also supplies a 

non-standard countable model. But then what makes the standard model ‘intended’? Perhaps 

mathematical practice does not fix any determinate structure as ‘the’ real numbers. Model-

theoretic skepticism along these lines traces back to Skolem [1922/1967]. Putnam [1980] 

espouses model-theoretic skepticism regarding set theory. In certain passages [1979, p. 22; 1981, 

p. 67], he appears to espouse model-theoretic skepticism regarding arithmetic. 

 Model-theoretic skepticism may seem to endanger my analysis of computability theory. I 

have claimed that computability theorists study computation over the natural numbers, the real 

numbers, and other mathematical structures. But what makes it the case that one is computing 

over the ‘intended’ structure, rather than a non-isomorphic structure? Perhaps mathematical 

practice does not fix any determinate structure as the one over which a human or machine 

computes. For example, what ensures that some Turing machine is computing over the standard 

natural numbers? One might worry that we can just as well reinterpret recursion theory as 

concerning Turing-computation over a non-isomorphic model [Araújo and Carnielli, 2012; Dean, 

2014]. 



32 

 

 I think that we may safely dismiss such worries. Existing arguments for model-theoretic 

skepticism are unconvincing [Bays, 2001]. Most such arguments assume a premise along the 

following lines: 

The only constraint on a good interpretation of mathematical discourse is that it make 

certain sentences true. 

This premise, coupled with the existence of non-standard models, entails that one cannot ‘latch 

onto’ a determinate interpretation. Fortunately, we need not grant the premise [Lewis, 1984]. We 

need not concede that good interpretation of mathematical discourse is constrained only by the 

requirement that certain sentences come out true. Many additional factors may constrain good 

interpretation of mathematical discourse, including mathematical factors [Gaifman, 2004; 

Halbach and Horsten, 2005], physical factors [Field, 2001, pp. 332-360], cognitive factors 

[Peacocke, 1998], and communicative factors [Parsons, 2008, pp. 279-293]. For all the model-

theoretic skeptic has argued, such factors may help privilege a determinate interpretation.
11

 

 I therefore assume that model-theoretic skepticism is mistaken. I assume that arithmetic 

concerns a unique structure (up to isomorphism). Similarly for real analysis. This paper is 

directed towards readers who share my assumptions. Given my assumptions, we may safely 

assume that humans and machines compute over determinate structures, including the natural 

numbers and the real numbers. Computability theory studies these computations, along with 

representational relations that make the computations possible. 

 Even if one rejects model-theoretic skepticism, pressing questions remain concerning our 

ability to represent determinate mathematical structures. How do we ‘latch onto’ the standard 

                                                 
11

 Putnam [1980] dismisses such additional constraints as ‘just more theory,’ i.e. just more sentences subject to non-

standard interpretation. Most discussants hold that Putnam’s ‘just more theory’ response blurs the vital distinction 

between describing why some model is the intended interpretation and adding more sentences that should come out 

true under any good interpretation. See [Bays, 2001] for discussion, with references to the literature. 
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model of arithmetic or analysis, rather than some non-standard model? If first-order arithmetical 

truth does not fix a unique interpretation for arithmetical discourse, then what does? Such 

questions are especially puzzling in light of the fact, emphasized by Benacerraf [1973], that 

causal interaction with mathematical entities seems impossible. The questions merit thorough 

investigation. But I think we should investigate them under the working assumption that model-

theoretic skepticism is false. Moreover, one need not answer these questions in order to conduct 

fruitful philosophical inquiry premised on the falsity of model-theoretic skepticism. 

 Recently, some writers have suggested that computational considerations can illuminate 

reference to the natural numbers [Halbach and Horsten, 2005; Horsten, 2012]. They cite 

Tennenbaum’s theorem that non-standard models of arithmetic render addition non-recursive. 

They conclude that the standard model is privileged over non-isomorphic models. Sometimes the 

goal behind this computationalist agenda is to rebut model-theoretic skepticism about arithmetic. 

Sometimes the goal is more modest: to illuminate mathematical reference under the assumption 

that model-theoretic skepticism is false. Button and Smith [2012] and Dean [2014] critique the 

computationalist agenda. I take no stand in these debates. I do not pursue the computationalist 

agenda, nor do I criticize it. My topic is not whether computational considerations help select a 

determinate interpretation for arithmetical discourse. I simply assume that relevant mathematical 

vocabulary has a determinate interpretation (up to isomorphism). 

 

4. COMPUTABILITY THEORY: AN INTENSIONAL ENTERPRISE 

To study computation over a non-linguistic domain X, computability theorists adduce linguistic 

items that name elements of X. They develop a computability theory for names, and they then 

transfer this theory from names to objects named. Thus, the field’s typical methodology is to 
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consider computations over representations of mathematical entities. In that sense, computability 

theory adopts an intensional viewpoint. By an ‘intensional’ viewpoint, I mean one that takes into 

account how objects are represented. 

 Within classical recursion theory, we can usually discount differences among notation 

systems. All admissible notations over  yield the same notion of computability. We can 

therefore develop an extensional theory of computation over , that is, a theory that ignores how 

natural numbers are represented [Rogers, 1987, p. 10]. When Multiplicity prevails, a purely 

extensional theory is not viable. We must explicitly relativize to notational systems. Even when 

Multiplicity does not prevail, so that a purely extensional theory becomes possible, our 

extensional theory rests upon an explanatorily prior theory of computation over names. 

Inevitably, then, computability theory assigns explanatory priority to the intensional viewpoint 

over the extensional viewpoint. We cannot disentangle the study of computation over a non-

linguistic domain from the study of how one represents the domain.
12

 

 Exclusive focus on  encourages neglect of computability theory’s intensional aspects. 

Domains where Multiplicity prevails offer a salutary corrective, reminding us that computation 

over a non-linguistic domain always presupposes an invidious distinction among notation 

systems that represent the domain. 

 When we study computation over a non-linguistic domain, we are studying traits that 

adhere in the first instance to objects as represented in suitable ways, not to objects in 

themselves. One computes an output as represented in a suitable way from an input as 

represented in a suitable way. Hence, our core subject matter mandates an intensional viewpoint. 

                                                 
12

 Intensional aspects of computability theory are widely recognized among computer scientists and mathematicians 

[Abramsky, 2013; Feferman, 2013]. They receive much less attention from philosophers, Dean [2014] and Shapiro 

[2000] being notable exceptions. Shapiro’s discussion of intensionality emphasizes representations of the function 

computed, whereas I emphasize representations of the function’s inputs and outputs. 
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This mandate differentiates computability theory from most other branches of mathematics, 

including number theory, analysis, set theory, algebra, and topology. 

 

5. ‘A FRANKLY INEQUALITARIAN ATTITUDE’ 

Let us explore the intensional aspects of computability theory by considering quantification into 

referentially opaque contexts.
13

 

A referentially opaque context arises when substitution of co-referring expressions does 

not preserve truth-value. Propositional attitude attributions generate opaque contexts: even 

though Mark Twain is Samuel Clemens, one can believe that Mark Twain is famous without 

believing that Samuel Clemens is famous. Quine [1966; 1981] compares the sentences: 

(1) Ralph believes that (x)(x is a spy). 

(2) (x)(Ralph believes that x is a spy). 

There is a clear intuitive difference: (1) attributes a belief that spies exist, while (2) attributes 

suspicion that a specific individual is a spy. Now suppose Ralph believes that (x)(x is a spy) and 

also believes that no two spies are the same height. He concludes that the shortest spy is a spy. 

Yet (2) may be false. Apparently, then, one can infer (2) only from certain sentences of the form 

(3) Ralph believes that a is a spy. 

(2) is true only if Ralph attributes spyhood to an individual as represented in a suitable way. In 

Quine’s [1966, p. 184] words, quantifying into opaque contexts presupposes a ‘frankly 

inequalitarian attitude toward the various ways of specifying’ an object.
14

 

                                                 
13

 Shapiro [2000, p. 46] also mentions the connection with quantification into opaque contexts, although he pursues 

the connection from a rather different angle. 
14

 Kaplan [1969] attempts to articulate the requisite ‘frankly inequalitarian’ attitude. He proposes that the inference 

from (3) to (2) is licensed just in case ‘a’ is vivid and ‘a’ is a name of its denotation for Ralph. Unfortunately, 

Kaplan leaves the crucial vivid/non-vivid distinction fairly obscure. 
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Following Hintikka [1962], Quine eventually [1981, pp. 120-122] decides that the 

inference from (3) to (2) is licensed only when Ralph knows which entity ‘a’ designates. Quine 

argues that the notion knowing which is highly interest-relative. He concludes that the difference 

between (1) and (2), which initially seems so sharp, is distressingly context-sensitive. He 

despairs of finding any systematic criterion that dictates when (2) is true. Detecting no firm 

scientific basis for the ‘frankly inequalitarian’ attitude presupposed by (2), he recommends that 

we purge (2) and kindred locutions from rigorous scientific theorizing. 

Kripke deploys computability theory to rebut Quine. Restricting attention to computation 

over , Kripke writes [2011, p. 261]: 

A computable function is a function f such that for each given n, if you put in a particular 

number, the value f(n) can be computed. And what does that mean? That given the 

definition of the function and an argument n, you can know, by computation, what the 

value f(n) is. This would hardly make sense if all ways, even mathematical ways, of 

designating a number, were on a par. For then every function would be computable, since 

the value of f for a given n could simply be ‘computed’ as f(n)! To say otherwise would 

be to adopt an ‘inequalitarian’ attitude towards different ways of designating a number, 

supposedly a sin. 

Kripke’s example is a special case of the general phenomenon discussed in Section 2.2. If we 

define a notation df: *   that maps n to the nth element in the sequence: 

 0, 1, f(0), 2, f(1), f(f(0)), 3, f(2), f(f(1)), f(f(f(0))), …  

then f is Turing-computable relative to df. 

 I agree with Kripke that computability theory poses a serious challenge to Quine’s 

position. The central dichotomy of the entire discipline --- computable function versus non-
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computable function --- presupposes an invidious distinction between admissible and deviant 

notations. Thus, computability theory requires us to privilege certain ways of representing 

entities over alternative ways of representing those same entities. Computability theory requires 

the ‘frankly inequalitarian attitude’ decried by Quine. 

 According to Kripke, ‘the notion of computability is best seen as having a procedure for 

knowing which number is the value of the function’ [2011, p. 344]. He also suggests that one 

knows which number is f’s value when one computes that f(n) = m, for some numeral ‘m’ in a 

canonical notation system (such as Arabic decimal notation). In response, Burge complains that 

computation resulting in a long Arabic decimal numeral ‘m’ does not normally suffice for 

‘knowing which’ number is f(n): ‘One needs to do some figuring, calculating, grouping, or 

simplifying of a thirty-seven-figure numerical name to grasp which number it names’ [2007, p. 

73]. These worries ramify when one generalizes to other domains of computation. For example, 

does one ‘know which’ computable real number r is at issue simply from grasping a 
base-10

 

name for r? No matter how well one understands the name, one may have little idea which base-

10 decimal the name encodes. Yet computability relative to 
base-10

 is a non-deviant kind of 

computability. 

 Kripke might reply that in some sense one ‘knows which’ value is at issue even from a 

very long Arabic decimal numeral or a 
base-10

 name. Perhaps so. Overall, though, I think it more 

fruitful to formulate Kripke’s anti-Quinean perspective without relying upon the ‘know which’ 

locution. I now attempt to do so. 

 

5.1. Opacity and computability 
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Intuitively, a mechanical procedure P computes function f just in case P yields the correct output 

f(x) given any input x. In this spirit, Soare describes an algorithm for computing f as ‘a finite set 

of instructions which, given an input x, yields after a finite number of steps an output y = f(x)’ 

[1987, p. 8]. More formally, we may write: 

(4) Mechanical procedure P computes function f iff (x)(y)( f(x) = y  P yields output y 

on input x).
15

 

As Kripke’s discussion highlights, we must interpret (4) carefully so as to avoid trivializing the 

notion of computability. For any total numerical function f, there is a mechanical procedure Pf 

such that, for all n, 

(5) Pf yields output f(n) on input n; 

namely, the procedure that replaces an input numeral ‘n’ with output symbol ‘f(n)’. Pf yields a 

unique output for each input, so we have 

(6) Pf yields output y on input n  f(n) = y. 

Applying Leibniz’s law to (5), we infer 

(7) f(n) = y  Pf yields output y on input n. 

From (4), (6), and (7), we infer that Pf computes f. Since f is an arbitrary total numerical function, 

we have collapsed the distinction between computability and non-computability. 

How can we avoid this disastrous result? Intuitively, the reason why Pf does not compute 

f is that Pf represents f’s output using the unsuitable term ‘f(n)’. A procedure that computes f 

must represent inputs and outputs using a suitable canonical notation. If we want to preserve (4) 

while honoring these intuitions, then the most promising strategy is to regard the y position in 

(8) P yields output y on input x 

                                                 
15

 My formulation expresses an intuitive analogue to strong computability (see note 5). 
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as opaque. We can then say that f(n) = m while denying that 

(9) Pf yields output m on input n, 

where ‘m’ is a numeral in a canonical notation system (e.g. Arabic decimal notation). Perhaps 

there is also a reading on which (8) is transparent rather than opaque. On that putative reading, 

(9) is true. But no such reading is relevant to computability theory. Instead, we require a reading 

on which (9) is false. We must construe (8) as an intensional transitive, akin to locutions such as 

‘admires,’ ‘seeks,’ and so on. Just as there is a natural reading on which it may be that 

 Ralph admires Mark Twain. 

 Ralph does not admire Samuel Clemens. 

 Mark Twain = Samuel Clemens. 

so our desired reading supports 

 Pf yields output f(n) on input n. 

 Pf does not yield output m on input n. 

 f(n) = m. 

Since substitution of co-referring terms does not preserve truth-value, the inference from (5) to 

(7) is blocked.
16

 We thereby preserve a robust distinction between computability and non-

computability. The price we pay is quantifying into an opaque context.
17

 

 The quantifier in (4) is universal, not existential. For an example involving existential 

quantification, consider: 

                                                 
16

 We can likewise say that, even though (5) is true, the open sentence ‘Pf yields output y on input x’ is not true 

under a variable assignment that assigns n to ‘x’ and f(n) ( = m) to ‘y’. Standard Tarskian semantics then entails that 

‘(x)(y)( f(x) = y  Pf yields output y on input x)’ is not true. 
17

 One might propose that ‘yields’ is a disguised quotational device, so that a more proper rendering of P yields 

output m on input n would be P yields output ‘m’ on input ‘n’, or perhaps P yields output ‘m’ with denotation m on 

input ‘n’ with denotation n. According to this proposal, (4) quantifies into quotation marks. Since quantification into 

quotation marks does not seem intelligible, the proposal impugns (4)’s intelligibility. I respond that, although there 

may be a reading on which ‘yields’ involves disguised quotation, there is also a reading on which it does not. For 

example, there is a reading on which P yields output 15 on input 39 is true even though P operates over binary 

numerals rather than base-10 numerals. By adopting such a reading, we can make good sense of (4). 
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(10) Ralph uses mechanical procedure P to compute f’s value on input n. 

Statements of this kind figure prominently in the pre-theoretic discourse that gives rise to 

computability theory. We may naturally regiment (10) as 

(11) (y)(Ralph uses mechanical procedure P to compute that f has output y on input n). 

Perhaps there is a reading on which (11) is true no matter how Ralph represents f’s output. On 

this putative reading, 

Ralph uses mechanical procedure Pf to compute that f assumes output f(n) on input n. 

entails 

 Ralph uses mechanical procedure Pf to compute f’s value on input n. 

No such reading is relevant to computability theory. Instead, we require a reading on which (11) 

is true if Ralph represents f’s output using an admissible notation (e.g. binary notation) but false 

if Ralph represents f’s output using a deviant notation (e.g. df). On the requisite reading, there is a 

huge difference between (11) and 

(12) Ralph uses mechanical procedure P to compute that (y)( f has output y on input n). 

(12) attributes a generic realization that f attains some output on input n, while (11) attributes a 

suitable grasp of the specific numerical output. Quine might regard the distinction between (11) 

and (12) as too context-sensitive or interest-relative for serious scientific purposes. Nevertheless, 

a distinction along those lines underlies computability theory.
18

 

 The opacity in (4) and (11) would repay considerable study. What is the semantics for 

these locutions? How should one formulate suitable quantifier rules? I have not attempted to 

                                                 
18

 In the unpublished Whitehead lectures ‘Logicism, Wittgenstein, and De Re Beliefs about Numbers,’ Kripke 

suggests that computability theory enshrines a distinction between de dicto and de re beliefs about numbers: e.g. 

believing that f has some output on input n versus believing of some particular number that it is f’s output on input 

n. Authors use the de dicto/de re terminology in so many different ways that I have thought it best to avoid this 

terminology when developing my position. 
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answer such questions. I have only undertaken the fairly modest task of showing that the relevant 

contexts are opaque. 

 

5.2. Intensional aspects of computability theory 

When elucidating basic aspects of computability, we find ourselves drawn to the linguistic 

device castigated by Quine: quantification into an opaque context. Admittedly, one can state 

computability theory’s formal definitions and theorems without employing locutions such as (4) 

or (11). However, as I argued in Section 3.3, fully understanding the formal definitions and 

theorems requires that we relate them to our pre-theoretic conception of computation. (4), (11), 

and kindred locutions naturally arise when we articulate how the formal theory bears upon our 

intuitive conception. Evidently, Quine overlooked the extent to which mathematical science 

embraces the intensional phenomena he deemed so problematic. 

 We can avoid quantifying into opaque contexts by introducing a quantifier over names. 

We can define mechanical procedure P computes function f relative to notation d, and we can 

say that f is computable iff some mechanical procedure computes f relative to an admissible 

notation. This alternative procedure only accentuates the need for distinguishing between 

admissible and deviant notations. We can honor the distinction either implicitly (by quantifying 

into an opaque context) or explicitly (by overtly privileging certain notations over others). Either 

way, we adopt a ‘frankly inequalitarian attitude toward the various ways of specifying’ objects in 

the domain of computation. Such an attitude is needed to preserve the distinction between 

computable and non-computable functions. 

To illustrate, suppose we want to say that some total number-theoretic function f is not 

intuitively computable. We do not capture this fact in full generality if we only mention a single 
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privileged notation for , because some mechanical procedures operate relative to other 

admissible notations. To attain a suitably general formulation, we might say: 

(13) There is no mechanical procedure P and no admissible notation d for the natural numbers 

such that (x)(y)( f(d(x)) = d(y)  P yields output y on input x), 

where quantifiers range over numerals. Alternatively, we might avoid explicit talk of notations: 

(14) There is no mechanical procedure P such that (x)(y)( f(x) = y  P yields output y on 

input x), 

where quantifiers range over natural numbers. As I have argued, (14) comes out true only if we 

construe it as quantifying into an opaque context. Whether we choose (13) or (14), we draw an 

invidious distinction between notations. We do so either explicitly (by overtly mentioning 

admissibility) or implicitly (by quantifying into an opaque context). Either way, we must 

consider how natural numbers are represented. When expressing with full generality that f is not 

intuitively computable, we find ourselves adopting an intensional viewpoint. 

 Some readers may worry that formulations such as (13) and (14) veer dangerously close 

to vicious circularity. My formulations rely, either explicitly or implicitly, upon an unexplicated 

notion of ‘admissible notation.’ It may therefore seem that I am assuming some unexplicated 

notion of computability for notation systems. Assuming such a notion would surely be 

illegitimate when we are trying analyze numerical computability in non-circular terms. 

 I reply that I am not trying to analyze numerical computability in non-circular terms. In 

fact, I have argued elsewhere that there is no evident way to provide a non-circular conceptual 

analysis of numerical computability, precisely because we do not know how to analyze the 

notion ‘admissible notation’ in satisfying non-circular terms [Rescorla, 2007]. I do not advance 

(13) and (14) as contributions to a non-circular analysis of computability. I advance them as 
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theoretically central and extensionally correct statements about computability. That we find 

ourselves assigning a central role to such locutions demonstrates the ineliminably intensional 

nature of computability theory. 

 

6. CONCLUSION 

Computability theory offers a rigorous study of the interplay between ways of representing a 

domain and finite mechanical operations over that domain. It embeds reciprocal explanatory 

relations between computation and representation: we need representational notions to 

understand computation over non-linguistic domains; and computational tools illuminate key 

properties of representational systems. By further exploring these reciprocal explanatory 

relations, we may hope to gain substantial insight into representation as well as computation. Just 

as philosophical reflection upon set theory has illuminated fundamental ontological and 

epistemological questions surrounding abstract entities, philosophical reflection upon 

computability theory can illuminate fundamental questions surrounding representation and 

intensionality. We have only begun to mine computability theory for its philosophical payoff. 
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