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Abstract: Fodor advocates a view of cognitive processes as computations defined over the 

language of thought (or Mentalese). Even among those who endorse Mentalese, considerable 

controversy surrounds its representational format. What semantically relevant structure should 

scientific psychology attribute to Mentalese symbols? Researchers commonly emphasize logical 

structure, akin to that displayed by predicate calculus sentences. To counteract this tendency, I 

discuss computational models of navigation drawn from probabilistic robotics. These models 

involve computations defined over cognitive maps, which have geometric rather than logical 

structure. They thereby demonstrate the possibility of rational cognitive processes in an 

exclusively non-logical representational medium. Furthermore, they offer much promise for the 

empirical study of animal navigation. 
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1  Mental representations 

Fodor ([1975], [1987]) and Pylyshyn ([1984, [2003]) espouse a theory of cognition based on two 

doctrines: 

(1) Certain core mental processes studied by scientific psychology are mechanical, rule-

governed operations upon symbols. In that sense, the processes are computational. 

(2) The symbols that figure in computational mental activity have syntactic structure and a 

compositional semantics. 

Both doctrines are popular albeit controversial within philosophy and psychology. Following 

Fodor, philosophers typically refer to the representational system posited by (2) as the language 

of thought, or Mentalese. Even among those who endorse Mentalese, considerable controversy 

surrounds its representational format. What semantically relevant structure should scientific 

psychology attribute to Mentalese symbols? How closely do such symbols resemble familiar 

concrete representations like sentences, pictures, diagrams, or maps? 

 An extreme view, tracing back at least to William of Ockham, holds that all mental 

representations operate analogously to sentences. Modern exponents often emphasize the 

sentential structures studied by formal logic. Many AI researchers, including Genesereth and 

Nilsson ([1987]) and McCarthy and Hayes ([1969]), pursue a “logicist” agenda that treats the 

predicate calculus, or a suitably supplemented variant of it, as the primary, paradigmatic, or even 

exclusive medium of thought. At the opposite extreme, some commentators hold that all mental 

representation operates pictorially, diagrammatically, or cartographically. This “pictorialist” 

view, popular among medieval philosophers and the British empiricists, finds such recent 

advocates as Armstrong ([1973]), Barsalou ([1998]), Braddon-Mitchell and Jackson ([2007]), 

and Cummins ([1996]). Between the extremes of logicism and pictorialism lies a pluralistic 
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position that embraces both logical and non-logical mental representations, assigning neither 

explanatory primacy over the other. Johnson-Laird ([2004], p. 187), McDermott ([2001], p. 69), 

Pinker ([2005], p. 7), Sloman ([1978], pp. 144-76), and many others advocate this pluralistic 

position. Although Fodor’s emphasis upon the “languagelike” character of Mentalese might 

seem to suggest logicism, he inclines more towards pluralism ([2007], pp. 105-16). 

 My goal is to clarify the pluralistic viewpoint through detailed philosophical analysis of a 

particularly instructive case study. Two principal challenges face the pluralistic conception: to 

provide compelling examples of non-logical mental representation, and to explain how such 

representations differ in a principled way from those patterned after formal logic. To meet these 

challenges, I will discuss some models of navigation drawn from psychology and robotics. The 

models posit representations, cognitive maps, whose structure is geometric rather than logical. 

As I will argue, cognitive maps offer key advantages over the putative examples of non-logical 

representation more commonly studied by philosophers, such as perception and mental imagery.
1
 

 The computational models I discuss in §4 are thoroughly “cognitivist,” without any hint 

of behaviorism, associationism, Gibsonianism, or connectionism. Specifically, the models 

embody a commitment to (1)-(2). Thus, they enshrine the “classical” conception of cognition as 

rule-governed symbol manipulation. From a connectionist or dynamical systems perspective, the 

contrast between logicist, pictorialist, and pluralistic theories may seem trifling. From within the 

classical conception, however, the contrast matters a great deal. Logicism would have us ignore 

an important class of promising computational models. Even from a connectionist or dynamical 

systems perspective, we require a suitably general understanding of the classical conception so as 

to assess its strengths and weaknesses. 
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2  Mental imagery, perception, and cognitive maps 

Recent discussion of mental imagery focuses on a series of experimental results due to Shepard 

and Kosslyn, along with various collaborators. Shepard and Chipman ([1970]) and Kosslyn 

([1980]) argue that we can best explain these results by positing an imagistic medium of mental 

representation. Dennett ([1981]) and Pylyshyn ([1984], [2003]) disagree. For analysis of the 

debate, see (Block, [1983]; Grush [2004], pp. 393-84; Thomas [2007]; Tye [1991]). 

Even overlooking that the imagery debate seems no closer to resolution than it was two 

decades ago, there are several reasons why studying cognitive maps rather than mental images 

may yield philosophical dividends. First, evidence for mental imagery depends largely (though 

not entirely) upon linguistic interactions through which experimenters instruct subjects to 

perform certain cognitive tasks. This evidence does not readily generalize to non-linguistic 

creatures. In contrast, overwhelming evidence indicates that even insects perform sophisticated 

navigational feats. Thus, navigational models enjoy wider applicability than models of mental 

imagery. Second, navigation is more psychologically fundamental than mental imagery. It is 

vital for survival and procreation. It is arguably central to anything resembling cognition of a 

physical world.
2
 Third, in contrast with generating, inspecting, or manipulating a mental image, 

forming and updating a cognitive map is an exercise of rational cognitive faculties. It is a type of, 

or a lower-level analogue to, belief-fixation. As we will see, it shares many features with 

abductive inference in science and everyday reasoning. Fourth, we have detailed, mathematically 

sophisticated models of how animals might perform this particular abduction. 

 The final two points are especially important. Many philosophers suggest that rational 

cognition requires a logically structured representational medium. In this vein, Devitt writes that 

‘[f]ormal logic gives us a very good idea of how thinking might proceed if thoughts are 
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represented linguistically… We still have very little idea how thinking could proceed if thoughts 

were not language-like but, say, map-like’ ([2006], pp. 146-47). Similarly, Rey holds that 

‘anything that is capable of rational thought is capable of making logical transitions in thought; 

i.e. it is psychologically possible that it pass from one thought to another by virtue of logical 

properties of its thought’ ([1995], p. 203). On this basis, he argues that rational thought requires a 

representational medium subsuming something like the predicate calculus. Pylyshyn ([1984], pp. 

195-6) argues along similar lines, albeit conjecturally and in a more empirical spirit. 

 Computational models of navigation answer the challenge posed by Devitt, Rey, and 

Pylyshyn. The basic idea behind the models I will discuss is that the subject forms and updates a 

cognitive map of its surroundings, a map which the subject then exploits to reach goal 

destinations. As we will see, the proposed mechanisms for updating and exploiting cognitive 

maps are rational. Yet, at least on the surface, the models do not display the familiar hallmarks of 

logical form: sentential logical connectives, quantifiers, or even predication. The models thereby 

provide an existence proof that rational cognitive processes can occur in an exclusively non-

logical representational medium. 

 Besides mental imagery, the most widely discussed putative example of “non-discursive” 

mental representation is perception. Beginning with Evans ([1982]) and Peacocke ([1992]), 

many philosophers have argued that perceptual experiences have non-conceptual content, as 

opposed to the conceptual content exhibited by beliefs and desires. McDowell ([1995]) attacks 

such arguments, as do many other philosophers. 

 There are several reasons for shifting attention from perception to cognitive maps. With a 

few exceptions, such as (Bermudez [1998]; Burge [2003], [2005]; Fodor [2007]; Raftopoulos 

and Müller [2006]), the voluminous philosophical literature on non-conceptual perceptual 
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content tends to downplay scientific research into perception. Again excluding (Fodor [2007]), 

debate generally emphasizes content rather than the vehicles of content. Participants in the debate 

seldom even mention mental representations. Thus, it is unclear how to bring the debate into 

contact with our main question: what semantically relevant structure should scientific 

psychology attribute to Mentalese? Finally, and most importantly, even if we were to conclude 

that perception involves non-logical mental representations, the same might not apply to central 

cognitive processes such as belief-fixation and decision-making. Admittedly, the boundary 

between perception and belief-fixation is vexed. Moreover, a satisfying theory of perception will 

doubtless treat it as abductive and thus somewhat analogous to belief-fixation. Nevertheless, 

excessive focus on perception fosters the impression that non-logical mental representations 

figure mainly in “input” processes. By shifting attention to cognitive maps, I seek to dispel that 

impression. 

 

3  Cognitive maps in psychology 

The term “cognitive map” originated with Tolman ([1948]). In opposition to Hull ([1930]), who 

tried to explain rat navigation through stimulus-response associations, Tolman suggested that rats 

mentally represent their surroundings. He argued that only a representational approach could 

explain how rats take novel detours and shortcuts. Since Tolman’s opening salvo, the extent to 

which animal navigation requires mental representation of space has proven controversial. The 

cognitive map hypothesis found new popularity with publication of (O’Keefe and Nadel [1978]). 

More recently, Gallistel ([1990]) argues that animals perform computations over representations 

of spatial aspects of the environment. Most contemporary approaches fall between Hull’s 
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extreme anti-cognitivism and Gallistel’s extreme cognitivism. For surveys, see (Redish [1999]; 

Shettleworth [1998]; Trullier, et al. [1997]). 

 The scientific literature attaches diverse meanings to the phrase “cognitive map,” a 

diversity catalogued by Bermudez ([1998], pp. 203-7) and Kitchin ([1994]. This diversity 

occasions frequent conceptual and dialectical confusions. I distinguish three especially important 

usages. A cognitive map in the trivial sense is whatever mental or neural mechanism enables an 

animal to navigate. On this usage, it is tautologous that animals capable of navigation have 

cognitive maps. A cognitive map in the loose sense is a mental representation that represents 

geometric aspects of the environment. These aspects might be topological (e.g. connectedness, 

adjacency, or containment), affine (e.g. collinear or parallel), metric (e.g. distances and angles), 

and so on. A cognitive map in the strict sense is a mental representation that has the same basic 

representational properties and mechanisms as an ordinary concrete map. A cognitive map in the 

strict sense has the same type of content or format as a concrete map, while a cognitive map in 

the loose sense merely encodes the same information, possibly in a different way than a concrete 

map would encode it. 

 Terminological convention: when I use the phrase “cognitive map” without further 

qualification, I mean “cognitive map in the loose sense.” 

 Psychologists disagree about whether various animals have cognitive maps in either the 

loose or the strict sense. Insect navigation is particularly vexed (Gallistel [1994], [1998]; Wehner 

[2003]; Menzel, et al. [2005]; Stelerny ([2003]), pp. 41-4). Mammalian navigation is somewhat 

less vexed. In a famous experiment, Cheng and Gallistel placed a rat in a non-square rectangular 

box, in one of whose corners the rat discovered food (Cheng [1986]). Cheng and Gallistel 

removed the rat from the box and disoriented it. When returned to an identical box, the rat 
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usually searched for food either in the correct corner or in the diagonally opposite corner. Two 

diagonally opposite corners are metrically indiscernible, even though they are metrically 

discernible from the other two corners. Thus, the rat apparently represents metric features of its 

surroundings. In general, considerable evidence suggests that all mammals represent metric 

properties, and hence that they have cognitive maps in the loose sense. For a survey, see 

(Gallistel [1990]). For a less cognitivist perspective, see (Shettleworth [1998]). 

 Do animals have cognitive maps in the strict sense? That is not a question I will try to 

answer. But I will explore some relevant philosophical and scientific issues. In this section and 

the next, I review pertinent results from psychology and AI robotics, respectively. In §§5-6, I 

analyze these scientific results from a more philosophical perspective. 

 Following Levitt and Lawton ([1990]), navigation based upon a metric cognitive map 

faces the following questions: Where am I? Where are other objects and properties located? How 

do I get where I’m going? The three cognitive tasks corresponding to these questions are usually 

called localization, mapping, and path-planning. Localization and mapping are exercises in, or 

analogues to, belief-fixation. Path-planning is an exercise in, or analogue to, decision-making. I 

focus on localization and mapping, drawing heavily upon the exposition of (Gallistel [1990]). 

 The most elementary kind of localization is dead reckoning (sometimes also called path 

integration or odometry), which determines the creature’s position by monitoring its motion 

through space. It may record velocity and integrate to compute position. It may also record 

acceleration and compute position by integrating twice. Dead reckoning has played a vital role in 

human marine navigation for millennia. An enormous literature conclusively demonstrates that 

even primitive creatures such as ants employ dead reckoning (Gallistel [1990], pp. 57-101; 

Wittlinger, et al. [2007]). For instance, after foraging explorations, the desert ant can return 
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directly back to the nest with remarkable accuracy, even lacking relevant external cues. The 

devices employed to detect velocity and acceleration vary across species, but they include optical 

flow, vestibular signals, proprioception, and motor efferent copy. 

 Dead reckoning is fallible and noisy. Its errors are cumulative, rendering it unreliable 

over time. Researchers have explored various corrective strategies, requiring a range of 

representational resources. Here, I focus on a strategy that Gallistel ([1990]) calls piloting, 

whereby one observes the spatial distribution of salient objects and properties (landmarks) 

relative to oneself, using these observations and prior knowledge of the environment to infer 

one’s location. Like dead reckoning, piloting plays a crucial role in marine navigation. Unlike 

dead reckoning, piloting requires a representation of geometric features of one’s environment: a 

map in the loose sense. It is straightforward trigonometry to calculate one’s allocentric position 

from the egocentric positions of sufficiently many appropriately positioned landmarks, taking for 

granted the landmarks’ allocentric locations. (Allocentric coordinate systems are defined relative 

to the external environment, while egocentric coordinate systems are defined relative to one’s 

own body.) See (Gallistel [1990]) for discussion of piloting and for a survey of evidence that 

various species engage in it. 

 Piloting introduces several difficulties, the most fundamental of which is that one can 

determine correct position through piloting only if one already has a relatively accurate 

representation of the environment.
3
 In general, one may not have such a representation. Creatures 

often explore new terrain whose features are not known a priori. Moreover, the environment can 

change, so that one’s map requires constant updating. Finally, even when moving through a 

static, familiar environment, a pre-existing map may be incorrect and therefore require 
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emendation. In general, then, creatures localizing themselves cannot simply assume that they 

have an accurate map. 

 Theoretically, one can construct an allocentric metric map by combining dead reckoning 

with egocentric coordinates of landmarks. Elementary vector summation converts these two 

inputs into allocentric coordinates for landmark (Gallistel [1990], pp. 106-9). But, since dead 

reckoning is fallible, this is not a reliable procedure. Piloting must intervene to correct dead 

reckoning’s cumulative errors. Thus, localization and mapping are hopelessly intertwined, 

separable only under special circumstances. Within AI, this conundrum is called the 

Simultaneous Localization and Mapping (SLAM) problem. It is widely regarded as the most 

formidable hurdle to building autonomous mobile robots. In many crucial respects, SLAM is a 

special case of abduction. It generates familiar problems of confirmation holism and 

underdetermination of theory by evidence. 

 Few discussions in the psychological literature adequately confront SLAM. Most theories 

either treat localization relative to a known map or mapping relative to known locations, without 

even mentioning that there is a problem about simultaneous mapping and localization. 

The model of rodent navigation developed in (Touretzky and Redish [1996]; Redish and 

Touretzky [1996]), while in many respects unusually detailed, is typical in its evasion of SLAM. 

The model, a hybrid of symbolic and connectionist ideas, distinguishes two phases: learning and 

recall. During learning, the model employs path integration to learn egocentric distances and 

bearings of observed landmarks, as well as retinal angles between pairs of landmarks, as viewed 

from various locations at various orientations. During recall, the model employs this stored 

information, coupled with landmark-observation, to correct errors in path integration. The model 

provides no principled basis for deciding when the animal enters the learning phase and when it 
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enters the recall phase. That is determined exogenously, through ad hoc setting of parameters in 

the connectionist network. Thus, when faced with conflicts between path integration and 

landmark-observation, the model provides no principled basis for resolving those conflicts by 

altering the position estimate or by altering the stored information about relevant landmarks. In 

other words, the model provides no principled solution to SLAM. 

The most striking manifestation of this lacuna, emphasized in (Balakrishnan, et al. 

[1998]), is that the model’s learning phase presupposes that dead reckoning is reliable over time, 

which it is not. Indeed, when employing the model in simulations, Touretzky and Redish 

implemented its learning phase by exogenously setting dead reckoning coordinates to the correct 

values. For this reason, as they admit ([1996], pp. 267-9), the model cannot explain how rodents 

actually map unfamiliar environments. Redish and Touretzky concede that “rodents must have 

some way to correct for path integration errors simultaneous with tuning their place cells during 

exploration” ([1996], p. 24). But their model does not illuminate the computations through which 

rodents accomplish this feat. It does not explain how rodents simultaneously update both the 

position estimate and the map based upon dead reckoning and landmark-observation. For further 

criticisms of the model, see (Balakrishnan, et al. [1998]).
4
 

 To explore SLAM more systematically, I turn from psychology to AI robotics. Although 

roboticists have hardly solved the problem, they have made impressive progress. (Readers less 

interested in technical details can skim §4 and resume reading carefully in §5.) 

 

4  Cognitive maps in robotics 

For the past decade, most robotics research on SLAM has occurred within the framework of 

Bayesian probability theory. This research harmonizes with the general program, popular in both 
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philosophy of science and cognitive psychology, of handling confirmation and abduction through 

Bayesian methods. As applied to SLAM, the idea is to encapsulate the robot’s beliefs about the 

environment with a probability distribution defined over the space of possible maps. The robot 

updates this probability distribution based upon motor commands and sensory inputs. For an 

overview of the Bayesian paradigm in robot mapping, see (Thrun, et al. [2005]), whose 

exposition and notation I closely follow. (I am somewhat fussier about use-mention distinctions 

than this text (p. 153), although I blur them whenever seems appropriate.) 

 More formally, we may express one version of SLAM as follows. At time t, the robot is 

given as input z1:t, its sensor measurements from times 1 to t, and u1:t, its motor commands from 

times 1 to t. The robot must calculate the posterior probability p(xt, mt | z1:t, u1:t), where xt = (x, y, 

θ) represents the robot’s “pose” (its location and its bearing relative to some fixed reference 

direction) at t, and mt is a map of the environment at t. Abbreviate “p(xt, mt | z1:t, u1:t)” as “bel(xt, 

mt).” To compute bel(xt, mt), we employ an appropriate application of Bayes’s rule. Assume that 

the environment does not change over time, so that the map m requires no temporal index t. 

Under this and a few other simplifying assumptions, the update rule is: 

111 ),(),(,(),    tttttttt dxmxbeluxxpmxzpmxbel   

where η is a scaling constant. This equation is called the Bayes filter. Note that bel(xt-1, m) 

represents the robot’s beliefs about its position and its environment at time t-1. Thus, the Bayes 

filter computes the robot’s beliefs at time t based upon: its beliefs at time t-1; the probability p(xt 

| xt-1, ut) that motor command ut will carry the robot from pose xt-1 to pose xt; and the probability 

p(zt | xt, m) that sensor reading zt will result when the robot is in pose xt within a world described 

by map m. Assuming an initial probability distribution bel(x0, m), the Bayes filter provides a 

recursive technique for calculating the robot’s beliefs as time evolves. 
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 How should the robot compute p(xt | xt-1, ut) and p(zt | xt, m)? The first quantity 

corresponds roughly to dead reckoning. A slight wrinkle is that dead reckoning usually relies 

upon not just motor commands but also sensor measurements of velocity. In practice, roboticists 

typically ignore this wrinkle by treating velocity measurements as if they were control signals ut 

rather than sensor measurements zt. Generally speaking, then, the algorithms for calculating p(xt | 

xt-1, ut) recapitulate the kinematic computations underlying dead reckoning, emended to 

accommodate noise (Thrun, et al. [2005], pp. 117-43). The algorithms for calculating p(zt | xt, m) 

usually include trigonometric computations, emended to accommodate noise, that convert the 

pose estimate and a landmark’s estimated allocentric coordinates into the landmark’s predicted 

egocentric coordinates and heading (Thrun, et al. [2005], pp. 176-8). 

 As Thrun, et al. argue ([2005], p. 9), Bayesianism is well-suited to SLAM. Through the 

Bayes filter, it seamlessly merges perceptual and motor input into an updated representation of 

one’s pose and of the environment. Assuming Bayesian probability theory, this updated 

representation is rational. Moreover, because the Bayesian approach traffics in probability 

distributions, it can explicitly represent uncertainty arising from errors in dead reckoning, sensor 

noise, underdetermination of theory by evidence, and other factors. 

 In general, implementing the Bayes filter requires a discrete, tractable approximation. To 

a large extent, research on SLAM consists in constructing tractable approximations that are 

relatively accurate. I will not try to survey the overwhelming variety of approximations currently 

being explored. I focus on one of the most venerable paradigms: EKF SLAM, first applied in 

(Smith and Cheeseman [1986]). In some respects, this paradigm compares unfavorably to newer 

techniques like the particle filter (Thrun, et al. [2005], pp. 437-83). The philosophical points I 

make in §§5-6 are readily adapted to those newer techniques. I emphasize EKF SLAM because it 
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is easy to describe in a relatively non-technical way. For a rigorous statement, along with details 

about successful applications in actual robots, see (Thrun, et al. [2005], pp. 309-32). 

 We treat maps as composed of point landmarks in the Cartesian plane. More precisely, a 

map m is a vector (m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN), where mi,x and mi,y are the allocentric 

coordinates of the ith landmark, si is a “signature” encapsulating some of the landmark’s features, 

and N is the number of landmarks. si might be a vector whose elements correspond to observable 

features like height, color, and so on. We assume that bel(xt, m) is a multivariate Gaussian 

distribution. We then represent bel(xt, m) through two parameters: its mean, μt, and its covariance 

matrix, Σt. The mean is a 3N+3 element vector incorporating the robot’s pose xt and a map m: (x 

y θ m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN). The covariance matrix is a 3N+3 by 3N+3 array 

whose i-j element represents the covariance between the ith and jth variables.
5
 

 We need an algorithm for computing (μt, Σt) from (μt-1, Σt-1), that is, for computing bel(xt, 

m) from bel(xt-1, m). We can employ a basic statistical tool called the Extended Kalman filter, a 

modern descendant of Gauss’s method of least squares. Oversimplifying greatly, the Extended 

Kalman filter yields an algorithm, EKF SLAM, that divides into two stages. The first stage 

produces a preliminary pose estimate based upon motor command ut. This stage, which 

corresponds to the integral 111 ),(),(   ttttt dxmxbeluxxp  from the Bayes filter, incorporates the 

kinematic calculations from dead reckoning. The second stage, which corresponds in the Bayes 

filter to multiplying the integral by p(zt | xt, m), loops through all the landmarks observed at time 

t. For each observed landmark, the algorithm updates both the pose estimate and the map 

estimate. In so doing, it incorporates the trigonometric calculations that convert the pose estimate 

and a landmark’s estimated allocentric coordinates into the landmark’s predicted egocentric 
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coordinates. Beyond these kinematic and trigonometric calculations, EKF SLAM requires only 

some elementary calculus and matrix algebra. 

 One disadvantage of EKF SLAM is that it models all beliefs as Gaussian distributions, 

which are unimodal. Intuitively, this does not allow the robot to entertain multiple hypotheses. 

What if the robot cannot identify which landmark it currently perceives? Then the rational 

probability distribution assigns high probability density to several distinct hypotheses. There are 

various ways to handle this problem. For instance, a multi-hypothesis variant upon EKF SLAM 

allows probability distributions that are mixtures of several Gaussians. 

 During the 1980s and early 1990s, mobile robotics research focused mainly on path-

planning rather than localization and mapping. This research occurred before probabilistic 

methods achieved dominance in the study of localization and mapping, so it mainly transpired 

within a non-probabilistic framework. Non-probabilistic path-planning assumes that the robot 

has a map of its environment, not a probability distribution over the space of possible maps. The 

main goal of path-planning is to plot a collision-free course towards some destination. This 

requires converting a map of the environment into a geometric structure, such as a graph, over 

which one can perform computationally efficient searches. Non-probabilistic research along 

these lines has yielded many advances, as detailed in (Choset, et al. [2005]). Path-planning 

within a probabilistic framework is much less well developed, although (Thrun, et al. [2005], pp. 

487-568) reviews some preliminary results. 

 In general, current autonomous mobile robots work fairly well for indoor, static 

environments. Outdoor and dynamic environments remain largely unsolved problems. However, 

the field is witnessing rapid advances, with many important developments in just the past ten 

years. The high rate of recent progress provides grounds for cautious optimism. 
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 To what extent do models like EKF SLAM illuminate animal navigation? Robotics 

engineers robots, while psychology provides empirical theories of existing animals. Why should 

computational models designed by roboticists bear any resemblance to the cognitive processes 

instantiated by animals? The question is especially pressing given how strikingly robots and 

biological animals differ in their sensory transducers, motor organs, and internal hardware. 

 So far, few psychologists studying navigation have emphasized Kalman filters. But 

Bayesianism in general, and Kalman filters in particular, have found fruitful application within 

areas such as vision (Rao, et al. [2002]) and postural balance (Kuo [2005]). More relevantly for 

us, Balakrishnan, et al. ([1999]) argue that the rat’s hippocampus instantiates a computational 

model of SLAM based upon the Kalman filter. They support this hypothesis with neural and 

behavioral data. Similarly, Gallistel ([2008], pp. 138-9) urges psychologists studying animal 

navigation to deploy the Bayesian techniques developed within probabilistic robotics. It seems 

likely that the psychological study of navigation will eventually witness further applications of 

probabilistic robotics. Despite their many hardware differences, robots and animals must solve 

the same basic tasks: localization, mapping, and path-planning. Animals may not employ the 

specific algorithms mentioned above. But those algorithms, and the more general Bayesian 

framework they presuppose, deserve extended empirical scrutiny. Currently, Bayesianism 

provides our only remotely adequate approach to SLAM. By default, it is our only viable 

candidate theory of metric spatial representation. 

 

5  Cognitive maps in the strict sense? 

I now want to analyze the models surveyed in §4 from a more overtly philosophical perspective. 

While the previous two sections mostly contained exposition of scientific theories, this section 
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and the next contain far more contentious philosophical argumentation. I begin by examining the 

extent to which the models from §4 posit cognitive maps in the strict sense: that is, 

representations with “the same basic representational properties and mechanisms as an ordinary 

concrete map.” 

An essential feature of ordinary cartographic representation is geometric structure. The 

most common types of structure are metric, as with city maps, and topological, as with subway 

maps. At a bare minimum, then, a cognitive map in the strict sense should have geometric 

structure. This raises the question: what is it for a mental representation to have geometric 

structure? An analogous question arises for logically structured representations: what is it for a 

mental representation to have logical structure? But the question may seem more challenging for 

geometric than for logical structure. No one thinks that we can open up the head to discover a 

miniature map laid out in physical space.
6
 What, then, could it possibly mean to attribute 

geometric structure to a cognitive map? 

 This worry reflects an insufficiently abstract conception of geometric structure. On the 

modern mathematical conception, a geometric structure is a set of objects satisfying certain 

axioms. For instance, a metric space is an ordered pair (X, d), where X is any set and d is a 

function from X  X to the non-negative real numbers such that: d(a, b) = 0 iff a = b, d(a, b) = 

d(b, a), and d(a, c) < d(a, b) + d(b, c). Under this abstract conception, there is no conceptual bar 

to instantiating geometric structure within a sufficiently powerful computational system. Any 

entities, including representations manipulated by a mind or computer, may compose a geometric 

structure. One need simply ensure that the representations bear appropriate computational 

relations to one another, relations satisfying the relevant axioms. 
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 Consider a point-landmark map m, supplemented with the robot’s pose: (x y θ m1,x m1,y s1 

m2,x m2,y s2 … mN,x mN,y sN). Viewed on its own terms, it is just a vector, lacking any geometric 

structure. However, m participates in a computational model that naturally associates it with a 

Euclidean distance metric. For instance, during the trigonometric calculations corresponding to 

p(zt | xt, m), EKF SLAM must compute an estimate for the ith landmark’s egocentric coordinates. 

To do so, it applies the Euclidean distance metric, estimating that landmark i has egocentric 

distance of 2

,

2

, )()( yixi mymx   (Thrun, et al. [200], p. 319). Actually, this description is 

sloppy, since the map’s constituents are syntactic items, not numbers, so that arithmetical 

operations are not directly defined over them. If den(a) is the denotation of a, then the predicted 

egocentric distance is 2

,

2

, ))()(())()(( yixi mdenydenmdenxden  . In this way, EKF SLAM 

associates m with a mapping d((a b), (c d)) = 22 ))()(())()(( ddenbdencdenaden  that 

satisfies the axioms of a metric space. 

 What does the requisite “association” between m and d consist in? The most natural 

suggestion is functionalist: the association consists in patterns of computational activity. (Cf. 

Block [1983], p. 514; Tye [1991], pp. 40-1.) Specifically, EKF SLAM associates m with d by 

repeatedly deploying d during computations over m. We can imagine computations that 

employed some other metric, such as the city block metric (d((a b), (c d)) = a – c + b – d) 

or the discrete metric (d(x, y) = 1 iff x ≠ y). But those metrics play no role in EKF SLAM. The 

Euclidean metric does. That is why EKF SLAM associates m with the Euclidean metric rather 

than some other metric. 

 Undoubtedly, the notion of “association” would benefit from further elucidation. Even 

lacking such elucidation, there is a clear sense in which, by performing appropriate computations 
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over m, EKF SLAM engenders a distance function over the coordinates of m. The function does 

not measure literal separation in space, since syntactic items are not literally laid out in space. 

But it is a legitimate distance function nonetheless, for it satisfies the axioms of a metric space. 

Whether or not we want to say that m is geometrically structured in exactly the same sense as a 

concrete map, there is a clear sense in which it is geometrically structured. Similar remarks apply 

to many other representations deployed in AI, Geographic Information Science, and 

computational geometry.
7
 

Ordinary concrete maps do not just have geometric structure. They represent geometric 

structure. The compositional mechanisms through which they do so are not entirely understood. 

We lack a canonical treatment of quotidian cartographic representation comparable to the 

familiar semantics of first-order logic. A relatively uncontroversial point, emphasized by Sloman 

([1978]) and Casati and Varzi ([1999]), is that a map’s geometric structure purports to replicate 

salient relations between objects represented by the map.
8
 More precisely, the map is correct 

only if its geometric structure replicates salient relations between objects represented by the map. 

If symbol A appears a certain distance on a metric map from symbol B, this represents that a 

certain scaled distance separates the objects denoted by A and B. If symbol A is topologically 

connected to symbol B on a subway map, this represents that the subway system connects the 

subway stations denoted by A and B. Of course, a map may inaccurately replicate geometric 

structure. Even then, the map’s geometric structure contributes to its representational content by 

purporting to replicate geometric relations among objects. A sentence’s components may also 

bear geometric relations to one another, but the relations do not typically carry any 

representational import. In “Jack loves Mary,” the word “Jack” appears a certain distance to the 

left of “Mary.” This does not signify anything about how Jack and Mary relate to one another, 
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either spatially or otherwise, as evidenced by the fact that one could just as well say “Mary is 

loved by Jack.” 

I do not claim that, in general, representing geometric structure involves replicating (or 

purporting to replicate) geometric structure. Representing property Y does not usually require 

mimicking or purporting to mimic property Y. The word “green” represents the property of being 

green, but it is not itself green. Similarly, a sentence can represent geometric structure without 

itself purporting to replicate that structure. For instance, a very long conjunctive sentence 

describing a subway might “convey the same information” as a map of the subway, in the sense 

that the sentence and map are true in the same possible worlds. But the geometric relations 

between words in the sentence do not carry representational import. In contrast, the map’s 

geometric structure carries representational import. Thus, even though the sentence and the map 

are true in the same possible worlds, they operate in fundamentally different ways. The map, 

unlike the sentence, is correct only if it replicates relevant geometric structure. 

One might wonder why maps are correct only if they replicate relevant geometric 

structure. Given that property replication is not usually a prerequisite for correct representation, 

why is it a prerequisite for maps? The answer is that this just seems to be how maps operate. It is 

part of our pre-theoretic concept map that a map’s geometric structure contributes to its 

representational content by purporting to replicate geometric relations between represented 

entities. The map represents some region of physical space as being such that it shares certain 

geometric properties with the map, and the map is correct only if the region is as the map 

represents it as being. We can cite various benefits of choosing a representational system that 

operates in this way, a topic discussed by Sloman ([1978], pp. 168-76). But it is not clear that we 

can provide a deeper explanation for why a map is correct only it replicates relevant geometric 
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structure. Even lacking a deeper explanation, we can recognize, through reflection on a range of 

examples, that this is an essential feature of ordinary cartographic representation. A cognitive 

map in the strict sense should preserve it. 

 Once again, m = (x y θ m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN) exhibits the desired feature. 

The fact that m contains (x, y) and (mi,x mi,y), coupled with the fact that m is associated with the 

Euclidean metric d, signifies that the robot and landmark i are separated by distance d((x y), (mi,x 

mi,y)). More generally, m is true only if the robot occupies the indicated position with the 

indicated heading, and only if each landmark has the egocentric distance and bearing predicted 

by the map. I codify this intuitive idea more formally in the Appendix, where I provide a 

semantics for m. Even without referring to this semantics, I think it intuitively clear that m is 

correct only if it replicates relevant geometric aspects of the region it maps. Note that m might be 

useful for navigation even if it is not true. For instance, a map with systematic metric distortions 

might be better than nothing, especially if it preserves affine or topological properties. 

 Apparently, then, point-landmark maps display the following two properties: (a) the 

representation has geometric structure; (b) the representation is correct only if its geometric 

structure replicates salient geometric relations between entities represented by components of the 

representation.
9
 Should we classify representations satisfying (a) and (b) as cognitive maps in the 

strict sense? That depends on whether (a) and (b) exhaustively enumerate “the basic 

representational properties and mechanisms” of concrete maps. We might call such 

representations “cognitive maps in the approximate sense,” leaving open whether they are 

cognitive maps in the strict sense. Certainly, a cognitive map in the approximate sense exhibits 

striking similarities with concrete maps. 
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6  Logically structured representations? 

The models employed in probabilistic robotics suggest a pluralistic conception of computational 

psychology embracing non-logical mental representations. For instance, point-landmark map m = 

(x y θ m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN) does not overtly feature the basic elements of logical 

form: sentential logical connectives, quantifiers, or even predication. EKF SLAM employs many 

intermediate representations while updating its pose and map estimate, as encapsulated by m. On 

the surface, none of these varied representations exhibit the familiar syntax or semantics of the 

predicate calculus. They are scalars, vectors, or matrices. A natural conjecture, then, is that 

animal navigation involves computations defined over cognitive maps that have geometric 

structure but not logical structure. 

 One might object to this analysis in several different ways. First, one might suggest that, 

despite initial appearances, cognitive maps in the approximate sense have logical structure. 

Second, one might concede that cognitive maps in the approximate sense lack logical structure 

but insist that computational models involving them include additional representations that 

possess logical structure. Third, one might acknowledge that the foregoing models involve 

exclusively non-logical representations but insist that the models are implemented by a deeper 

logical level of computation and representation. (Cf. Hayes [1985].) Fourth, one might argue 

that animal navigation is best explained by alternative models whose computations are defined 

over predicate calculus sentences instead of, or in addition to, maps in the approximate sense. 

In evaluating the first objection, we must distinguish between a mere list of 

representations and a unified representation that expresses a proposition. As Fodor and Pylyshyn 

([1988], p. 27) put it, ‘a theory of mental representation must distinguish the case when two 

concepts (e.g. THIS BODY, HEAVY) are merely simultaneously entertained from the case 
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where, to put it roughly, the property that one of concepts expresses is predicated of the thing 

that the other concept denotes (as in the thought: THIS BODY IS HEAVY).’ Viewed on its own 

terms, m = (x y θ m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN) is a mere list, and hence does not involve 

predication. In itself, it has neither metric nor logical structure. If incorporated into a 

computational model that appropriately exploits the Euclidean distance metric, m has metric 

structure. But does m thereby come to possess logical structure, such as predication? For 

instance, where are the predicates in (x y θ m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN)? Is s1 a 

predicate, used to attribute some property to the location denoted by (m1,x m1,y)? Or is (m1,x m1,y) 

the predicate? Lacking further argument, neither suggestion is very plausible. (m1,x m1,y) is most 

naturally viewed as denoting a location in space. s1 is most naturally viewed as denoting 

properties of the landmark itself, not the landmark’s location. One might propose that s1 is a 

predicate meaning “is occupied by a landmark with such-and-such properties.” Yet what 

motivates such an ornate proposal, save an antecedent commitment to explicating all mental 

representation as ultimately logical? 

Traditionally, philosophers emphasize two related but distinct rationales for attributing 

logical form to sentences and thoughts. The first is the need to provide a compositional truth-

conditional semantics. The second is the need to provide a systematic theory of logical 

inference.
10

 The only way to evaluate whether the first rationale applies to m is to study m’s 

semantics in more formal detail. I undertake this task in the Appendix, where I return a negative 

verdict. I focus here upon the second rationale. 

 As Frege demonstrated, by attributing proper logical form to sentences, we can 

systematically describe many patterns of acceptable inference. One can develop this idea in a 

syntactic direction, as illustrated by proof theory, or in a semantic direction, as illustrated by 
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Tarski’s theory of logical consequence. The syntactic perspective is more relevant to us. It 

underlies the doctrine, popular within cognitive science and especially AI, that deductive 

reasoning is proof-theoretic manipulation of logically structured mental representations. 

 Does this rationale apply to the computational models from §4? Do the models involve 

inferential patterns best described by attributing logical form to the relevant representations? No. 

We search those models in vain for familiar inferential patterns like modus ponens, reductio ad 

absurdum, or Leibniz’s law. Proof theory is a diverse field, encompassing Hilbert-style formal 

systems, Gentzen’s sequent calculus, natural deduction systems, Herbrand’s theorem, and so on. 

None of these diverse perspectives inform the syntactic manipulations employed by typical 

algorithms from probabilistic robotics. For instance, EKF SLAM updates m through 

computations that combine kinematics, trigonometry, matrix algebra, and elementary calculus. 

The computations are like those that any graphics calculator executes, albeit far more demanding 

of time and memory. The absence of proof-theoretic machinations is particularly glaring when 

juxtaposed with the genuinely logic-based AI algorithms surveyed by Russell and Norvig 

([2003], chaps. 7-10). Those algorithms are directly based upon proof theory. For example, 

resolution and unification convert Herbrand’s theorem into a search procedure for 

quantificational unsatisfiability. Computations from probabilistic robotics do not even feature 

induction by logical complexity, a basic proof-theoretic device. Thus, we do not need to posit 

logical form to describe the rational computational processes surveyed in §4. 

 This argument does not conclusively show that map m lacks logical form. But it places 

the burden of proof squarely upon anyone who claims otherwise. 

 An important subsidiary point emerges from our discussion of logical inference. Even if 

we were to concede that the representations in question have logical form, computations defined 
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over them do not exploit it through logical inference. The computations are not proof-theoretic 

transformation of symbols. Thus, even if we concede that the representations are patterned after 

logic, the computations are not. Of course, the only way to show definitively that the models 

involve no proof-theoretic manipulation is to provide pseudocode for them. That is also the only 

way to refute the second of our four objections: that the models contain additional 

representations that are logically structured. Still, I hope I have provided enough detail to render 

my assessment plausible. 

 Our first two objections may seem to receive support from §4’s emphasis on probability. 

Philosophers often depict probability distributions as defined over propositions or sentences. 

Typical axiomatizations describe how the probability of a logically complex sentence depends on 

the probabilities of its components. For instance, standard axioms entail that 

(*) p(¬F) = 1-p(F). 

Doesn’t the tight relation between probabilistic inference and the propositional calculus show 

that probabilistic robotics requires a logically structured representational medium? 

 One can develop probability theory over logically structured representations. But the 

concept of probability is broader. We require that a probability distribution be associated with 

representations that depict possible states of the world, not that the representations have logical 

structure. Notably, Kolmogorov offered an axiomatization that does not presuppose logically 

structured representations. The axiomatization, which is standard in statistics textbooks, defines a 

probability space as (Ω, A, p), where Ω is a non-empty set, A is a -algebra over Ω (i.e. a set of 

subsets of Ω that contains Ω and is closed under countable union and complementation in Ω), 

and p is a probability measure. Specifically, we might take Ω to be a set of (pose, map) ordered 
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pairs. Working within this framework, we can derive the standard elements of probability theory, 

including Bayes’s theorem. In this framework, the clause corresponding to (*) is 

(**) p(Ω/x) = 1-p(x), 

where xA and Ω/x
 
is the complement of x in Ω

 
. In contrast to (*), (**) makes no overt appeal to 

negated representations within p’s domain. Of course, we use negation to define set-theoretic 

complementation. That does not entail that p attaches probabilities to negated representations. 

Apparently, then, we can treat robot navigation as an exercise in probabilistic inference defined 

over map-like representations, without recourse to logically structured representations. 

One might claim that the -algebra framework implicitly assigns logically structured 

representations to the probability measure’s domain. But that would require extensive argument. 

It is not a straightforward interpretation of what the framework literally says. For instance, if 

someone were to suggest that taking set-theoretic complements over a probability space is a 

disguised way of negating propositions, and hence that (**) is a disguised form of (*), we could 

illustrate the difference with the following toy example. Suppose we feel certain that object x is a 

located in one of three locations a, b, c, but we are not sure which. We can represent our belief 

state with a probability distribution defined over the powerset of Ω = {a, b, c}, where each 

element represents the set of possible worlds in which x inhabits the corresponding location. 

Then (**) entails that p({a, b}) = p(Ω/c) = 1-p({c}). Here, {a, b} represents the set W1 of 

possible worlds where x inhabits either a or b. Note that W1 is not the set W2 of possible worlds 

corresponding to the proposition “x is not located at c.” A world in which x inhabits some fourth 

location d belongs to W2 but not to W1. Hence, taking complements over a probability space need 

not correspond to negating propositions. So (**) is not a disguised form of (*). 
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 The third objection describes one viable conception of robot navigation. Golog, 

introduced in (Levesque, et al. [1997]), is a popular robotics programming language similar to 

Prolog. Both languages describe inferential manipulations performed upon predicate calculus 

sentences. If one uses Golog to implement the computational models surveyed in §4, then the 

resulting robot involves two distinct levels of computation and representation: one cartographic 

(in the approximate sense), the other logical. Thus, animal cognition might work as the objection 

describes. 

 Crucially, however, it need not work that way. For instance, the language CES, 

introduced by Thrun ([2000]) as an extension of C++, includes primitive terms for representing 

and manipulating probability distributions. The language facilitates implementation of 

probabilistic models like those canvassed in §4. Navigational programs written in CES 

manipulate lists, stacks, queues, trees, and so on. They do not manipulate syntactic items 

endowed with anything resembling the normal syntax or semantics of the predicate calculus. 

 In principle, then, computational navigational processes do not require a logical 

implementation. Whether animal navigation in fact has a logical implementation is an empirical 

question I am not trying to answer. 

 The fourth objection describes a possible class of navigational models. For instance, 

Shanahan and Witkowski explicitly aim to develop “robot architectures in which logic is the 

medium of representation and theorem proving is the means of computation” ([2001], p. 19). 

Shanahan ([1997]) develops an account that represents spatial information through an event 

calculus couched in a logically structured representational medium. Localization and mapping 

are treated as abductive inferences performed in this medium. A logic programming language, 

such as Golog, implements the model. Shanahan’s account is purely logicist. Specifically, it 
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eschews cognitive maps in the approximate sense. In contrast, Kuipers ([2000]) and Remolina 

and Kuipers ([2001]) develop a complex hybrid account involving four different levels of spatial 

representation, one of which is metric and another topological. The metric level involves 

cognitive maps in the approximate sense. The topological level includes an axiomatized theory 

about the causal and topological structure of space, a theory that the navigational system exploits 

during localization and mapping. The theory’s axioms are encoded in a logical medium. Thus, 

Kuipers’s account deploys both geometrically and logically structured representations. 

 I will not try to evaluate whether animal navigation instantiates something closer to a 

cartographic approach, the logicist approach espoused by Shanahan, or the hybrid approach 

espoused by Kuipers. I mention a few points just to indicate some complexities. Despite much 

emphasis on SLAM’s abductive character, Shanahan offers only sketchy indications regarding 

how exactly one might solve it. In particular, he does not explain how to resolve the 

underdetermination of theory by evidence, a point on which Remolina and Kuipers ([2001]) 

critique him. Kuipers and his colleagues offer an explicit SLAM algorithm for metric maps 

(Beeson, et al. [2006]). But the algorithm draws solely upon geometric, non-logical 

representations. Ultimately, then, it is not clear that any successful existing model of metric 

cognitive maps assigns logical representation a central role. Since one can extract topological 

maps from metric maps, it is unclear whether logical representations should play any essential 

role.
11

 

 My thesis is not that a purely cartographic, non-logical theory of mental representation 

best explains animal navigation. Any such conclusion would be premature. We require extensive 

theoretical and empirical exploration of the rival approaches. My point is that a purely 
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cartographic analysis of animal navigation presently seems just as promising as Shanahan’s 

logicist approach or Kuipers’s hybrid approach. 

 

7  Systematicity and productivity 

A famous pair of Fodorian arguments ([1987], pp. 147-53) contends that Mentalese yields the 

best explanation for two phenomena: productivity (thinkers can entertain a potential infinity of 

distinct thoughts) and systematicity (there are systematic connections between which thoughts a 

thinker can entertain). Do these arguments show, contrary to §6, that animal navigation requires 

a logically structured representational medium? I claim that they do not. Since Fodor ([1987], p. 

148) himself admits that the productivity argument is debatable, I focus upon systematicity. Most 

of what I say would generalize to handle productivity. 

 Fodor takes as a datum that thought is systematic: the ability to entertain certain thoughts 

suffices for the ability to entertain certain other thoughts. For instance, thinkers able to entertain 

the thought that John loves Mary can also entertain the thought that Mary loves John. As Fodor 

and Pylyshyn observe, ‘[i]t’s not enough just to stipulate systematicity; one is also required to 

specify a mechanism that is able to enforce the stipulation’ ([1988], p. 50). One must do more 

than show that systematicity is consistent with some preferred psychological theory, such as 

connectionism. One must show why, based on the theory, we would expect minds to be 

systematic. Fodor and Pylyshyn argue that the only adequate solution is to treat representational 

mental states as relations to symbols with a combinatorial syntax and semantics ([1988], pp. 37-

50). Thus, explaining systematicity requires us to posit a language of thought. 

 To assess how this argument bears upon animal navigation, let us distinguish two senses 

in which mental representations might be “sentential” or “languagelike.” (Cf. Camp [2007], p. 
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152.) Representations are sentential in the weak sense if they have syntactic structure and a 

compositional semantics. They are sentential in the strong sense if they feature the basic 

compositional mechanisms familiar from formal logic: predication, truth-functional connectives, 

quantification, and so on. Fodor often emphasizes mental sentences in the strong sense, but his 

official definition of Mentalese ([1987], pp. 134-8) only mentions sententiality in the weak sense. 

In particular, Fodor’s systematicity argument only aims to establish the existence of mental 

sentences in the weak sense. In his own words, the argument aims to establish only ‘the 

combinatorial structure of thoughts’ ([1987], p. 151). The argument does not purport to isolate 

any particular Mentalese compositional mechanisms. As Block observes, then, systematicity 

‘may reflect only a combinatorial pictorial system’ ([1995], p. 411), rather than mental sentences 

in the strong sense. Similarly, Braddon-Mitchell and Jackson ([2007], p. 182) note that 

cartographic representation is systematic and hence that one can explain systematicity by treating 

representational states as relations to mental maps. 

Our discussion of point-landmark maps confirms this diagnosis. Any creature able to 

entertain the map (x y θ m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN) is also able to entertain numerous 

other maps, such as (x y θ m2,x m2,y s1 m1,x m1,y s2 … mN,x mN,y sN). A creature who entertains the 

first map can “recombine” its elements to form the second, just as a thinker who entertains the 

Mentalese sentence JOHN LOVES MARY can recombine its elements to entertain MARY 

LOVES JOHN. Thus, the computational models canvassed in §4 entail a form of systematicity. I 

conclude that systematicity poses no threat to §6’s conclusion: a purely cartographic, non-logical 

approach to animal navigation is at least as promising as an approach that posits logically 

structured mental symbols. 
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 Based on their discussion of mental maps, Braddon-Mitchell and Jackson argue that we 

can dispense with logically structured mental representations, treating all representational mental 

states as relations to mental maps. In response to this kind of view, Fodor ([1991], p. 295) and 

Rey ([1995], p. 208) observe that a purely pictorial or cartographic representational system 

cannot express negation or disjunction, let alone quantification. Since humans often entertain 

negated, disjointed, and quantified thoughts, Fodor and Rey conclude that a pictorial or 

cartographic representational system cannot exhaust the resources of Mentalese. 

I find this response to Braddon-Mitchell and Jackson convincing, as applied to humans. 

The response seems less convincing when applied to non-linguistic creatures, such as bees or 

even rats. Is it so clear that these creatures entertain thoughts with logical structure? Is it so clear 

that explaining how these creatures behave requires attributing negated, disjoined, or quantified 

thoughts to them? I have questioned whether such representational resources are needed for 

explaining one central cognitive activity: navigation. It begs the question even to assume, as 

Fodor and Pylyshyn do, that non-linguistic creatures can ‘perceive/learn that aRb’ ([1988], p. 

44). The thought that aRb involves a two-place predicate xRy. As we have seen, the 

computational models canvassed §4 do not feature predicational structure. For further discussion 

of these issues, see (Rescorla, [forthcoming a]). 

 

8  Consequences for philosophy and psychology 

Since the inception of cognitive science, researchers have debated whether we should 

countenance “non-logical,” “non-discursive,” or “non-propositional” representations. What does 

the present discussion add to this perennial dispute? The most basic contribution is to bring the 

dispute into contact with an impressive class of psychological theories and computational models 
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whose bearing upon it has hitherto received insufficient emphasis. Philosophers rarely pay 

detailed attention to cognitive maps as possible instances of non-discursive representation. In 

many respects, however, maps provide a more instructive contrast with logical representation 

than phenomena such as mental imagery. A particularly important point concerns the possibility 

of rational processes in a non-logical representational medium. The models presented in §4 are 

rational: they convert perceptual and motor input into map-like representations rendered 

probable by that input. They thereby provide a detailed solution to one version of the problem of 

abduction. Yet they invoke neither logically structured representations nor proof-theoretic 

manipulations. Even if the models are not remotely close to empirically correct theories of 

animal navigation, they demonstrate the possibility of rational mechanisms fundamentally 

distinct from the logic-based machinations so often emphasized within philosophy and AI. 

Our discussion also bears upon more empirical concerns. The computational models 

surveyed in §4 provide a promising avenue for scientific research into animal navigation. They 

offer the only known theoretical framework remotely adequate for solving metric versions of 

SLAM. They thereby illustrate how non-logical mental representation has the potential to 

illuminate a fundamental mode of animal cognition. 

 

9  Appendix: cartographic semantics 

 

In this appendix, I offer a compositional semantics for the point-landmark maps deployed in 

contemporary robotics. I then investigate the philosophical significance of this semantics. 

 A compositional semantics must do two things: specify the semantic properties of 

primitive expressions; and display how the semantic properties of a complex expression depend 
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on its structure and on the semantic properties of its parts. When the complex representation is a 

point-landmark map m = (x y θ m1,x m1,y s1 m2,x m2,y s2 … mN,x mN,y sN), the relevant structure is 

the metric d associated with m, and the relevant parts are the primitive elements x, y, θ, m1,x, etc. 

To specify the semantic properties of these elements, we endow m with a denotation function 

den. This function carries each element x, y, mi,x mi,y, to a real number. It carries θ to a real 

number between 0 and 2π. It associates si with an ordered pair (ui, vi), where ui is a landmark and 

vi is a vector of observable properties. Finally, we associate m with a system of Cartesian 

coordinates for physical space. (Somewhat artificially, we can regard this coordinate system as 

denoted by the parentheses appearing in m. Doing so ensures that m’s truth-condition is a 

function solely of its metric structure and the denotations of its parts.) Since den(si) is an ordered 

pair, let den1(si) and den2(si) be its first and second elements, respectively. To display how the 

semantic properties of m depend on those of its parts, we say that 

(SEM) m is true iff: the robot inhabits the location in physical space with Cartesian coordinate 

 (den(x), den(y)); the robot’s allocentric heading relative to the x-axis of the coordinate 

 system is den(θ); den1(si) has properties den2(si); the egocentric bearing of den1(si), 

 relative to the robot, is atan2(den(mi,y)– den(y), den(mi,x) – den(x)) – den(θ); the 

 distance in physical space between the robot and den1(si), as measured in some fixed 

 standard units, is d((x y), (mi,x mi,y)).
12

 

SEM codifies the intuitive idea that m is correct only if it replicates relevant geometric aspects of 

physical space. Thus, it corroborates my claim from §5 that m is a “cognitive map in the 

approximate sense.” As far as I know, SEM is the first attempt in the literature at providing an 

explicit semantics for point-landmark maps. However, I would argue that something like SEM 

implicitly informs much of the literature on robot navigation. 
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 At first blush, SEM may look less like a compositional semantics than like a trivial list of 

semantic properties. Any such appearance is misleading. SEM does not enumerate the semantic 

properties of m’s elements. That was already achieved by our specification of den. Rather, SEM 

displays how the semantic properties of m’s elements, together with m’s geometric structure, 

determine m’s truth-condition. 

 Consider the final clause of SEM: “the spatial distance between the robot and landmark 

den1(si) is d((x y), (mi,x mi,y)).” This clause is not a trivial consequence of specifying den and d. If 

we omit it, then the resulting semantics SEM' no longer requires that m preserve distances. To 

illustrate, suppose that: 

(i) m = (x y θ m1,x m1,y s1 m2,x m2,y s2) 

(ii) d((a b), (c d)) = 22 ))()(())()(( ddenbdencdenaden   

(iii) (den(x), den(y)) = (0, 0) 

(iv) (den(m1,x), den(m1,y)) = (1, 0) 

(v) (den(m2,x), den(m2,y)) = (5, 0) 

(vi) den1(s1) = u1 and den1(s2) = u2 

(vii) Relative to our Cartesian coordinates for physical space, the robot is located at the origin, 

 and landmarks u1 and u2 are located on the x-axis. The actual physical distances from 

 the robot to u1 and u2 are 4 and 1000, respectively. 

Given (i)-(vi), the final clause of SEM entails that m is true only if the distances from the robot to 

landmarks u1 and u2 are 1 and 5, respectively. So (vii) entails that m is false. In contrast, SEM' 

allows m to be true, as long as m satisfies the other clauses of SEM. Intuitively, SEM rather than 

SEM' yields the correct verdict. This example illustrates the non-triviality of SEM. It shows that 

SEM imposes a substantive constraint upon the relation between m and physical space, a 
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constraint that does not follow just from specifying m’s geometric structure and the denotations 

of its elements. Intuitively, the constraint is that m replicate distances between the robot and each 

landmark. Similar examples illustrate that the other clauses of SEM are non-trivial. 

 Readers may still resist calling SEM a genuine semantics, on the grounds that it directly 

states truth-conditions for m rather than showing how to derive truth-conditions. In contrast, 

Tarskian semantics employs recursive clauses for the logical connectives (e.g. “pq” is true iff p 

is true or q is true; “p” is true iff p is not true). One can iteratively apply these clauses to derive 

truth-conditions for a potential infinity of sentences. Shouldn’t a genuinely compositional 

semantics proceed in similar fashion? 

 I respond that SEM does not state our desired truth-condition for m. Compare it to the 

Tarskian clause for atomic predication, which runs, nearly enough for our purposes, as follows: 

(*) “Fa” is true iff “F” is true of den(“a”). 

Our desired truth-condition for “Fa” does not involve the denotation relation, “F”, or “a.” We 

obtain the desired truth-condition only when we enrich (*) by specifying which object “a” 

denotes and which objects “F” is true of. Similarly, our desired truth-condition for m does not 

involve den or elements of m. We obtain the desired truth-condition only when we enrich SEM 

by specifying a particular den. For instance, combining the final clause of SEM with (i)-(vi) 

yields that m is true only if the distances from the robot to landmarks u1 and u2 are 1 and 5, 

respectively. Varying den would yield a different truth-condition. 

 Admittedly, SEM does not iterate in a manner comparable to Tarski’s recursive clauses 

for the logical connectives. But neither does (*). Nevertheless, (*) isolates a compositional 

mechanism that applies uniformly to arbitrary atomic sentences and denotation relations. 
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Similarly, SEM isolates a compositional mechanism that applies uniformly to arbitrary point-

landmark maps and denotation relations. 

 The differences between SEM and (*) are as revealing as the similarities. (*) treats 

predicates as “true of” objects. The “truth of” relation, or its converse “satisfaction,” crucially 

informs Tarski’s treatment of complex predicates and objectual quantifiers. As Davidson argues 

([2005], pp. 98-163), it is difficult to see how we can handle such locutions without deploying 

satisfaction. Yet satisfaction plays no role in SEM. The only clause of SEM that even remotely 

resembles (*) is the third: “den1(si) has properties den2(si).” Even this clause differs profoundly 

from (*). As Davidson emphasizes ([2005], pp. 141-163), (*) decomposes a linguistic expression 

into two distinct elements (“a” and “F”) with two distinct semantic roles (denoting some object 

versus being true of certain objects). SEM imposes no comparable decomposition upon si or 

upon any other element of m. SEM does not treat m as composed of representational elements 

that are true of objects. Apparently, then, we can provide a compositional semantics for point-

landmark maps without attributing anything like Tarskian predicational structure to them. 

 In this way, SEM facilitates comparison between cartographic and logical mental 

representation. SEM describes how m’s representational properties depend upon those of its 

parts, but it eschews the characteristic elements of Tarskian semantics, such as the satisfaction 

relation or Tarskian inductive clauses governing the logical connectives. Thus, SEM embodies 

fundamentally different compositional mechanisms than standard Tarskian semantics for the 

predicate calculus. SEM raises many questions, such as what it is for m to be associated with a 

given metric d, a given denotation relation den, and a given system of Cartesian coordinates for 

physical space. I see no reason to think that answering these questions requires the resources of 
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Tarskian semantics. I conclude that we can provide a satisfying truth-conditional semantics for m 

without attributing logical form, including predicative structure, to it.
13

 

 As Block ([1981], p. 3) and Pylyshyn ([2003], pp. 281-426) observe, the debate over 

mental imagery has been plagued by vague, metaphorical, or obscure formulations of the 

respects in which imagistic and propositional representations have different “formats.” In 

contrast, our analysis suggests a fairly crisp formulation: cognitive maps in the approximate 

sense have representationally significant geometric structure, as opposed to representationally 

significant logical structure. This contrast is exemplified by SEM. Thus, SEM secures a precise 

sense in which m has a different representational format than a predicate calculus sentence. As 

far as I know, even the most rigorous analyses of imagistic representation, such as (Kosslyn 

[1980]) or (Tye [1991]), do not come close to providing a formal semantics that would facilitate 

an analogous comparison. 

 

Department of Philosophy 

University of California 

Santa Barbara, CA 93106 

rescorla@philosophy.ucsb.edu 

 

Acknowledgments 

I am indebted to Jacob Beck, Ned Block, Elisabeth Camp, Warren Goldfarb, Richard Heck, 

Mary Hegarty, Jack Loomis, Daniel Montello, Charles Parsons, Gualtiero Piccinini, and Aaron 

Zimmerman for helpful feedback. I also benefited from the comments of three anonymous 

referees for this journal. 



  

  

  

38 

References 

Armstrong, D. M. [1973]: Belief, Truth, and Knowledge, London: Cambridge University Press. 

Balakrishnan, K., Bhatt, R., and Honavar, V. [1998]: ‘Spatial Learning and Localization in 

 Animals: A Computational Model and Behavioral Experiments’, Proceedings of the 

 Second European Conference on Cognitive Modeling, Nottingham: Nottingham 

 University Press. 

Balakrishnan, K., Bousquet, O., and Honavar, V. [1999]: ‘Spatial Learning and Localization in 

Rodents: A Computational Model of the Hippocampus and its Implications for Mobile 

Robots’, Adaptive Behavior, 7, pp. 173-216. 

Barsalou, L. [1998]: ‘Perceptual Symbol Systems’, Behavioral and Brain Sciences, 22, pp. 557-

 660. 

Beeson, P., Murarka, A., and Kuipers, B. [2006]: ‘Adapting Proposal Distributions for Accurate, 

 Efficient Mobile Robot Localization’, IEEE International Conference on Robotics and 

 Automation. 

Bermudez, J. L. [1998]: The Paradox of Self-Consciousness, Cambridge, MA: MIT Press. 

---. [2003]: Thinking without Words, Oxford: Oxford University Press. 

Block, N. [1981]: ‘Introduction’, in N. Block (ed.), Imagery, Cambridge, MA: MIT Press. 

---. [1983]: ‘Mental Pictures and Cognitive Science’, The Philosophical Review, 92, pp. 499-541. 

---. [1995]: ‘The Mind as the Software of the Brain’, in E. Smith and D. Osherson (eds), An 

 Invitation to Cognitive Science, vol. 3, Cambridge, MA: MIT Press. 

Braddon-Mitchell, D. and Jackson, F. [2007]: Philosophy of Mind and Cognition, 2nd ed., 

 Cambridge, MA: Blackwell. 



  

  

  

39 

Brooks, R. [1990]: ‘Elephants Don’t Play Chess’, Robotics and Autonomous Systems, 6, pp. 3-

 15. 

Burge, T. [2003]: ‘Perceptual Entitlement’, Philosophy and Phenomenological Research, 67, 

 pp. 503-48. 

---. [2005]: ‘Disjunctivism and Perceptual Psychology’, Philosophical Topics, 33, pp. 1-78. 

Byrne, P., Becker, S., and Burgess, N. [2007]: ‘Remembering the Past and Imagining the Future: 

 A Neural Model of Spatial Memory and Imagery’, Psychological Review, 114, pp. 340-

 75. 

Camp, E. [2007]: ‘Thinking with Maps’, Philosophical Perspectives, 21, pp. 145-82. 

Campbell, J. [1994]: Past, Space, and Self, Cambridge, MA: MIT Press. 

Casati, R. and Varzi, A. [1999]: Parts and Places, Cambridge, MA: MIT Press. 

Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., and Thrun, S. 

 [2005]: Principles of Robot Motion, Cambridge, MA: MIT Press. 

Chrisley, R. [1993]: ‘Connection, Cognitive Maps, and the Development of Objectivity’, 

 Artificial Intelligence, 7, pp. 329-54. 

Clark, A. [1997]: Being There, Cambridge, MA: MIT Press. 

Clark, A., and Grush, R. [1999]: ‘Towards a Cognitive Robotics’, Adaptive Behavior, 7, pp. 5-

 16. 

Cummins, R. [1996]: Representations, Targets, and Attitudes, Cambridge. MA: MIT Press. 

Davidson. D. [2005]: Truth and Predication. Cambridge, MA: Harvard University Press. 

Dennett, D. [1981]: ‘Two Approaches to Mental Images’, in N. Block, (ed.), Imagery, 

 Cambridge, MA: MIT Press. 

Devitt, M. [2006]: Ignorance of Language, Oxford: Clarendon Press. 



  

  

  

40 

Eilan, N., McCarthy, R., and Brewer, B. [1999]: Spatial Representation, Oxford: Oxford 

 University Press. 

Evans, G. [1982]: The Varieties of Reference, Oxford: Oxford University Press. 

Fodor, J. [1975]: The Language of Thought, New York: Thomas Y. Crowell. 

---. [1987]: Psychosemantics, Cambridge, MA: MIT Press. 

---. [1991]: ‘Replies’, in B. Loewer (ed.), Meaning in Mind, Cambridge, MA: Blackwell. 

---. [2003]: Hume Variations, Oxford: Clarendon Press. 

---. [2007]: ‘The Revenge of the Given’, in B. McLaughlin and J. Cohen (eds), Contemporary 

 Debates in Philosophy of Mind, Malden: Blackwell. 

Fodor, J., and Pylyshyn, Z. [1988]: ‘Connectionism and Cognitive Architecture: A Critical 

 Analysis’, Cognition, 28, pp. 3-71. 

Gallistel, C. R. [1990]: The Organization of Learning, Cambridge, MA: MIT Press. 

---. [1994]: ‘Space and Time’, in N. J. Makintosh (ed.), Animal Learning and Cognition, San 

Diego: Academic Press. 

---. [1998]: ‘Insect Navigation: Brains as Symbol-Processing Organs’, in S. Sternberg and D. 

 Scarborough (eds.), An Invitation to Cognitive Science, vol. 4, Cambridge, MA: MIT 

 Press. 

---. [2008]: ‘Dead Reckoning, Cognitive Maps, Animal Navigation, and the Representation of 

 Space: An Introduction’, in M. Jeffries and W.-K. Yeap (eds), Robotics and Cognitive 

 Approaches to Spatial Mapping, Berlin: Springer. 

Genesereth, M., and Nilsson, N. [1987]: Logical Foundations of Artificial Intelligence, Los 

 Altos: Morgan Kaufmann. 

Godfrey-Smith, P. [2006]: Mental Representation, Naturalism, and Teleosemantics, in G. 



  

  

  

41 

 Macdonald and D. Papineau (eds), Teleosemantics, Oxford: Oxford University Press. 

Grush, R. [2001]: ‘Self, World, and Space: On the Meaning and Mechanisms of Egocentric and 

 Allocentric Spatial Representation’, Brain and Mind, 1: pp. 59-92. 

---. [2004]: ‘The Emulation Theory of Representation: Motor Control, Imagery, and Perception’, 

 Behavioral and Brain Sciences, 27, pp. 377-42. 

Hayes, P. [1979]: ‘The Logic of Frames’, in D. Metzing (ed.), Frame Conceptions and Text 

 Understanding, Berlin: de Gruyter. 

---. [1985]: ‘Some Problems and Non-problems in Representation Theory’, in R. J. Brachman 

 and H. J. Levesque (eds), Readings in Knowledge Representation, Los Altos: Morgan 

 Kaufmann. 

Heck, R. [2007]: ‘Are There Different Kinds of Content?’, in B. McLaughlin and J. Cohen 

 (eds), Contemporary Debates in Philosophy of Mind, Malden: Blackwell. 

Hull, C. [1930]: ‘Knowledge and Purpose as Habit Mechanisms’, Psychological Review, 37, pp. 

 511-25. 

Johnson-Laird, P. [2004]: ‘The History of Mental Models’, in K. Manktelow and M. C. Chung, 

 (eds), Psychology of Reasoning: Theoretical and Historical Perspectives, New York: 

 Psychology Press. 

Kitchin, R. [1994]: ‘Cognitive Maps: What Are They and Why Study Them?’, Journal of 

 Environmental Psychology, 14, pp. 1-19. 

Kosslyn, S. [1980]: Image and Mind, Cambridge: Harvard University Press. 

Kuipers, B. [2000]: ‘The Spatial Semantic Hierarchy’, Artificial Intelligence, 119, pp. 191-233. 

---. [2008]. ‘An Intellectual History of the Spatial Semantic Hierarchy’, in M. Jefferies and W. 

 Yeap (eds), Robot and Cognitive Approaches to Spatial Mapping. Oxford: Oxford 



  

  

  

42 

 University Press. 

Kuo, A. [2005]: ‘An Optimal State Estimation Model of Sensory Integration in Human Postural 

 Balance’, Journal of Neural Engineering, 2, pp. 235-49. 

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. [1997]: ‘GOLOG: A Logic 

 Programming Language for Dynamic Domains’, Journal of Logic Programming, 31, pp. 

 59-84. 

Levitt, T.S., and Lawton, D. T. [1990]: ‘Qualitative Navigation for Mobile Robots’, Artificial 

 Intelligence, 44, pp. 305-60. 

McCarthy, J., and Hayes, P. [1969]: ‘Some Philosophical Problems from the Standpoint of 

 Artificial Intelligence’, in B. Meltzer and D. Michie (eds), Machine Intelligence 4, 

 Edinburgh: Edinburgh University Press. 

McDermott, D. [2001]: Mind and Mechanism, Cambridge, MA: MIT Press. 

McDowell, J. [1994]: Mind and World, Cambridge, MA: Harvard University Press. 

Menzel, R., Gregger, U., Smith, A., Berger
 
, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., 

 Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., and Watzl, S. 

 [2005]: ‘Honey Bees Navigate According to a Map-like Spatial Memory’, Proceedings of 

 the National Academy of Sciences, 102, pp. 3040-5. 

Peacocke, C. [1992]: A Study of Concepts, Cambridge, MA: MIT Press. 

Pinker, S. [2005]: ‘So How Does the Mind Work?’, Mind and Language, 20, pp. 1-24. 

Pylyshyn, Z. [1984]: Computation and Cognition, Cambridge, MA: MIT Press. 

---. [2003]: Seeing and Visualizing, Cambridge, MA: MIT Press. 

O’Keefe, J., and Nadel, L. [1978]: The Hippocampus as a Cognitive Map, Oxford: Clarendon 

 University Press. 



  

  

  

43 

Raftopoulos, A. and Müller, V. [2006]: ‘The Phenomenal Content of Experience’, Mind and 

 Language, 21, pp. 187-219. 

Rao, R., Olshausen, B., and Lewicki, M. (eds.) [2002]: Probabilistic Models of the Brain: 

  Perception and Neural Function, Cambridge, MA: MIT Press. 

Redish, A. D. [1999]: Beyond the Cognitive Map, Cambridge, MA: MIT Press. 

Redish, A. D., and Touretzky, D. [1997]: ‘Navigating with Landmarks: Computing Goal 

 Locations from Place Codes’, in K. Ikeuchi and M. Veloso (eds), Symbolic Visual 

 Learning. Oxford: Oxford University Press. 

Remolina, E. and Kuipers, B. [2001]: ‘A Logical Account of Causal and Topological Maps’,

 Proceedings of the 17
th

 International Joint Conference on Artificial Intelligence, San 

 Francisco: Morgan Kaufman. 

Rescorla, M. [Forthcoming a]: ‘Chrysippus’s Dog as a Case Study in Non-linguistic Cognition’, 

 in R. Lurz (ed.), Philosophy of Animal Minds, Cambridge: Cambridge University Press. 

---. [Forthcoming b]: ‘Predication and Cartographic Representation’, Synthese. 

Rey, G. [1995]: ‘A Not “Merely Empirical” Argument for a Language of Thought’, 

 Philosophical Perspectives, 9, pp. 201-22. 

Russell, S. and Norvig, P. [2003]: Artificial Intelligence: A Modern Approach, Upper Saddle 

 River: Prentice Hall. 

Shanahan, M. [1997]: ‘Noise, Non-determinism, and Spatial Uncertainty’, Proceedings of the 

  American Association for Artificial Intelligence, pp. 153-58. 

Shanahan, M., and Witkowski, M. [2001]: ‘High-level Robot Control through Logic’, Intelligent 

 Agents VII, New York: Springer-Verlag. 

Shepard, R. and Chipman, S. [1970]: ‘Second-order Isomorphism of Internal Representations: 



  

  

  

44 

 Shapes of States’, Cognitive Psychology, 1, pp. 1-17. 

Shettleworth, S. [1998]: Cognition, Evolution, and Behavior, Oxford: Oxford University Press. 

Sloman, A. [1978]: The Computer Revolution in Philosophy, Hassocks: The Harvester Press. 

Smith, R. C. and Cheeseman, P. [1986]: ‘On the Representation and Estimation of Spatial 

 Uncertainty’, International Journal of Robotics Research, 5, pp. 56-68. 

Stelerny, K. [2003]: Thought in a Hostile Word, Malden: Blackwell. 

Strawson, P. [1959]: Individuals, London: Routledge. 

Thomas, N. [2007]: ‘Mental Imagery’, in E. Zalta (ed.), The Stanford Encyclopedia of 

  Philosophy, <plato.stanford.edu>. 

Thrun, S. [2000]: ‘Towards Programming Tools for Robots that Integrate Probabilistic 

 Computation and Learning’: Proceedings of the IEEE International Conference on 

 Robotics and Automation, San Francisco: Institute of Electrical and Electronics 

 Engineers. 

---. [2003]: ‘Robot Mapping: A Survey’, in G. Lakemeyer and B. Nebel (eds), Exploring 

 Artificial Intelligence in the New Millennium, Boston: Morgan Kaufmann. 

Thrun, S., Burgard, W., and Fox, D. [2005]: Probabilistic Robotics, Cambridge, MA: MIT Press. 

Tolman, E. [1948]: ‘Cognitive Maps in Rats and Men’, Psychological Review, 55, pp. 189-208. 

Tootell, R. B., Silverman, M. S., Switkes, E., and de Valois, R. L. [1982]: ‘Deoxyglucose 

 Analysis of Retinotopic Organization in Primate Striate Cortex’, Science, 218, pp. 902-4. 

Touretzky, D., and Redish, A. D. [1996]: ‘A Theory of Rodent Navigation Based on Interacting 

 Representations of Space’, Hippocampus, 6, pp. 247-70. 

Trullier, O., Wiener, S., Berthoz, A., and Meyer, J.-A. [1997]: ‘Biologically Based Artificial 

 Navigation Systems: Review and Prospects’, Progress in Neurobiology, 51, pp. 483-544. 



  

  

  

45 

Tye, M. [1991]: The Imagery Debate, Cambridge, MA: MIT Press. 

Wehner, R. [2003]: ‘Desert Ant Navigation: How Miniature Brains Solve Complex Tasks’, 

 Journal of Comparative Physiology, 189, pp. 579-88. 

Wittlinger, M., Wehner, R., and Wolf, H. [2007]: ‘The Desert Art Odometer: A Stride Integrator 

 That Accounts for Stride Length and Walking Speed’, Journal of Experimental Biology, 

 210, pp. 198-207. 

                                                 

Notes 
 
1
 For general philosophical discussion of spatial representation, see (Bermudez [1998], [2003]; 

Campbell [1994]; Eilan, et al. [1999]; Evans [1982]; Godfrey-Smith ([2006])). Heck ([2007]) 

discusses cognitive maps in relation to the debate over nonconceptual content. Chrisley ([1993]), 

Clark ([1997]), and Clark and Grush ([1999]) discuss computational models of navigation. To 

my knowledge, no philosopher has discussed the specific models I emphasize, which deploy 

Bayesian probability theory defined over cognitive maps. For instance, Clarke ([1997]) 

emphasizes “behavior-based robotics” (e.g. Brooks [1990]), which eschews “internal models” of 

the external world.  

2
 Cf. (Strawson [1959]; Evans [1982]; Bermudez [1998]; Grush [2001]). 

3
 Here are four other difficulties. First, when piloting with respect to particular objects, one must 

re-identify those objects across time, which the robotics literature dubs the correspondence 

problem or the data association problem. Second, and more generally, a distribution of 

properties within the egocentric reference frame may fit equally well with several hypotheses 

about one’s location, which is known in the psychological literature as perceptual aliasing. 

Third, a position may look different across time due to factors like changing lighting conditions. 
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This is known as perceptual variability. Fourth, perceptual input is noisy, so observations may 

not match what the map predicts even if the map is correct. 

4
 Similar criticisms apply to the neural model of spatial memory presented in (Byrne, et al. 

[2007]). For example, the model posits an initial “training phase” in which hippocampal neuron 

firing rates are exogenously set to appropriate values encoding the animal’s actual allocentric 

location (p. 372). Perhaps for this reason, Byrne, et al. emphasize that their model does not seek 

‘to account for learning in a biologically plausible manner’ (p. 351). 

5
 Motor command ut is a vector (vt t), where vt is the robot’s commanded translational velocity 

at t and t its commanded angular velocity. Sensor reading zt is a vector containing a signature, 

an egocentric distance, and an egocentric bearing for each landmark detected at t. 

6
 Neuroscience reveals the presence of “topographic maps” in the brain. For instance, (Tootell, et 

al. [1982]) shows that early-vision in the macaque involves a retinotopically organized area of 

the visual cortex. However, few people think that animal navigation, in general, draws upon such 

a literal spatial map. 

7
 Proponents of imagistic representations typically maintain that, although such representations 

are not literally laid out in physical space, they are somehow “spatial.” Kosslyn ([1980]) claims 

that mental images are laid out in “functional space,” a conception that Tye ([1991], pp. 32-45) 

elucidates and defends. In response, Fodor ([2003], p. 36) asks, “How can there be spatial 

relations among patterns (or whatever) in a space that is itself merely functional?”. I think that 

this question poses a real challenge to Kosslyn and Tye. The notion “spatial relation” seems 

closely tied to physical space. However, the abstract character of modern mathematical geometry 

shows that geometric structure is not closely tied physical space. That is why I focus in the text 
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upon geometric rather than spatial structure. A broadly “functionalist” analysis seems prima 

facie much more plausible for the former than for the latter. 

8
 This basic idea here, that certain representations (purport to) replicate structural properties of 

what they represent, is ancient. Johnson-Laird ([2004]) provides a helpful overview. Gallistel 

([1990]) develops the theme in conjunction with cognitive maps. 

9
 Many other representations employed in robot navigation share these features. For instance, 

roboticists often employ occupancy grids, which decompose space into small cells and assign 

each cell a binary value indicating whether it is occupied. Each occupancy grid is endowed with 

metric structure, and that structure carries representational import, as described by (b). 

10
 I neglect arguments from generative linguistics for a level of Logical Form (LF) that 

represents quantifier scope. These arguments clearly do not apply to animal or robot navigation. 

11
 One might regard topological representation as prior to metric representation. Kuipers’s model 

assigns sentential representation an essential role in constructing the topological map. Among 

other things, then, a satisfactory treatment of these questions must address the relation between 

topological and metric representation. For one view of that relation, see (Kuipers [2008]). 

12
 atan2 is an emendation of the arctan function: atan2(y, x) = arctan(y/x) if x>0; sign(y)(-

arctan(y/x) if x<0; 0 if x=y=0; sign(y)/2 if x=0 and y≠ 0. The emendations are to ensure the 

intuitively correct bearing. 

13
 This contrast with Tarskian semantics marks another important commonality with ordinary 

concrete maps. In (Rescorla [forthcoming b]), I argue that concrete maps do not feature 

predication, as analyzed by Tarski. 


