

Copeland and Proudfoot on Computability

Michael Rescorla

Abstract: Many philosophers contend that Turing’s work provides a conceptual analysis of

numerical computability. In (Rescorla, 2007), I dissented. I argued that the problem of deviant

notations stymies existing attempts at conceptual analysis. Copeland and Proudfoot respond to

my critique. I argue that their putative solution does not succeed. We are still awaiting a genuine

conceptual analysis.

Keywords: computation; Church’s thesis; deviant notation; Turing machine

§1. Deviant notations

 Many philosophers contend that Turing’s (1936) work provides a conceptual analysis of

our intuitive concept number-theoretic computability. In (Rescorla, 2007), I dissented. I argued

that Turing captures the intuitive concept’s extension, but I questioned whether he successfully

analyzes the concept itself. My argument exploited the phenomenon of deviant notations.
1
 If we

impose a deviant interpretation upon numerals manipulated during Turing computation, then

Turing machines can “compute” intuitively non-computable numerical functions. For instance,

given any set X of natural numbers, there is a semantic interpretation dX relative to which some

Turing machine “computes” X’s characteristic function. One can avoid such deviant cases by

1
 For earlier discussion of deviant notations, see (Shapiro, 1982).

 2

demanding that the semantic relation between numerals and numbers itself be intuitively

computable. But this response introduces a circularity, since it elucidates intuitive computability

of numerical functions by presupposing intuitive computability of semantic interpretations. I

critiqued various attempts at avoiding this circularity. I argued that those attempts either

engender circularity or else frustrate the aims of conceptual analysis in other ways.

Copeland and Proudfoot respond to my critique: “the problem of deviant encodings is

easily solved --- and indeed was solved by Turing” (2010, p. 247). I will argue that the putative

solution offered by Copeland and Proudfoot does not succeed. The proposal avoids circularity,

but it fails in other ways. We are still awaiting a genuine conceptual analysis.

§2. The blank tape restriction

In (Rescorla, 2007), I employed what one might call the input-output conception of

numerical computation: to compute a numerical function, one begins with a symbolic input

(representing the function’s input), and one executes a mechanical procedure that converts the

symbolic input into a symbolic output (representing the function’s output). I applied the input-

output conception to Turing computation. I imagined a Turing machine that begins computation

with a numeral inscribed on its machine tape (representing the input to a numerical function),

eventually halting with a numeral inscribed on the machine tape (representing the numerical

function’s output).

Copeland and Proudfoot suggest that we should abandon this picture of computation.

They endorse what they call the blank tape restriction, which demands that Turing machines

begin computation with a blank tape. The input-output conception violates the blank tape

restriction, by assuming that computation begins with a non-blank tape. Thus, as Copeland and

 3

Proudfoot observe, the blank tape restriction precludes the particular deviant computations I

considered in (Rescorla, 2007). Copeland and Proudfoot replace the input-output conception

with what one might call the enumeration conception: a Turing machine begins with a blank tape

and sequentially enumerates symbolic representations of a numerical function’s outputs. As they

note, Turing himself employs the enumeration conception.

The enumeration conception describes a class of legitimate numerical computations. But

so does the input-output conception. Indeed, virtually all recursion theory textbooks employ the

input-output conception. They describe Turing-computation of numerical functions as converting

symbolic inputs (hence, non-blank tape configurations) into symbolic outputs (Rogers, 1987, pp.

13-16), (Soare, 1987, pp. 11-13). If we impose the blank tape restriction, then we must radically

revise contemporary practice within recursion theory. I see no intuitive basis for such a revision.

On the contrary, numerous intuitive algorithms (e.g. the grade school multiplication algorithm)

describe how to convert symbolic inputs into symbolic outputs. Thus, I see no intuitive basis for

demanding that computation begin with null input. The blank tape restriction is unacceptable,

when regarded as a constraint upon computation in general.

 More importantly, the blank tape restriction does not solve the problem of deviant

notations. It avoids the particular examples discussed in (Rescorla, 2007). However, as Copeland

and Proudfoot admit, one can readily construct alternative deviant notations that circumvent it (p.

251). Even if one employs the enumeration conception, there exists a deviant interpretation

relative to which some Turing machine “computes” an uncomputable function.

§3. Turing’s Notational Thesis

 4

 For this reason, Copeland and Proudfoot supplement the blank tape restriction with a

further constraint on computation. Once again, they extract this constraint from Turing’s original

discussion. Unary notation uses a string of n strokes to denote the number n. As Copeland and

Proudfoot note (p. 251),

(*) A number-theoretic function is computable just in case a Turing machine (with an

initially blank tape) is able to print, in order, unary representations of all the values of the

function, separated by 0s.

Copeland and Proudfoot call this encoding scheme Turing-unary notation. They propose that we

analyze intuitive computability as Turing-computability relative to Turing-unary notation. To

support their analysis, they articulate a doctrine that they call Turing’s Notational Thesis (TNT):

Any job of work that can be done by a human computer engaged in numerical calculation

can be carried out equivalently by a human computer employing Turing-unary notation.

They describe TNT as “the foundation upon which Turing’s definition of a computable number-

theoretic function rests” (p. 251).

 In (Rescorla, 2007, p. 264), I critiqued a closely related proposal, geared towards the

input-output rather than the enumeration conception. My critique evidently did not convince

Copeland and Proudfoot, though they do not say why exactly they found it lacking. In any event,

here are my reasons for rejecting the specific proposal offered by Copeland and Proudfoot.

 I do not doubt that (*) is true. I question whether it yields a conceptual analysis. A

conceptual analysis must achieve more than extensional adequacy. It must “capture the meaning”

of the target concept. To illustrate, say that a numerical function is Kleene-computable iff we can

obtain it from the primitive recursive functions through function composition and licensed

application of the unbounded leastness operator . A numerical function is Kleene-computable

 5

iff it is Turing-computable relative to unary notation.
2
 Church’s thesis states that a numerical

function is intuitively computable iff it is Turing-computable relative to unary notation.

Assuming Church’s thesis, Kleene-computability is an extensionally adequate characterization of

intuitive numerical computability. For many mathematical purposes, it is a very useful

characterization. However, few commentators would recommend Kleene-computability as a

conceptual analysis of the intuitive concept. Few would claim that it captures the meaning of the

intuitive concept. Our question is whether (*) fares any better at capturing that meaning.

A basic problem here is that diverse notations yield equally true analogues to (*). For

instance, a Turing machine might employ binary notation, Arabic decimal notation, Roman

numeral notation, or any other linear notation. We need merely expand the “tape alphabet”

accordingly. Copeland and Proudfoot provide no compelling reason to privilege unary notation

over these alternative notations.

 More carefully, let us say that a notation for the natural numbers is intuitively computable

iff there is a mechanical procedure for computing which number each notational element

denotes. Of course, executing such a mechanical procedure requires an ability to represent

numbers, either in one’s own thought or through some concrete notation. All the standard

numerical notations employed throughout human history are intuitively computable. On the other

hand, the deviant notations dX considered in (Rescorla, 2007) are not intuitively computable.

 I assume that all relevant notations are injective. I also assume a special symbol “¶” that

is absent from each relevant notation N. For each notation N, I say that a Turing machine

computes a numerical function in Turing-N notation iff the machine successively prints the

function’s values, as represented in notation N and separated by “¶”s. For uniformity, I tweak the

definition of Turing-unary notation so that “¶” rather than “0” separates successive numerals.

2
 This result follows readily from Kleene’s Normal Form Theorem.

 6

Clearly, this tweak does not bias my case. Copeland and Proudfoot propose that we analyze

intuitively computability as:

Comp(unary): Turing-computability relative to Turing-unary notation.

But we could just as well propose one of the following analyses:

Comp(binary): Turing-computability relative to Turing-binary notation

Comp(Arabic): Turing-computability relative to Turing-Arabic-decimal notation

Comp(Roman): Turing-computability relative to Turing-Roman-Numeral notation

or, more generally,

Comp(N): Turing-computability relative to Turing-N notation,

for any linear, intuitively computable notation N. We can easily show that these rival analyses

Comp(N) are extensionally equivalent:

Lemma: If notations N1 and N2 are linear and intuitively computable, then any function that

satisfies Comp(N1) also satisfies Comp(N2).

Proof sketch: Since both notations are intuitively computable, there is a mechanical procedure

for translating between them. By an analogue of Church’s thesis for purely syntactic functions,

we can construct a Turing machine that executes the translation: given some element from N1 as

input, the machine yields as output the corresponding element of N2. (In any given case, we can

directly construct this Turing machine without citing Church’s thesis.) Now suppose that Turing

machine T computes numerical function f relative to Turing-N1 notation. In other words, T

enumerates f’s values in notation N1, separated by “¶”s. Modify T by adding an additional tape

(tape 2). Modify T’s program as follows. Our modified machine executes T’s original program

 7

on tape 1, enumerating f’s values. But whenever the scanner prints “¶” after some completed

numeral, the new machine interpolates the following steps:

It copies the immediately proceeding numeral from tape 1 to the next free location

on tape 2.

It uses the translation algorithm from N1 to N2 to replace the N1-numeral on tape 2 with a

corresponding N2-numeral.

It prints “¶” on the next cell on tape 2.

It transfers back to tape 1 and continues executing T’s original program.

The result is that the machine enumerates N2 numerals for f’s output values on tape 2, as it

simultaneously enumerates N1 numerals for f’s output values on tape 1. Thus, the modified

machine computes f relative to Turing-N2 notation (on tape 2).

 Given the lemma, (*) implies an analogous principle for every linear, intuitively

computable notation N:

A number-theoretic function is computable just in case a Turing machine (with an

initially blank tape) is able to print, in order, representations (relative to N) of all the

values of the function, separated by “¶”s.

Copeland and Proudfoot suggest that TNT supports Comp(Unary) as an analysis of intuitive

computability. Yet we can isolate infinitely many rivals to TNT, each corresponding to some

rival analysis Comp(N). For any linear, intuitively computable notation N, we can articulate:

TNT(N): Any job of work that can be done by a human computer engaged in numerical

calculation can be carried out equivalently by a human computer employing

Turing-N notation,

 8

which yields TNT for the special case where N is unary notation. I am not sure how Copeland

and Proudfoot individuate “jobs of work.” For instance, if we individuate “jobs” partly through

the numerical notation employed during the “job,” then TNT(N) is clearly false, for every N.

Presumably, Copeland and Proudfoot individuate “jobs” without reference to the particular

numerical notation employed during the “job.” Under such an individuative scheme, TNT(unary)

seems plausible. But so does TNT(N), for any linear, intuitively computable notation N.

 Copeland and Proudfoot claim that “[t]hose who wish to press the circularity objection

against Turing’s analysis of computability must now focus their attack on TNT” (p. 252). I

disagree. Assuming a suitable individuative scheme for “jobs of work,” I accept TNT. Under that

same assumption, I also accept TNT(N), for infinitely many N. My objection is not that TNT is

false. My objection is that TNT isolates no privileged features that differentiate unary notation

from infinitely many alternatives. It suggests no basis for choosing Comp(unary) over

Comp(Arabic), Comp(binary), Comp(Roman-Numeral), or countless other candidates Comp(N).

 In response to my objection, Copeland and Proudfoot might deny that the putative

analyses Comp(N) are rivals. For instance, they might suggest that Comp(unary) and

Comp(Roman) are trivial variants of one another.

 I respond that, even when Comp(N1) and Comp(N2) are extensionally equivalent, they

almost always express different meanings. Consider Comp(unary) and Comp(Roman). Someone

might be familiar with unary notation but not Roman numeral notation. Thus, someone might

believe that numerical function f satisfies Comp(unary) without having the conceptual resources

to contemplate Comp(Roman). Even if one has the requisite conceptual resources, one might

rationally believe that f satisfies Comp(unary) while doubting that it satisfies Comp(Roman), or

 9

vice versa. By the classical Fregean substitution test, it follows that Comp(unary) and

Comp(Roman) express different meanings.

A similar argument applies to Comp(N1) and Comp(N2), for virtually any linear,

intuitively computable N1 and N2. I say “virtually” because some notations are so closely related

that rational doubts about extensional equivalence may be impossible. A plausible example:

unary notation versus a notation that maps a string of n+1 strokes to the number n. Such rare

examples aside, rational doubts about extensional equivalence seem possible. Of course, our

lemma shows that Comp(N1) and Comp(N2) are extensionally equivalent. But the proof is not

trivial. I took a few hours to formulate it. A rational agent who has yet to formulate the proof

may rationally doubt its conclusion.

 An important moral ensues: for virtually any distinct N1 and N2, Comp(N1) and Comp(N2)

cannot both be good conceptual analyses of number-theoretic computability. For instance, if

Turing-computability relative to Turing-unary notation is a good conceptual analysis, then

Turing-computability relative to Turing-Roman-numeral notation is not. If Comp(N1) and

Comp(N2) express different meanings, then they cannot both capture the intuitive meaning of an

unambiguous pre-theoretic concept.

 Hence, the analyses Comp(N) are genuine rivals. They cannot all be correct. Is any one of

them correct? Copeland and Proudfoot emphatically endorse Comp(unary). In support of this

position, they note that TNT “is fundamental to the differing developments of computability set

out by the three great founders of the subject” (p. 251) --- namely Turing, Church, and Gödel.

I agree that historical and contemporary developments of recursion theory place great

emphasis upon unary notation. Recursion theory textbooks usually employ this notation or else a

fairly trivial variant, such as the mapping from a string of n+1 strokes to the number n. Other

 10

potential notations would yield a less elegant theory. However, such observations do not suggest

that Comp(unary) provides a compelling conceptual analysis. The question is not whether unary

notation subserves an elegant mathematical theory of computation. The question is whether

unary notation displays a privileged connection to our intuitive, pre-theoretic concept of

numerical computation. Only if we answer the latter question affirmatively are we entitled to

assign unary notation a privileged role in our conceptual analysis. A convincing case must show

that unary notation plays a privileged role in securing our representational access to the natural

numbers, at least for purposes of number-theoretic computation.

I am doubtful. Unary notation is a poor vehicle for numerical computation. For instance,

if forced to compute over a large number as presented in unary notation, any normal human

would immediately translate into some more legible notation, such as Arabic decimal notation,

scientific notation, etc. So far from occupying a privileged role in our computations, unary

representation is basically useless for normal computation involving large numbers.

Copeland and Proudfoot may respond that unary notation occupies a privileged role in

the numerical computation of an idealized human agent, if not an actual human. But I see no

reason to agree. Unary notation is inefficient, because its demands upon storage space rise

alarmingly with the size of numerical inputs. Other notations allow the thinker to represent large

numbers much more efficiently. Why should such an inefficient representational scheme occupy

a privileged role in even the most idealized numerical computation?

I conclude that Comp(unary) is not a good conceptual analysis of numerical

computability. There is no clear reason to favor it over countless alternatives Comp(N). I do not

say that all putative analyses Comp(N) are equally compelling. In many cases, an intuitively

computable notation N may be unnatural or impractical. For instance, Kripke’s unpublished

 11

Whitehead Lectures (“Logicism, Wittgenstein, and De Re Beliefs about the Numbers”) demand

that any acceptable notation satisfy certain complexity desiderata. Kripke’s proposal eliminates

many candidate analyses Comp(N). But it leaves infinitely many other candidates unscathed, so

it does not uniquely favor Comp(unary).

§4. What do all numerical computations have in common?

Should we endorse some other analysis Comp(N)? Arabic decimal notation may occupy a

privileged role in numerical computation, for those initiated into Arabic decimal notation.
3
 But

the Romans and the Mayans were unfamiliar with Arabic decimal notation. It hardly seems

plausible that Arabic decimal notation occupied a privileged role in their numerical

computations. Thus, Comp(decimal) does not even aspire towards sufficient generality. A similar

objection applies to other specific candidates Comp(N).

A numerical function is computable just in case there exists a computation that computes

it. If we want to explain what it is for a numerical function to be computable, we should explain

what it is to compute a numerical function. A good analysis of numerical computability should

provide non-circular necessary and sufficient conditions upon computation of numerical

functions.
4
 Beginning with Turing himself, most commentators have recognized this

desideratum. Turing’s strategy for satisfying the desideratum is to treat numerical computation as

syntactic manipulation of numerals. He offers constraints that purportedly capture any possible

syntactic manipulation by an idealized human computing agent. As Sieg (2009) notes, Turing’s

constraints are somewhat too narrow. For instance, Turing focuses entirely on linear arrays of

symbols, whereas actual human computation frequently occurs in two dimensions. Sieg attempts

3
 Kripke argues as much in the aforementioned unpublished Whitehead lectures.

4
 This is one reason why Kleene-computability is not a good candidate for a conceptual analysis. The

characterization says nothing about what it is to compute a numerical function.

 12

to generalize Turing’s constraints accordingly. For the sake of argument, I concede that Turing’s

work, as extended by Sieg, yields non-circular necessary and sufficient conditions upon

mechanical syntactic manipulation.

 Yet a lacuna remains. Syntactic manipulations compute numerical functions only relative

to semantic interpretations. Thus, a complete account of numerical computation must offer

general constraints not just upon syntactic manipulation, but also upon semantic interpretation. It

must provide non-circular necessary and sufficient conditions upon notations that are

“legitimate” or “acceptable” for numerical computation. Just as Turing’s work illuminates what

all mechanical syntactic manipulations have in common, we should illuminate what all

acceptable notations have in common. The tradition stemming from Turing does not accomplish

the latter task. For instance, Sieg’s recent (2009) discussion offers Turing-inspired constraints

upon syntactic manipulations executed by an idealized human computing agent. Sieg calls an

agent satisfying those constraints a “Turing computor.” Sieg then defines: “[a] function F is

(Turing) computable if and only if there is a Turing computor M whose computation results

determine --- under a suitable encoding and decoding --- the values of F for any of its

arguments” (2009, p. 599). Sieg says nothing about what makes an encoding “suitable.” He says

nothing to differentiate acceptable and unacceptable notations. Thus, he says nothing to rule out

deviant notations such as dX.
5

5
 In response to the foregoing difficulties, Dershowitz and Gurevich (2008, p. 341) suggest that we should model

computation directly over the natural numbers, without intercession by syntactic entities that represent the natural

numbers. They propose an axiomatization that reflects this methodology. The axiomatization is “notation-free,” in

the sense that it allows us to describe computations directly over represented entities (such as numbers), not over the

notations through we which represent those entities. Dershowitz and Gurevich thereby circumvent the problem of

deviant notations. Detailed discussion lies beyond the scope of this note. Briefly, however, Dershowitz and Gurevich

assume (pp. 325-327) that any intuitively computable numerical function case can be computed through iterated

application of standard “grade school” arithmetical operations: addition, subtraction, multiplication, and so on. I

agree that the assumption is correct. However, someone who fully grasps the concept of computability might

reasonably contest the assumption. Thus, we should not simply help ourselves to this crucial assumption when

providing a conceptual analysis of computability or when trying to establish Church’s thesis.

 13

Until we fill this lacuna, we cannot claim to have provided a general account of what it is

to compute a numerical function. We may have specified non-circularly the class of intuitively

computable functions. But we have not specified non-circularly what all numerical computations

have in common. The lacuna remains unfilled as long as we restrict attention to a single

numerical notation, whether unary, binary, decimal, or otherwise. Numerical computation can

employ a wide variety of notations. Restricting attention to a single notation deprives our

putative analysis of any pretense to suitable generality. No analysis Comp(N) even attempts a

suitably general demarcation of numerical computations. A general demarcation will address

what all acceptable notations have in common.

What do they have in common? At present, I see no compelling way to answer this

question without citing intuitive computability (perhaps supplemented with further constraints,

such as a Kripkean complexity restriction).

 In sum, a conceptual analysis of numerical computability must describe in non-circular

terms what all numerical computations have in common. Otherwise, the putative analysis does

not elucidate what it is for a numerical function to be computable (i.e. what it is for there to exist

a computation that computes the function). No analysis in the vicinity of Comp(unary) provides a

sufficiently general description of what all legitimate numerical computations have in common.

Thus, no analysis in the vicinity of Comp(unary) seems promising.

References

Copeland, B. J., and Proudfoot, D. (2010). Deviant encodings and Turing’s analysis of

computability. Studies in History and Philosophy of Science, 41, 247-252.

Dershowitz, N., and Gurevich, Y. (2008). A natural axiomatization of computability and proof

 14

of Church’s thesis.” The Bulletin of Symbolic Logic, 14, 299-350.

Rescorla, M. (2007). Church’s thesis and the conceptual analysis of computability. Notre

Dame Journal of Logic, 48, 253-280.

Rogers, H. (1987). Theory of Recursive Functions and Effective Computability. Cambridge, MA:

 MIT Press.

Shapiro, S. (1982). Acceptable notation. Notre Dame Journal of Formal Logic, 23, 14-20.

Sieg, W. (2009). On computability. In A. Irvine (Ed.), Philosophy of Mathematics. Burlington:

 Elsevier.

Soare, R. (1987). Recursively Enumerable Sets and Degrees. New York: Springer-Verlag.

Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem.

 Proceedings of the London Mathematical Society, 42, 230-265.

