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1. Computation and Representation 

The computational theory of mind (CTM) holds that mental processes are computations. 

Chalmers (2012) offers an especially well-developed version of CTM. His account hinges upon 

two key definitions: 

 

- The causal topology of a system is “the pattern of interaction among parts of the 

system, abstracted away from the make-up of individual parts and from the way the 

causal connections are implemented” (2012, §3.1). 
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- A property P is organizationally invariant just in case “any change to the system that 

preserves the causal topology preserves P” (2012, §3.1). 

 

According to Chalmers, a computational model individuates computational states through 

organizationally invariant properties. Computation in this sense “provides a general framework 

for the explanation of cognitive processes” (2012, §3.3). A mental state may have many 

properties that are not organizationally invariant, such as representational, phenomenal, or neural 

properties. Chalmers concedes that we can supplement computational explanation by citing such 

properties. But “there is a clear sense in which they are not vital to the explanation” (2012, §3.3). 

Cognitive science, at its core, studies organizationally invariant properties. 

I disagree. Numerous cognitive science explanations individuate mental states through 

their representational properties. Typically, those properties are not organizationally invariant. 

By elevating organizational invariance over intentionality, Chalmers flouts contemporary 

scientific practice. I will present an alternative version of CTM that places representation at 

center stage. On my approach, computational theories can individuate mental states in 

representational terms. A computational model can specify a transition function over mental 

states type-identified by their representational import. Computational explanations need not 

mention organizationally invariant properties. 

 

2. Bayesian Psychological Modeling 

Bayesian models of mental activity have proved explanatorily successful, especially within 

perceptual psychology. I will present basic elements of the Bayesian framework, taking 

perception as my primary case study. 
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 The perceptual system estimates environment conditions, including the shapes, sizes, and 

motions of distal objects. Perceptual estimation faces an underdetermination problem, because 

proximal sensory stimulations underdetermine environmental conditions. Helmholtz postulated 

that the perceptual system solves this underdetermination problem through “unconscious 

inference.” Bayesian models elaborate Helmholtz’s approach (Knill and Richards, 1996). They 

treat the perceptual system as executing an unconscious statistical inference, governed by 

Bayesian norms. The perceptual system assigns prior probabilities p(h) to hypotheses h about 

the environment. It also assigns prior likelihoods p(e | h), reflecting the probability of sensory 

input e given h. Upon receiving sensory input e, the perceptual system reallocates probabilities 

across the hypothesis space through conditionalization, yielding a posterior probability p(h | e): 

 

p(h | e) =  p(h) p(e | h), 

 

where  is a normalizing constant to ensure that probabilities sum to 1. Based on the posterior, 

the perceptual system selects a unique hypothesis h. It may select an hypothesis that maximizes 

the posterior, or it may deploy a more complex selection rule. 

 

2.1 Example: Shape from Shading 

Retinal stimulations underdetermine shapes of perceived objects. For instance, a 

perceived object might be convex and lit from overhead, or it might be concave and lit from 

below. The same retinal input would result either way. How do we reliably perceive distal shape 

based upon inherently ambiguous retinal input? Let s reflect possible shapes, θ possible lighting 
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directions, and e possible patterns of retinal illumination. According to current Bayesian models 

(Stone, 2011), the visual system encodes: 

 

A prior probability p(s), which assigns higher probability to certain distal shapes than 

others (e.g. it may assign higher probability to convex shapes). 

A prior probability p(θ), which assigns much higher probability to an overhead lighting 

direction than to alternative lighting directions. 

A prior likelihood p(e | s, θ), which assigns higher probability to an (e, s, θ) triplet if 

distal shape s and lighting direction θ are likely to cause retinal illumination e. 

 

Upon receiving retinal input e, the perceptual system redistributes probabilities over shape-

estimates, yielding a posterior p(s | e). Based on this posterior, the visual system selects a final 

shape-estimate s. Since light usually emanates from overhead, the final shape-estimate is usually 

accurate, or at least approximately accurate.   

 

2.2 Example: Surface Color Perception 

Light reflected from a surface generates retinal stimulations consistent with various 

surface colors. For instance, a surface might be red and bathed in daylight, or it might be white 

and bathed in red light. How do we reliably perceive surface colors? To a first approximation, 

current Bayesian models operate as follows (Brainard, 2009). A surface has reflectance R(), 

specifying the fraction of incident light reflected at each wavelength .
1
 The illuminant has 

                                                 
1
 The models described in this paragraph assume diffusely illuminated flat matte surfaces. To handle other viewing 

conditions, we must replace R() with a more complicated property, such as a bidirectional reflectance distribution. 

My talk about “surface reflectance” should be construed as allowing such generalizations. 
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spectral power distribution I(): the light power at each wavelength. The retina receives light 

spectrum C() = I() R() from the surface. The visual system seeks to estimate surface 

reflectance R(). This estimation problem is underdetermined, since C() is consistent with 

numerous I()-R() pairs. Bayesian models posit that two surfaces have the same color 

appearance for a perceiver when her perceptual system estimates the same reflectance for each 

surface.
2
 To estimate R(), the visual system estimates I(). It does so through a Bayesian 

inference that deploys a prior over illuminants and reflectances. Roughly speaking, the prior 

assigns higher probability to illuminants that resemble natural daylight and to reflectances that 

occur more commonly in the natural environment. This framework can explain successes and 

failures of human color perception under various experimental conditions.   

 

Cognitive scientists have successfully extended the Bayesian paradigm beyond vision to 

diverse phenomena, including sensorimotor control (Bays and Wolpert, 2007), language parsing 

and acquisition (Chater and Manning, 2006), “central” cognitive processes such as concept 

acquisition and causal reasoning (Chater and Oaksford, 2008), and non-human navigation 

(Cheng, Shettleworth, Huttenlocher, and Rieser, 2007). A core postulate underlying all these 

models is that the mind reallocates probabilities over a “hypothesis space.” The “hypotheses” 

may concern: bodily configurations; or parsing trees for utterances; or causal relations among 

events; or locations in the spatial environment; and so on. 

What are these “hypotheses”? For present purposes, the key point is that current Bayesian 

psychological models individuate hypotheses in representational terms. For instance, Bayesian 

perceptual psychology describes how the perceptual system reallocates probabilities over 

                                                 
2
 Such models need not identify colors with surface reflectances. For instance, one might combine such models with 

the familiar view that colors are dispositions to cause sensations in normal human perceivers. 
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hypotheses about specific environmental properties. Bayesian models of shape perception 

assume that the perceptual system begins with a prior probability over estimates of specific 

shapes. The models describe how retinal input prompts reallocation of probabilities over 

estimates of specific shapes. Similarly, Bayesian models of surface color perception describe 

reallocation of probabilities over estimates of specific reflectances. Bayesian models describe 

how the perceptual system, exercising standing capacities to represent specific environmental 

properties, transits from retinal input to perceptual states that estimate specific environmental 

properties. Perceptual psychology classifies perceptual states through representational relations 

to specific environmental properties.
3
 A similar diagnosis applies to Bayesian psychological 

modeling more generally. Current science postulates probabilistic updating over hypotheses that 

represent environmental states or properties: bodily configurations; parsing trees of utterances; 

causal relations; and so on. The science individuates hypotheses through representational 

relations to specific environmental states or properties. 

 

3. Organizational Invariance? 

Many representational properties do not supervene upon the thinker’s internal neurophysiology. 

The classic illustration is Putnam’s (1975) Twin Earth thought experiment, which Burge (2007) 

applies to mental content. Quite plausibly, one can extend the Twin Earth methodology to many 

mental states, including numerous representational mental states cited within Bayesian 

psychology. For example, Block (2003) mounts a convincing case that the perceptual states of 

neural duplicates can represent different surface reflectances, if the duplicates are suitably 

embedded in different environments. Chalmers (2006) himself argues that a brain suitably linked 

                                                 
3
 For extended defense of my analysis, see (Rescorla, forthcoming c). My analysis is heavily influenced by Burge 

(2010a, pp. 82-101, pp. 342-366). 
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to a Matrix-style computer simulation would not represent distal shapes, reflectances, and so on. 

I conclude that cognitive science employs an externalist explanatory template: the science 

taxonomizes mental states partly through representational properties that do not supervene upon 

internal neurophysiology (Burge, 2007, 2010). 

Neurophysiological duplicates share the same causal topology. If a property does not 

supervene upon internal neurophysiology, then it does not supervene upon causal topology. So 

numerous representational properties cited within cognitive science are not organizationally 

invariant. For that reason, Chalmers’s organizationally invariant paradigm diverges 

fundamentally from the explanatory paradigm employed within actual cognitive science. 

Cognitive science may describe certain phenomena in organizationally invariant terms. But it 

studies numerous phenomena through a representational paradigm as opposed to an 

organizationally invariant paradigm. For example, Bayesian models of surface color perception 

cite representational relations to specific reflectances, without even mentioning organizationally 

invariant properties. 

Representational individuation is not essential to Bayesian modeling per se. In principle, 

one can imagine a Bayesian model that individuates hypotheses in organizationally invariant 

terms. However, any such model would differ significantly from the Bayesian models employed 

within actual cognitive science. 

 Chalmers might suggest that we reinterpret current psychology in organizationally 

invariant terms. A Bayesian theory T delineates a pattern of causal interaction among mental 

states. It thereby determines a causal topology. One can describe this causal topology through an 

organizationally invariant theory T*. T* might even cite some kind of “narrow content” that 

supervenes upon causal topology. Why not replace T with T*? After all, both theories predict the 
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same relations between sensory inputs and motor outputs. As Chalmers puts it, “[a] system’s 

behavior is determined by its underlying causal organization,” so organizationally invariant 

descriptions “provide a general framework for the explanation of behavior” (2012, §3.3). 

 I respond that cognitive science does not simply map sensory inputs to behavioral 

outputs. It explains mental states under intentional descriptions. For example, Bayesian 

perceptual psychology studies perceptual estimation of environmental states. It seeks to explain 

veridical perception (How does the perceptual system accurately estimate environmental states, 

even though sensory stimulations underdetermine those states?), illusions (Why does the 

perceptual system form an incorrect estimate in certain circumstances?), and constancies (How 

does the perceptual system estimate that a distal property --- such as shape --- remains constant 

despite large changes in sensory input?). Thus, the science seeks to explain intentional 

properties of perceptual states. To illustrate, consider shape perception. Bayesian models 

postulate probabilistic updating over hypotheses individuated through representational relations 

to specific shapes. Current science delineates explanatory generalizations that describe how the 

visual system transits from retinal input to estimates of specific shapes. Using these 

generalizations, we explain why a perceiver enters into a perceptual state that represents a 

specific distal shape. 

Organizationally invariant theories ignore representational relations to specific distal 

shapes. More generally, organizationally invariant theories ignore numerous representational 

properties that figure as explananda within contemporary cognitive science. Thus, Chalmers’s 

favored paradigm sacrifices key benefits offered by current science. Organizationally invariant 

theories cannot explain mental states under desired intentional descriptions. If current science is 
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on the right track, then Chalmers’s version of CTM does not provide “a general framework for 

the explanation of cognitive processes.” 

Scientific practice is not sacrosanct. One might argue that scientists are confused or 

otherwise misguided. In particular, one might attack intentionality (or representationality) as 

problematic. Beginning with Quine (1960), various philosophers have argued that intentionality 

deserves no place in serious scientific discourse. Most relevantly for us, Stich (1983) argues that 

we should replace intentional psychology with a purely syntactic version of computational 

psychology. Chalmers sometimes hints that he harbors broadly Quinean worries about the 

scientific credentials of intentionality (2012, §2.2). 

I will not review the well-known Quinean arguments that intentionality is illegitimate or 

unscientific. I agree with Burge (2010a, pp. 296-298) that those arguments are unconvincing. In 

any event, I favor an opposing methodology. I do not dictate from the armchair how scientific 

psychology should proceed. Instead, I take current scientific practice as my guide to clarity, 

rigor, and explanatory success. I examine how science individuates mental states, and I take that 

individuative scheme as my starting point. This methodology provides strong reason to embrace 

intentional explanation and scant reason to embrace organizationally invariant explanation, at 

least for certain core mental phenomena. 

 In note 6 [added in 2011], Chalmers modifies his position. He concedes that we cannot 

wholly explain intentional aspects of mental activity within his organizationally invariant 

framework. Nevertheless, he insists that his framework “can undergird intentional explanation 

when appropriately supplemented, perhaps by phenomenal and environmental elements.” This 

modified position seems to allow a valuable explanatory role for organizationally invariant 

description and representational description. 
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In my view, the key question here is whether we have any reason to seek organizationally 

invariant explanations. Taking current science as our guide, there is excellent reason to believe 

that a complete psychology will cite representational relations to the environment. A complete 

theory will also feature non-representational neural descriptions, so as to illuminate the neural 

mechanisms that implement Bayesian updating (Knill and Pouget, 2004). But neural description 

is not organizationally invariant. Should we supplement representational and neural description 

with a third organizationally invariant level of description? We can describe the mind in 

organizationally invariant terms. My question is whether we should. Why insist that science 

describe the mind’s causal topology in abstraction from representational and neural properties? 

Chalmers must show that psychological processes fall under explanatorily fruitful 

organizationally invariant descriptions. 

 Science does not usually study organizationally invariant properties. One can specify any 

physical system’s causal topology, but the result usually lacks scientific interest. To borrow 

Chalmers’s example, the science of digestion cites phenomena (such as energy extraction) that 

outstrip any relevant causal topology. In studying digestion, we are not merely studying a causal 

topology that mediates between food inputs and waste outputs. We are studying digestive 

processes that instantiate a causal topology. Anyone who suggests that we supplement digestive 

science with organizationally invariant descriptions owes us an excellent argument. Similarly, 

Bayesian psychology does not merely study a causal topology that mediates between sensory 

inputs and behavioral outputs. It studies representational mental processes that instantiate a 

causal topology. Anyone who suggests that we supplement scientific psychology with 

organizationally invariant descriptions owes us an excellent argument. 
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 One popular argument emphasizes generality. Suppose we compare intentional 

psychological theory T and organizationally invariant theory T*. T* is more general than T, since 

T* applies equally well to causal-topological duplicates who have different representational 

properties. Doesn’t increased generality yield explanatory dividends? (Cf. Egan, 1999.) 

 This argument faces a serious problem: it overgeneralizes. Analogous arguments would 

show that we should supplement any other scientific theory, such as our theory of digestion, with 

organizationally invariant descriptions. Clearly, most sciences do not include such descriptions. 

Why? Because increased generality is not always an explanatory desideratum. One must isolate 

the right kind of increased generality. Increased generality has “the right kind” when it 

contributes explanatory power. To show that organizational invariance contributes explanatory 

power to cognitive science, one must advance an argument geared specifically to mental activity. 

One must argue that mental processes, unlike most other processes, fall under explanatorily 

fruitful organizationally invariant descriptions. 

 Chalmers provides an argument along these lines (2012, §3.2). He cites functionalism in 

the style of Lewis (1972): a psychological state is individuated by how it mediates between 

inputs, outputs, and other psychological states. From his functionalist premise, Chalmers 

concludes that scientific psychology requires organizationally invariant descriptions. 

 Lewis offers functionalism as a conceptual analysis of folk psychology. Yet folk 

psychology routinely cites representational properties that do not supervene upon causal 

topology. So it is unclear how widely, if at all, Lewis-style functionalist reduction applies to folk 

psychology. More importantly, folk psychology is not directly relevant to our concerns. Science 

can consult folk psychology for inspiration --- as illustrated by the Bayesian paradigm. But 

science does not answer to folk psychology. Our question is how scientific explanations should 
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individuate mental states. Our best strategy for answering that question is to examine science, not 

folk psychology. As I have argued, there are numerous mental phenomena that current science 

studies by citing representational properties as opposed to Lewis-style functional properties. 

Chalmers suggests a further argument for embracing organizationally invariant 

descriptions: they are needed for modeling the mind mechanistically. He claims that his approach 

“provides a general framework for the mechanistic explanation of cognitive processes and 

behavior” (note 6). Is he right? Must mechanical explanation operate in organizationally 

invariant fashion? I will now argue otherwise. Genuinely computational models can individuate 

mental states through their representational properties, including representational properties that 

do not supervene upon internal neurophysiology. Such models incorporate representationally-

specified mechanical rules.
4
 

 

4. Computation, Syntax, and Semantics 

 A computational model specifies possible states of a system, and it delineates a transition 

function dictating how the system transits between states. The transition function may be either 

deterministic or stochastic. Either way, as Chalmers emphasizes, it supports counterfactuals. In 

the deterministic case, it supports counterfactuals of the form: 

 

 If the system were in state S, then it would transit to state S*. 

 

                                                 
4
 Burge (2010a, pp. 95-101), (2010b) and Peacocke (1994) propose similar treatments of computation. For 

discussion of Burge and Peacocke, see (Rescorla, forthcoming b). 
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In the stochastic case, it supports counterfactuals concerning the probability of transiting from 

state S from state S*. Let us consider more carefully the nature of S and S*. How does the 

transition function individuate computational states? 

 According to Chalmers, “computations are specified syntactically, not semantically” 

(2012, §2.2). To illustrate, consider a Turing machine table that describes how a scanner 

manipulates strokes on a machine tape. The machine table does not mention semantics. It 

describes formal manipulation of syntactic items. Chalmers holds that all computational models 

operate similarly: the transition function individuates computational states without regard to their 

representational import. A physical computing system may have representational properties, but 

we do not mention those properties when modeling how the system transits between states. This 

view of computation is quite popular (Egan, 1999), (Fodor, 1981), (Piccinini, 2008), (Stich, 

1983). Chalmers incorporates it into a theory of computational implementation: a physical 

system executes the formal syntactic manipulations posited by some computational model just in 

case the system instantiates the causal topology dictated by the model (Chalmers, 2012, §2). 

 I agree that some computational models individuate computational states in syntactic, 

non-semantic fashion. But I contend that other computational models individuate computational 

states representationally. The transition function can individuate states S and S* through their 

representational properties. 

 

4.1 Example: A Numerical Register Machine 

A register machine contains a set of memory locations, called registers. A program governs the 

evolution of register states. The program may individuate register states syntactically. For 

instance, it may describe the machine as storing numerals in registers, and it may dictate how to 
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manipulate those syntactic items. Alternatively, the program may individuate register states 

representationally. Indeed, the first register machine in the published literature models 

computation over natural numbers (Shepherdson and Sturgis, 1961, pp. 219). A program for this 

numerical register machine contains instructions to execute elementary arithmetical operations, 

such as add 1 or subtract 1. A physical system implements the program only if can execute the 

relevant arithmetical operations. A physical system executes arithmetical operations only if it 

bears appropriate representational relations to numbers. Thus, a physical system implements a 

numerical register machine program only if it bears appropriate representational relations to 

numbers.
5
 Notably, a numerical register machine program ignores how the physical system 

represent numbers. It applies whether the system’s numerical notation is unary, binary, decimal, 

etc. The program characterizes internal states representationally (e.g. a numeral that represents 

the number 20 is stored in a certain memory location) rather than syntactically (e.g. decimal 

numeral “20” is stored in a certain memory location). It individuates computational states 

through denotational relations to natural numbers. It contains mechanical rules (e.g. add 1) that 

characterize computational states through their numerical denotations.   

 

A physical system often represents the same denotation in different ways. For example, 

“4” and “2+2” both denote the number 4. These two expressions occupy different roles within 

arithmetical computation. So denotation by itself does not always determine computational role. 

In general, adequate computational models must address the way that a computational state 

represents its denotation. To borrow Frege’s terminology, adequate models should individuate 

computational states by citing modes of presentation (MOPs). But what are MOPs? 

                                                 
5
 For further discussion of numerical register machines, see (Rescorla, forthcoming a). 
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Fodor (1981, pp. 234-241) offers a notable discussion of this question. He considers two 

ways of taxonomizing mental states: 

 

- A transparent taxonomic scheme classifies mental states through their denotational 

properties. 

- A formal taxonomic scheme ignores any representational relations that mental states 

bear to the environment. 

 

For example, a transparent scheme type-identifies the belief that Hesperus has craters and the 

belief that Phosphorus has craters. This approach has trouble explaining why the two beliefs 

have different functional roles. In contrast, a formal scheme can associate the belief that 

Hesperus has craters and the belief that Phosphorus has craters with “formally distinct internal 

representations” (p. 240), thereby explaining why the beliefs have different functional roles. 

Fodor concludes: “a taxonomy of mental states which honors the formality condition seems to be 

required by theories of the mental causation of behavior” (p. 241). He posits a language of 

thought containing formal syntactic types. Formal syntactic type does not determine 

representational content: “mental representations can differ in content without differing in their 

intrinsic, formal, nonrelational, nonsemantic properties” (Fodor, 1991, p. 298). Fodor 

acknowledges that a mental representation has representational content. He insists that it also has 

a syntactic type compatible with diverse alternative contents.
6
 

Fodor’s dichotomy between transparent and formal taxonomization ignores a third 

option. We can postulate MOPs individuated partly by their representational import. Frege 

                                                 
6
 In his early work, Fodor (1981, p. 227, p. 240) holds that formal syntactic type determines a unique narrow content 

but not a unique wide content. His later work, beginning in mid-1990s, abandons narrow content while retaining the 

emphasis on formal syntactic types that underdetermine wide content. 
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proceeds in this way, as do such “neo-Fregeans” as Burge (2007, pp. 291-306), Evans (1982, pp. 

100-105), and Peacocke (1992, pp. 16-27). I will pursue a neo-Fregean approach. I suggest that 

we postulate mental computations operating over inherently meaningful mental representations. 

The rest of my discussion unpacks this suggestion. 

 

5. Semantic Permeation versus Semantic Indeterminacy 

To develop my approach, I introduce some terminology. An entity is semantically indeterminate 

when it does not have its meaning essentially. The entity could have had a different meaning 

without any change in its fundamental nature, identity, or essence. Fodorian formal syntactic 

types are semantically indeterminate. A formal syntactic type might express different 

representational contents, depending upon how it figures in the thinker’s mental activity or her 

causal relations to the environment. In contrast, an entity is semantically permeated when it has 

its meaning essentially. We cannot change its meaning while holding fixed its fundamental 

identity, nature, or essence. For example, we can postulate a mental representation  that 

necessarily denotes water, a mental representation  that necessarily denotes dogs, a mental 

representation  that necessarily denotes the number 0, and so on.
7
 

Mental representations are types. We cite them to taxonomize token mental states. The 

types are abstract entities corresponding to our classificatory procedures. A semantically 

indeterminate type corresponds to a taxonomic scheme that underdetermines representational 

content. Different tokens of a semantically indeterminate type can express different contents. A 

semantically permeated type corresponds to a taxonomic scheme that takes representational 

content into account. Each token of a semantically permeated type expresses a uniform content. 

                                                 
7
 Throughout my discussion, I use  to signal metalinguistic ascent. For example, “ ” denotes 

the mental representation , which in turn denotes the potable substance water. 
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Semantically permeated mental representations are either structured or primitive. 

Structured representations arise from applying compounding operations to primitive 

representations. For example, we can postulate a mental representation  that necessarily denotes 

the successor function and a mental representation  that necessarily denotes the addition 

function. We can then postulate an infinite array of structured mental numerals that arise from 

appropriately combining , , and : 

 is a numeral. 

 If w is a numeral, then w is a numeral. 

 If v and w are numerals, then v w  is a numeral. 

The denotation of a complex numeral follows compositionally from the denotations of its parts: 

w denotes the successor of the denotation of w. 

v w  denotes the sum of the denotations of v and w.  

Each complex numeral necessarily satisfies an appropriate clause from the compositional 

semantics. Thus, each complex numeral is semantically permeated. 

Semantically permeated taxonomization need not be transparent.  and  

both denote the number 4, but they are distinct types. Likewise, we can postulate distinct but co-

referring mental types  and . Distinct but co-referring types reflect different 

ways of representing the same denotation. 

A satisfactory development of the semantically permeated approach must elucidate how 

semantically permeated types are individuated. When do two token mental states share the same 

semantically permeated type? I want to leave room for conflicting answers to this question. But I 

follow Burge (2009) and Evans (1982, pp. 100-105) in assigning a central role to 

representational capacities. On my favored approach, we type-identify mental states by citing 
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representational capacities deployed by those states. We reify the relevant mental state types by 

positing semantically permeated mental representations. For example, I have a capacity to 

represent water. That capacity is deployed by my belief that water is thirst-quenching, my desire 

that I drink water, and other mental states. We posit the mental symbol  so as to capture 

what those states have distinctively in common: exercise of the relevant representational 

capacity. A token mental state has the type  only if it deploys this capacity, to do which it 

must represent water. So  has fixed representational import by its essential nature. 

By citing representational capacities, we illuminate what it is for semantically permeated 

mental representations to have “structure.” Their structure consists in the appropriate joint 

exercise of distinct capacities. To illustrate, imagine an idealized mathematical reasoning agent 

with capacities to represent 0, successor, and addition. We posit mental symbols , , and  so as 

to mark the exercise of those three capacities. The agent also has a capacity to apply functions to 

arguments. These four capacities yield complex capacities to represent natural numbers. 

Complex mental numerals mark the exercise of the resulting complex capacities. For example, 

mental numeral  marks the exercise of a complex capacity that deploys three capacities: 

 

A capacity to represent 0 

A capacity to represent the successor function (deployed four times) 

A capacity to apply a function to an argument (deployed four times) 

 

A mental state is a token of  only if it exercises this complex capacity, to do which it must 

satisfy the appropriate clause from the compositional semantics: 
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 denotes the successor of the successor of the successor of the successor of the 

denotation of . 

 

Mental numeral  marks the exercise of a complex capacity that combines the 

foregoing three capacities in a different way, along with a capacity to represent addition. 

As my examples illustrate, a single agent may have different capacities for representing 

the number 4. Similarly, an agent may have different capacities for representing water 

(representing it as water versus representing it as H20), or the planet Venus (representing it as 

Hesperus versus representing it as Phosphorus), and so on. Distinct but co-referring semantically 

permeated types correspond to different capacities for representing the same denotation. In that 

sense, the types reflect different “ways of representing” the denotation. 

A complete theory must elucidate the representational capacities through which we 

individuate semantically permeated types. But I am not trying to offer a complete theory. For 

present purposes, I simply assume that normal humans have various representational capacities. 

Current science amply vindicates that assumption. Cognitive science routinely type-identifies 

mental states through representational capacities deployed by those states. Each semantically 

permeated mental representation marks the exercise of a particular representational capacity. 

 

6. Mental Computation over a Semantically Permeated Language of Thought 

A computational model delineates counterfactual-supporting mechanical rules governing how a 

computational system transits between states. I claim that, in some cases, the rules describe 

manipulation of semantically permeated mental representations. We can type-identify mental 

computation through representational capacities deployed during each stage of computation. We 
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thereby delineate a psychological model that is both intentional and computational. In offering 

such a model, we need not mention formal mental syntax. Thus, CTM does not require us to 

associate each mental representation with formal syntactic properties.
8
 

 To illustrate, consider the mathematical reasoning agent introduced in §5. She can 

entertain infinitely many mental numerals, generated by combining mental symbols , , and . 

Let us stipulate that her computations conform to the following symbol transformation rules: for 

any numerals v and w, 

 

Rule A:  w     w 

Rule B:  v w     v w  

 

where the arrow signifies that one can substitute the right-hand side for the left-hand side. One 

can compute the sum of any two numbers by applying rules A and B. For example: 

 

   

  by rule B 

  by rule B

by rule A

 

                                                 
8
 Fodor (1981, pp. 226-227) holds that a physical system is computational only if it has representational properties 

(“no computation without representation”). Chalmers demurs, and rightly so. I do not claim that computation 

requires representation. I claim that some computational models specify computations representationally, without 

any mention of formal syntactic types. In this respect, I disagree with both Chalmers and Fodor. Despite their 

differences, both philosophers agree that every computational model features a level of purely syntactic, non-

semantic description. 
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A and B are mechanical rules that dictate how to manipulate inherently meaningful mental 

symbols. They describe transitions among mental states type-identified through the 

representational capacities that those states exercise.

 I stated rules A and B by inscribing geometric shapes on the page. Geometric shapes are 

subject to arbitrary reinterpretation, so they are semantically indeterminate. But our question 

concerns the mental symbols that geometric shapes represent. I am using geometric shapes to 

mention mental symbols. Do those symbols have formal syntactic types? Nothing about rules A 

and B suggests an affirmative answer. Admittedly, one can articulate analogous rules that 

describe formal manipulation of geometric shapes. Those analogous rules mention geometric 

shapes. Nevertheless, rules A and B do not mention geometric shapes or any other semantically 

indeterminate types. 

 I propose that we take rules A and B as paradigmatic. We should describe various mental 

processes through mechanical rules that cite semantically permeated mental representations, 

without any mention of semantically indeterminate syntactic types. 

 Many readers will regard my proposal warily. How can semantics inform mental 

computation, except as mediated by formal syntax? My proposal may seem especially suspect 

when combined with an externalist conception of mental content. As Fodor puts it, “the effects 

of semantic identities and differences on mental processes must always be mediated by ‘local’ 

properties of mental representations, hence by their nonsemantic properties assuming that 

semantics is externalist” (1994, p. 107). Mustn’t computation manipulate mental representations 

based solely upon their “local” properties, ignoring any relations to the external environment? 

 I agree that mental representations have local, non-semantic properties: namely, neural 

properties. I agree that mental computation distinguishes mental representations through their 
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neural properties. On that basis, it manipulates the representations appropriately. Thus, I agree 

that semantic identities and differences inform mental processes only as mediated by local, non-

semantic, neural properties. It does not follow that mental representations have formal syntactic 

properties. Syntax is multiply realizable in Putnam’s (1975) sense: systems with wildly different 

physical properties can satisfy the same syntactic description. In particular, systems that are 

heterogeneous under neural description may share the same syntactic properties. Multiple 

realizability plays a central role in standard versions of CTM (Fodor, 1981, p. 13), (Haugeland, 

1985, p. 5), (Stich, 1983, p. 151). It crucially informs Chalmers’s treatment, since organizational 

invariant properties are multiply realizable. In contrast, neural properties are not multiply 

realizable. So neural properties are not syntactic properties. The undisputed fact that mental 

computation responds to local properties does not establish a valuable explanatory role for 

formal mental syntax. The relevant local properties may be neural rather than syntactic.
9
 

 Current science provides strong evidence that a complete theory of the mind will include 

at least two levels of description: representational description and neural description. Fodor 

insists that a complete theory will include an additional level that taxonomizes mental states in 

formal syntactic terms, without regard to neural or representational properties. Yet there are 

numerous mental processes that current science studies without positing formal syntactic types. 

For example, formal mental syntax plays no role within our best science of perception. From the 

perspective of current perceptual psychology, formal mental syntax is a gratuitous theoretical 

posit. Thus, current science provides no evidence that formal syntactic descriptions should figure 

in computational modeling of all mental phenomena. 

                                                 
9
 The philosophical literature offers additional well-known arguments for postulating formal mental syntax. A 

complete defense of my approach would scrutinize all such arguments, a task that I defer for another occasion. 
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 I now want to elaborate the semantically permeated approach by examining case studies 

drawn from CS and AI. In §7, I analyze a powerful computational model of mathematical 

reasoning. In §8, I extend my analysis to empirical cognition. The case studies demonstrate how 

much one can achieve through computational models that cite representational capacities as 

opposed to formal mental syntax. In particular, the case studies show that semantically 

permeated computation can provide a foundation for Bayesian psychological modeling. 

 

7. The lambda calculus as a programming language 

The lambda calculus, introduced by Church in the 1930s, embodies an elegant model of 

symbolic computation that informs many modern functional programming languages. I will 

discuss one notable example: the language PCF (for programming computable functions), 

introduced by Scott in a privately circulated 1969 manuscript eventually published as (Scott, 

1993). PCF can represent all Turing-computable numerical functions, not to mention diverse 

higher-type functions (e.g. functions over numerical functions). The language is useful primarily 

for theoretical analysis, rather than practical programming purposes. My presentation of PCF is 

informal and incomplete. See (Mitchell, 1996) for full details.
10

 

 PCF contains primitive symbols, including , , , , … and devices for generating 

complex expressions. One notable device is lambda abstraction. For example, 

denotes the function that maps each natural number n to 2n. Another notable device is functional 

application. For example, denotes the result of applying the doubling function 

to 2. Denotations of PCF expressions are determined compositionally: 

 

                                                 
10

 Technically, PCF extends the pure simply-typed lambda calculus with primitive numerals, primitive Boolean 

terms, and fixed point operators at each type. 
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If expression M contains no free variables except , then expression  M denotes the 

function over domain  that carries each d to whatever M denotes once we assign 

value d to all free occurrences of . 

 

If expression M denotes a function, then expression M N denotes the result of applying 

that function to the input denoted by expression N. 

 

One can convert these informal clauses into a rigorous denotational semantics. One can use the 

semantics to prove various intuitive facts, such as that denotes 4.
11

 

 PCF comes equipped with an operational semantics, due to (Plotkin, 1977). As Fodor 

(1981, pp. 204-224) notes, “operational semantics” is not a semantics in the most familiar 

philosophical sense, because it does not concern reference, truth-conditions, or the like. It simply 

offers mechanical rules governing symbol transformation. For example, the  rule is 

 

  M  N    [N / ] M 

 

where the expression on the right is the result of substituting N for all free occurrences of  

within M. There are additional transformation rules governing other PCF locutions. The 

transformation rules generate mathematical computations, such as the following: 

                                                 
11

 Several complexities arise in providing a rigorous denotational semantics. First, one must employ familiar 

Tarskian techniques so as to handle free variables. Second, the language has a type structure, which one must treat 

more gingerly than I do in my informal exposition. Third, and most seriously, the language expresses recursive 

definitions through primitive fixed point operators at each type. The semantics for fixed point operators requires 

serious machinery too complicated to discuss here (Mitchell, 1996, pp. 305-333). Taking such complexities into 

account would muddy the exposition without affecting my overall argument. 
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    by the  rule 

    by the transformation rules for  

 

I write M * N when we can transform M into N through iterated application of transformation 

rules. Thus,  * . By specifying a canonical order for applying transformation 

rules, we delineate a deterministic symbol manipulation model (Mitchell, 1996, pp. 84-96).
12

 

 PCF’s denotational semantics is no mere rhetorical appendage to its operational 

semantics. As Scott emphasizes (1993, p. 413), denotational semantics is what elevates PCF 

from a formal calculus to a model of mathematical reasoning. Denotational semantics provides a 

standard for evaluating whether the operational semantics is satisfactory. Transformation rules 

must honor the intuitive meanings of PCF expressions, as codified by the denotational semantics. 

Two theorems reflect this desideratum (Gunter, 1992, pp. 133-137): 

 

Soundness: If M * , then M denotes n. 

 

Computational adequacy: If M denotes n, then M * . 

 

Failure of soundness would entail that our operational semantics yields incorrect results. Failure 

of computational adequacy would entail that our transformation rules do not generate all the 

computations we want them to generate. 

                                                 
12

 Almost deterministic. The technical definition of “substitution” engenders a subtle element of indeterminacy 

(Mitchell, pp. 53-54). 
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 I have represented PCF expressions through strings of shapes. But PCF expressions are 

not strings of shapes. Strings of shapes enshrine extraneous notational detail (Gunter, 1992, pp. 

32-34), (Mitchell, 2006, pp. 21-26). For example, we can represent the same expression using 

prefix, infix, or postfix notation. To minimize extraneous notational detail, computer scientists 

often employ parse tree diagrams. Adapting Gunter’s (1992, p. 33) notation, we replace the 

string “ ” with the tree diagram 

 

Yet even this tree diagram contains extraneous detail. It uses arbitrary shapes, which we could 

vary while representing the same underlying PCF expression. The diagram reads from left to 

right, but we could instead use a diagram that reads from right to left. Analogous problems arise 

if we replace tree diagrams with set-theoretic trees, i.e. partially ordered sets. There are various 

set-theoretic techniques for encoding the ordered pairs that compose a partial ordering. We can 

change our set-theoretic representation without changing the underlying expression. 

So what is the underlying expression? In my opinion, CS does not answer this question. 

CS offers a formalism subject to conflicting analyses. Chalmers’s theory suggests one analysis: 

 

app 

  

 app 
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A PCF expression is individuated by its role in symbol transformation. The operational 

semantics for PCF dictates a unique causal topology. A PCF expression is an item that 

plays the right role in this causal topology. The causal topology does not fix a unique  

denotational semantics. 

 

On this analysis, PCF expressions are semantically indeterminate. They are formal syntactic 

items subject to reinterpretation. The operational semantics describes formal syntactic 

manipulation, without regard to any meanings syntactic items may have. 

Alternatively, we can construe PCF in semantically permeated fashion. We can construe 

it as modeling how an idealized cognitive agent transits among representational mental states: 

 

The agent has capacities to represent certain mathematical entities. Each PCF expression 

marks the exercise of a representational capacity. Primitive expressions correspond to 

capacities that we take as primitive (for present purposes). Complex expressions 

correspond to complex capacities that decompose into the exercise of simpler capacities. 

The operational semantics delineates mechanical rules governing the manipulation of 

these semantically permeated types. 

 

To illustrate, consider the tree diagram inscribed above: 

 

- The agent has a capacity to apply functions to arguments. Each “app” node registers 

an exercise of this capacity. 
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-  corresponds to a capacity to represent objects drawn from the overall domain, 

including natural numbers, numerical functions, and so on. 

-  corresponds to a capacity to represent the addition function. 

- The foregoing three capacities jointly yield a complex capacity to add any natural 

number to itself. More precisely, they yield a capacity to convert any numerical input 

n into a numerical output 2n. The subexpression 

 

corresponds to this complex capacity. 

-  corresponds to a capacity C that satisfies the following constraint: given a 

capacity C* to convert numerical inputs into numerical outputs, C and C* jointly 

yield a capacity to represent the corresponding numerical function. 

- The foregoing five capacities jointly yield a complex capacity to represent the 

doubling function. The subexpression 

 

corresponds to this complex capacity. 

 app 

      

 app 
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-  corresponds to a capacity to represent the number 2. We might decompose this 

capacity into more primitive capacities (e.g. capacities to represent 0 and the 

successor operation). For present purposes, we take it as primitive. 

- The foregoing seven capacities jointly yield a complex capacity to apply the doubling 

function to 2. The main PCF expression corresponds to this complex capacity. 

 

PCF expressions mark the exercise of representational capacities, so they determine specific 

representational contents. For example,  necessarily denotes 2, while  necessarily 

denotes the doubling function. 

 Say that a function is PCF-definable just in case some PCF expression denotes it under 

the standard denotational semantics. (One can prove that a numerical function is PCF-definable 

just in case it is Turing-computable.) We can characterize PCF-definability in the same way 

whether we employ semantically indeterminate or permeated taxonomization. On either 

approach, the same functions are PCF-definable. Thus, the notion of PCF-definability does not 

favor semantic indeterminacy over semantic permeation.
13

 

PCF’s operational semantics is similarly indifferent between semantically indeterminate 

and permeated taxonomization. We can construe the  rule as describing how to manipulate 

formal syntactic items. Alternatively, we can construe it as describing how to manipulate 

inherently meaningful mental representations. Under the latter construal, the rule dictates how to 

transit between mental states individuated by the representational capacities those states deploy. 

To illustrate, consider the following instance of : 

                                                 
13

 If we countenance PCF-definability relative to sufficiently deviant semantic interpretations, then intuitively 

uncomputable functions become PCF-definable (Rescorla, 2007). However, the possibility of deviant semantic 

interpretations does not militate against semantic permeation. It merely demonstrates that one should not individuate 

semantically permeated types through a deviant denotational semantics, any more than one should interpret 

semantically indeterminate types through a deviant denotational semantics. 
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A description along these lines is too schematic to favor semantic indeterminacy or permeation. 

To choose between the two construals, one must say how one interprets tree diagrams. Of course, 

tree diagrams themselves are semantically indeterminate. But our question is how one should 

individuate the linguistic items that tree diagrams represent. 

 Computer scientists usually employ a semantically indeterminate individuative scheme 

for PCF expressions. They study diverse mathematical structures through which one can 

interpret PCF (Longley, 2005), (Mitchell, 1996, pp. 355-385, pp. 445-505). The denotational 

semantics sketched above furnishes one such mathematical structure: the standard model. This 

model contains numbers, numerical functions, functions of higher type, and so on. Alternative 

models contain quite different entities, such as game strategies or codes for Turing machines. 

There are notable mathematical results concerning these alternative models. Thus, the 

semantically indeterminate taxonomic scheme has proved mathematically fruitful. 

Nevertheless, semantic indeterminacy is not obligatory. PCF’s operational semantics 

does not mandate that we individuate PCF expressions entirely through the operational 

semantics. The operational semantics is consistent with a taxonomic scheme that takes a specific 

app 

 app 

    

 app 
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denotational semantics into account. We can employ this taxonomic scheme when modeling the 

mathematical cognition of an idealized agent. The agent’s computations deploy standing 

capacities to represent specific mathematical entities. Alternative interpretations are irrelevant, 

because we are studying mental activity that deploys fixed, standing representational capacities. 

Those standing capacities determine a unique denotational semantics, which we cite when 

individuating the agent’s mental computations. Using PCF’s operational semantics, we specify 

mechanical transformation rules over semantically permeated types. We thereby delineate 

transitions among mental states type-identified through their representational import. In 

describing those transitions, we will undoubtedly use semantically indeterminate inscriptions. 

But we need not attribute semantically indeterminate syntactic types to the agent’s mental states. 

My position here goes far beyond the weak claim that we can describe PCF computation 

in representational terms. Chalmers and Fodor would presumably agree with that weak claim. 

My position is that nothing about PCF’s operational semantics mandates an explanatorily 

significant role for formal mental syntax. Mechanical transition rules governing mental 

computation can appeal instead to representational capacities deployed by mental states. 

 

8. Computational Foundations for Bayesian Inference 

The previous section focused upon computations that represent the mathematical realm. How 

does the semantically permeated approach apply to computations that represent the empirical 

realm? In particular, how does it apply to Bayesian mental inference? To address these questions, 

I will examine some computational models drawn from AI. Over the past two decades, AI 

researchers have intensively studied how to implement Bayesian inference in a high-level 
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programming language. This research illuminates how a possible mind (if not actual human 

minds) can implement Bayesian inferences resembling those postulated within cognitive science. 

 As many researchers have emphasized, Bayesian inference is often hopelessly inefficient. 

If the probability domain is continuous, then computing the constant  in 

 

p(h | e) =  p(h) p(e | h) 

 

requires integrating over the domain, a task which may be computationally intractable. Even 

when the domain is finite but extremely large, computing  may be computationally intractable. 

To construct computationally tractable models, we must resign ourselves to approximating 

precise Bayesian inference. AI offers several approximation strategies. 

  

8.1 Example: Importance Sampling 

A probability function is a function from a probability domain to the real numbers.
14

 The Monte 

Carlo method approximates a probability function through samples drawn from the probability 

domain. The samples serve as a proxy for the function. We compute over the samples, thereby 

approximating computation over the probability function. The more samples we generate, the 

more accurate our approximation. 

 Using the Monte Carlo method, we can approximate conditionalization through an 

importance sampling algorithm (Park, Pfenning, and Thrun, 2008): 

- Sample: Draw n samples h1, …, hn from the probability domain. The probability of 

drawing hi is proportional to p(hi). We may draw a sample multiple times. 

                                                 
14

 By using the deliberately vague terms “probability function” and “probability domain,” I conflate probability 

measures, probability distributions, and probability density functions. These distinctions are crucial for many 

purposes (Rescorla, forthcoming c), but we can safely ignore them here. 
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- Weight: Assign weight wi to hi, in proportion to the prior likelihood: 

wi  p(e | hi). 

 We now have a list of n weighted samples: (h1, w1), …, (hn, wn). 

- Resample: Draw n samples 
nmmm hhh ,,,

21
 from the foregoing list. The probability of 

drawing a given sample hi is determined by the weights. Once again, we may draw a 

sample multiple times. 

One can show that the probability of hi appearing on the final list is approximately proportional 

to the posterior p(hi | e). Thus, the list is a good proxy for the posterior.  

 

 The importance sampling algorithm presupposes a capacity to sample from a domain in 

accord with a prior probability over that domain. The algorithm also presupposes a capacity to 

assign weights in accord with a prior likelihood, along with a capacity to resample according to 

the assigned weights. There is no obvious respect in which these capacities require formal 

syntactic manipulation. There is no obvious respect in which the algorithm mandates that one 

manipulate formal syntactic types. The algorithm can operate over formal syntactic types, but it 

can operate just as well over semantically permeated mental representations. 

 A similar moral prevails when we implement importance sampling through a high-level 

programming language. I illustrate by discussing a particularly instructive case study. 

 

8.2 Example: A Probabilistic Extension of the Lambda Calculus 

The language , introduced by Park, Pfenning, and Thrun (2008), augments the lambda calculus 

with resources for representing and manipulating probability functions. To represent a 

probability function,  specifies a procedure for drawing samples from the probability domain. 
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 specifies sampling procedures through sampling expressions. A sampling expression E 

consumes a string of random real numbers and outputs an element of the probability domain. The 

output depends on the random real numbers consumed. Thus,  computation is stochastic. The 

expression  E denotes the probability function induced by sampling expression E: 

 

If E is a sampling expression and Prob is a probability function, then “[w]e write E  

Prob if outcomes of computing E are distributed according to Prob… If E  Prob, then E 

denotes a probabilistic computation for generating samples from Prob, and we regard 

Prob as the denotation of  E” (Park, Pfenning, and Thrun, 2008, p. 19).
15

 

 

For example, if outcomes of evaluating E are distributed according to a Gaussian distribution, 

then  E denotes a Gaussian distribution. In this manner,  can represent virtually any 

probability function one might reasonably require.  

The operational semantics for  resembles that for PCF. The main difference is that  

features new transformation rules governing new vocabulary. In particular,  features an 

importance sampling rule that approximates Bayesian updating. To illustrate, consider a prior 

probability p(h) and a prior likelihood p(e | h). We represent p(h) through a  expression Mprior. 

We capture p(e | h) through a  expression Mlikelihood that represents a function from inputs e to 

probability functions over h. The operational semantics engenders a stochastic computation that 

transforms Mprior, Mlikelihood, and input e into an expression: 

                                                 
15

 I have reformatted the quoted passage to ensure conformity with my formatting conventions. One can easily 

convert this informal clause into a rigorous denotational semantics for the substantial fragment of  that excludes 

fixed point operators and higher-order type expressions (Park, Pfenning, and Thrun, 2008, pp. 21-23). A formal 

semantics for the full language should be possible in principle, but many technical details require investigation. For 

example, there may exist pathological expressions that do not determine probability distributions. 
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(*)  

 

where  and  are computed as in the importance sampling algorithm. 

is a sampling expression. It instructs us to draw samples  in accord with weights . So (*) 

denotes a probability function that approximates the desired posterior p(h | e).  

 

  is a purely mathematical language. Thus, it cannot represent a probability function 

over an empirical domain.
 
It can only represent a probability function over a mathematical 

domain, such as the real numbers. In itself, then,  cannot provide a foundation for the Bayesian 

models postulated by cognitive science. Those models postulate probabilistic updating over 

hypotheses that represent environmental properties: shapes, reflectances, and so on. To represent 

the desired probability functions, we must supplement  with resources for representing desired 

environmental properties. For example, we can supplement  with symbols 1, 2, …, i, …, 

where each i represents a specific surface reflectance Ri. 

Once we supplement  with suitable empirical vocabulary, we can define probability 

functions over the desired empirical domain. The most straightforward strategy is to assume a 

fixed mapping from a suitable mathematical domain (e.g. n-tuples of real numbers) to the desired 

empirical domain (e.g. reflectances). Using this mapping, we can convert any sampling 

procedure defined over the mathematical domain into a sampling procedure defined over the 

empirical domain. More specifically, suppose that expression E represents a procedure for 

sampling elements from the mathematical domain, and suppose that expression F represents a 

fixed mapping from the mathematical domain to the empirical domain. By applying function 
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composition, we can construct an expression EF that represents a procedure for sampling 

elements from the empirical domain. In this manner, we can define diverse expressions EF that 

denote sampling procedures over the empirical domain. So we can define diverse expressions 

 EF that denote probability functions over that domain. We can then approximate our desired 

Bayesian model through symbolic transformations governed by ’s operational semantics. 

 The operational semantics is compatible with either semantically indeterminate or 

semantically permeated taxonomization.  merely supplements PCF-style transformation rules 

with a few additional rules governing new vocabulary, including a rule that formalizes 

importance sampling. As with PCF, we can construe the transformation rules as describing how 

to manipulate formal syntactic items, or we can construe them as describing how to manipulate 

inherently meaningful mental representations. Under the latter construal, the rules govern 

transitions among mental states type-identified by the representational capacities those states 

deploy. Admittedly, ’s creators seem to have in mind a semantically indeterminate rather than 

semantically permeated taxonomic scheme. Nevertheless, both taxonomic schemes are equally 

consistent with the operational semantics. 

 To illustrate, imagine a hypothetical Bayesian agent who executes  computation. She 

has capacities to represent various environmental properties: shapes, reflectances, etc. We type-

identify her mental states by citing these and other representational capacities. We reify the 

resulting mental state types by positing semantically permeated mental representations: 

 

- We postulate semantically permeated representations 1, 2, …, i, …, where each i 

corresponds to a capacity to represent a specific reflectance Ri. A token mental state 

has type i only if it deploys that capacity, to do which it must represent Ri. All 
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possible tokens of i denote Ri. Likewise, we postulate semantically permeated 

representations that necessarily represent specific shapes, sizes, and so on. 

- Given a capacity to represent elements of domain D, the agent can deploy ’s 

mathematical resources to represent procedures for sampling from D. Each sampling 

expression E corresponds to a capacity to sample in a certain way from a domain D. 

-  corresponds to a capacity C that satisfies the following constraint: if C* is a 

capacity for sampling from domain D, and if exercises of C* yield outcomes 

distributed according to probability function Prob over D, then C and C* jointly yield 

a capacity to represent Prob. 

- The foregoing capacities jointly yield a complex capacity to represent a probability 

function Prob, where outcomes of evaluating E are distributed according to Prob. The 

expression  E corresponds to this complex capacity. 

 

Thus,  necessarily satisfies the following compositional clause: 

 

If there exists a probability function Prob such that outcomes of evaluating E are 

distributed according to Prob, then  E denotes Prob. 

 

The agent computes over semantically permeated mental representations. She thereby 

approximately implements Bayesian inference. 

 More specifically, consider a Bayesian model of surface reflectance estimation. The 

model postulates prior probabilities over reflectances and illuminants. It postulates a prior 

likelihood relating reflectances, illuminants, and retinal inputs. It describes the perceptual system 
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as converting these priors and retinal input into a posterior over reflectances. We do not yet 

know how exactly the human perceptual system executes (or approximately executes) this 

Bayesian inference. But we can delineate a computational model describing one possible way 

that a hypothetical perceptual system might approximately execute the desired inference: 

 

(1) Postulate semantically permeated representations 1, 2, …, i, … and 1, 2, …, i, … 

Each i corresponds to a capacity to represent a reflectance Ri. Each i corresponds to 

a capacity to represent an illuminant Ii. 

(2) Using ’s representational resources, supplemented as in (1), construct diverse 

semantically permeated sampling expressions E. Each expression corresponds to a 

capacity to sample from the set of reflectances or the set of illuminants. 

(3) Construct semantically permeated expressions  E. Each expression corresponds to 

a capacity to represent a probability function over reflectances or over illuminants. 

(4) Choose specific semantically permeated expressions Mreflectance prior, Milluminant prior, and 

Mlikelihood denoting the reflectance prior, the illuminant prior, and the prior likelihood. 

(5) Using ’s operational semantics, delineate symbol transformation rules governing 

perceptual inference. The resulting computations respond to retinal input by 

transforming Mreflectance prior, Milluminant prior, and Mlikelihood into a new expression 

. The new expression denotes a probability function 

Prob over reflectances, where Prob approximates the desired posterior probability. 
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A model along these lines need not assign any role to formal mental syntax. The transformation 

rules do not associate mental states with formal syntactic types. Instead, they individuate mental 

states through the representational capacities that those states exercise. 

 I have sketched how a hypothetical computational system might approximately 

implement Bayesian inference. To what extent do the resulting computations resemble actual 

human mental activity? This question is difficult to answer, because we know very little about 

the computations through which humans approximately implement Bayesian updating. However, 

several psychologists argue that Monte Carlo algorithms play a central role in human Bayesian 

inference, including perceptual inference (Gershman, Vul, and Tenenbaum, 2012). A few 

psychologists suggest that the lambda calculus may provide a scaffolding for the language of 

thought (Piantadosi, Tenenbaum, and Goodman, 2012). So the proposed computational model 

finds some grounding in current science. On the other hand, normal human minds probably 

cannot harness the full mathematical power of , which represents a vast range of higher-type 

functions. In that respect, the computational model seems unrealistic. 

I do not present the model as an empirical hypothesis. I offer it as an existence proof: 

there exist semantically permeated computational models that tractably approximate Bayesian 

inference. In principle, then, semantically permeated computation can provide a foundation for 

Bayesian psychological modeling. Future scientific progress will reveal whether semantically 

permeated computation provides an empirically well-confirmed foundation.  

 

9. Representational Capacities versus Causal Topologies 

Philosophers usually take computational modeling to embody an internalist template that ignores 

matters outside the subject’s skin (Fodor, 1981). I have presented an alternative externalist 
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version of CTM. On my approach, computational models can individuate mental states through 

representational properties that do not supervene upon internal neurophysiology. Naturally, there 

is an important level of description that type-identifies neural duplicates: namely, neural 

description. A complete cognitive science will unveil the neural mechanisms that implement 

semantically permeated mental computation. The question is whether we require computational 

descriptions that prescind from neural and representational details. Should we posit formal 

syntactic types or any other semantically indeterminate, multiply realizable items? My externalist 

version of CTM requires no such items. 

You may ask: how can a system “know” whether the symbols it manipulates have 

appropriate representational properties? Am I presupposing an inner homunculus who inspects a 

mental symbol’s meaning before deciding how to manipulate the symbol? 

I reply that a system can conform to representationally-specified rules even if the system 

does not interpret the symbols it manipulates. My approach does not require that the mind 

examine its own representational relations to the environment. I do not posit an inner 

homunculus who inspects a mental symbol’s meaning. For example, §8’s model of color 

perception does not require the perceptual system to evaluate whether i represents reflectance Ri 

or Rj. The model simply postulates certain representational capacities (e.g. standing capacities to 

represent specific reflectances), reliably deployed in response to retinal input. The model 

articulates mechanical rules governing deployment of those capacities. The rules operate over 

semantically permeated types, which mark the exercise of representational capacities. 

Conformity to the rules does not require the system to interpret its own mental representations. 

Given current scientific knowledge, a semantically permeated version of CTM is 

speculative. But it is no more speculative than Chalmers’s semantically indeterminate account. 
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Furthermore, it offers a crucial advantage: it preserves the representational explanatory paradigm 

widely employed within current science. Chalmers replaces that paradigm with an 

organizationally invariant alternative that finds no echo within Bayesian psychology. I have 

shown that we can model the mind computationally while avoiding Chalmers’s radical 

revisionism. We can integrate intentionality directly into computational models of mental 

activity, without articulating an organizationally invariant level of description. 

Chalmers might retort that semantically permeated models are not genuinely mechanical. 

But I see no reason to agree. The semantically permeated symbol transformation rules isolated 

above seem as precise, routine, and mechanical as one could desire. Any argument to the 

contrary requires an independent, non-question-begging criterion of the “mechanical.” I find no 

such criterion in Chalmers’s discussion. Certainly, no such criterion emerges from the 

mathematical study of computation (including CS and AI). On the contrary, numerous 

mathematical models of computation are perfectly congenial to semantically permeated 

computation. I submit that mechanical rules can individuate computational states in 

representational fashion. Genuinely mechanistic explanations can proceed at the representational 

level rather than the organizationally invariant level.
16

 

 Chalmers and I agree that minds have causal topologies. We agree that minds have 

representational capacities. Our disagreement concerns whether causal topologies or 

representational capacities will prove central to a developed science of the mind. I contend that 

many mental phenomena are best studied by citing representational capacities rather than causal 

                                                 
16

 A popular view holds that computational operations are sensitive to syntax but not semantics (Fodor, 1981, p. 

231), (Fodor, 1987, p. 19). This view assigns formal syntax a privileged causal role within computational modeling. 

In (Rescorla, forthcoming d), I argue that computational operations can be just as “sensitive” to semantics as to 

syntax. Thus, computational theories framed at the representational level can be genuinely causal. Formal syntax is 

no better suited than mental content to “drive computation forward.” 
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topologies. In contrast, Chalmers elevates causal topologies at the expense of representational 

capacities. Future scientific developments will settle which paradigm is more fruitful. 
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