
Church’s Thesis and the Conceptual Analysis of Computability

Michael Rescorla

Abstract: Church’s thesis asserts that a number-theoretic function is intuitively computable if

and only if it is recursive. A related thesis asserts that Turing’s work yields a conceptual analysis

of the intuitive notion of numerical computability. I endorse Church’s thesis, but I argue against

the related thesis. I argue that purported conceptual analyses based upon Turing’s work involve a

subtle but persistent circularity. Turing machines manipulate syntactic entities. To specify which

number-theoretic function a Turing machine computes, we must correlate these syntactic entities

with numbers. I argue that, in providing this correlation, we must demand that the correlation

itself be computable. Otherwise, the Turing machine will compute uncomputable functions. But

if we presuppose the intuitive notion of a computable relation between syntactic entities and

numbers, then our analysis of computability is circular.
1

§1. Turing machines and number-theoretic functions

 A Turing machine manipulates syntactic entities: strings consisting of strokes and blanks.

I restrict attention to Turing machines that possess two key properties. First, the machine

eventually halts when supplied with an input of finitely many adjacent strokes. Second, when the

1
 I am greatly indebted to helpful feedback from two anonymous referees from this journal, as well as from: C.

Anthony Anderson, Adam Elga, Kevin Falvey, Warren Goldfarb, Richard Heck, Peter Koellner, Oystein Linnebo,

Charles Parsons, Gualtiero Piccinini, and Stewart Shapiro. I received extremely helpful comments when I presented

earlier versions of this paper at the UCLA Philosophy of Mathematics Workshop, especially from Joseph Almog, D.

A. Martin, and Yiannis Moschovakis, and at the ASL Spring Meeting 2004, especially from Shaughan Lavine, Rohit

Parikh, and Richard Zach. I am also grateful to participants in a UC Santa Barbara reading group where the paper

was discussed, especially Nathan Salmon and Anthony Brueckner.

 2

machine halts, the machine tape is inscribed with a string of adjacent strokes. Any machine that

possesses these two properties computes a string-theoretic function: a function from strings of

strokes to strings of strokes. If we denote a string of n strokes by “n”, then a Turing machine that

doubles the number of strokes computes the function (n) = 2n.

 Our main interest is not string-theoretic functions but number-theoretic functions. We

want to investigate computable functions from the natural numbers to the natural numbers. To do

so, we must correlate strings of strokes with numbers. Only then can we talk about a Turing

machine computing a function defined over numbers. As Boolos and Jeffrey put it, “[b]efore we

can speak of Turing machines as computing numerical functions, we must specify the notation in

which the numerical arguments and values are to be represented on the machine’s tape” ([1], p.

43). Strings of strokes are not numbers. They are syntactic entities. Someone who conflates

numbers with strings commits a use-mention error. He confuses a symbolic item with what that

item symbolizes.

 Different textbooks employ different correlations between Turing machine syntax and the

natural numbers. The following three correlations are among the most popular:

 d1(n) = n.

d2(n+1) = n.

 d3(n+1) = n, as an input

 d3(n) = n, as an output.

A machine that doubles the number of strokes computes f(n) = 2n under d1, g(n) = 2n+1 under

d2, and h(n) = 2n+2 under d3. Thus, the same Turing machine computes different numerical

functions relative to different correlations between symbols and numbers.

 3

 More formally, let us define a semantics for a set of symbols as a bijective mapping d

from the symbols to the natural numbers. We say that Turing machine M computes number-

theoretic function f relative to semantics d just in case the Turing machine computes a string-

theoretic function  such that:

(n) = m iff f(d(n)) = d(m).

We say that a number-theoretic function is Turing-computable relative to semantics d just in case

some Turing machine computes it relative to d.

 These definitions reflect a relativity inherent to Turing-computability. The superficially

two-place relation “Turing machine M computes number-theoretic function f” disguises a

suppressed parameter. It results from holding fixed one element in a three-place relation: “Turing

machine M computes number-theoretic function f relative to semantics d.” When we hold

parameter d constant, we obtain a two-place relation between Turing machines and number-

theoretic functions. But the two-place relation instantiates a more general three-place relation.

 There exist uncountably many correlations between numbers and syntactic strings. As we

will see in §2, many of these correlations seem highly anomalous. In §§3-4, I investigate how the

anomalous correlations bear upon Church’s thesis. In §5, I argue that, by distinguishing between

acceptable and unacceptable correlations, we inject a persistent circularity into our analysis of

computability.

§2. Semantics and Turing-computability

 In the previous section, we considered three possible correlations between numbers and

strings of strokes: d1, d2, and d3. The same number-theoretic functions are Turing-computable

relative to each of these correlations. In this sense, d1, d2, and d3 are computationally equivalent.

 4

They demarcate the same privileged class of number-theoretic functions. Following standard

usage, I call these privileged functions “recursive.” (Note that here I follow the common practice

of using the term “recursive” in connection with Turing’s formalism for analyzing computability.

Soare [25] criticizes this practice. As Soare argues, the term “recursive” was initially introduced

in connection with the equation calculus. Only later did “recursive” come to mean something

like “Turing-computable relative to d1.” The two concepts are extensionally equivalent, but they

are intensionally distinct. Soare argues that we should return to the original usage, which was

strongly favored by both Turing and Gödel. While I share Soare’s concerns, I will follow current

standard usage. In general, these intensional distinctions will not affect my discussion, although

they become fleetingly relevant near the end of §3.)

 If we employ a semantics sufficiently different from d1-d3, then various non-recursive

functions become Turing-computable. Suppose X is an infinite, co-infinite subset of the natural

numbers. Enumerate the elements of X and N \ X in ascending order as follows: X = {x0, x1, x2,

…} and N \ X = {y0, y1, y2, …}. Define semantics dX by:

dX(n) = xn/2, if n is even

dX(n) = y(n-1)/2, if n is odd.

We can then program a Turing machine that computes the characteristic function of X, relative to

dX. The Turing machine proceeds as follows: when supplied with a string of n strokes, the

machine examines whether n is even or odd; if n is even then the machine outputs dX
-1

(0); if n is

odd, then the machine outputs dX
-1

(1). This technique applies to any infinite, co-infinite set X,

whether or not X possesses a recursive characteristic function.

Say that a semantics is uniform if it assigns the same number to each string n when n

appears as an input and when n appears as an output. Semantics d3 is not uniform, but d1, d2, and

 5

dX are uniform. The construction from the previous paragraph generalizes, yielding the following

result: any number-theoretic function with finite range is Turing-computable relative to some

uniform semantics. Similar techniques establish that there exist uncountably many number-

theoretic functions with infinite range that are Turing-computable relative to some uniform

semantics. There exist only countably many recursive functions. So the number-theoretic

functions Turing-computable relative to some uniform semantics outstrip the recursive functions.

It is easy to show that every number-theoretic function is Turing-computable relative to

some non-uniform semantics. However, there exist number-theoretic functions that are not

Turing-computable relative to any uniform semantics. For an example of such a function, see

Shapiro [20].
1
 Shapiro’s example generalizes, yielding the following result: there exist

uncountably many number-theoretic functions that are not Turing-computable relative to any

uniform semantics. Hence, the functions Turing-computable relative to some uniform semantics

comprise a substantial but highly non-exhaustive subset of the number-theoretic functions.

To simplify matters, I henceforth restrict myself to uniform semantic relations. In what

follows, “semantics” means “uniform semantics.”

§3. A difficulty surrounding Church’s thesis

 Intuitively speaking, a function is “computable” just in case there exists a mechanical

procedure for determining what value the function attains on a given input. According to

Church’s thesis, a number-theoretic function is intuitively computable if and only if it is

recursive.
2
 I will not discuss the right-to-left direction of Church’s thesis, except to note that, like

most commentators, I find it relatively evident. Traditionally, the left-to-right direction has been

 6

viewed as much more problematic. I now want to explore an apparent difficulty surrounding it.

In §4, I will try to resolve the difficulty.
3

 Let X consist of the Gödel numbers of sentences provable in Peano Arithmetic, under

some fixed Gödel-numbering. Let fX be the characteristic function of X. In the previous section,

we constructed a semantics dX such that fX is Turing-computable relative to dX. Imagine, then, a

philosopher who reasons as follows:

If Peano Arithmetic is consistent, then fX is not recursive. But that does not show that fX is

uncomputable. On the contrary, it shows that Church’s thesis enshrines an overly restrictive

conception of computability. We must expand our conception, supplementing meager semantic

relations like d1 with more useful relations like dX. Once we adopt these additional semantic

relations, many additional functions become computable. There are numerous computable

functions beyond the recursive functions.

This line of reasoning seems dubious. But why? Why should we believe that every intuitively

computable function is Turing-computable relative to a simple semantics like d1, as opposed to a

more intricate semantics like dX? In other words, why should we accept the strong thesis that

every intuitively computable function is recursive, rather than the weak thesis that every

intuitively computable function is Turing-computable relative to some semantics?

 Faced with such questions, one naturally consults Turing’s classic [27]. Many logicians

and philosophers regard this paper as providing the most convincing defense of Church’s thesis.

Famously, Gödel did not accept Church’s thesis until encountering Turing’s article.

I follow closely the interpretation of Turing developed by Robin Gandy [6] and Wilfried

Sieg [21], [22]. On this interpretation, Turing’s argument contains two parts. First, Turing

adduces constraints upon the mechanical activity of idealized human agents. Second, Turing

argues that any function computable within these constraints is recursive.

 7

 Turing begins by imagining an idealized computing agent who performs calculations on a

piece of paper. Following Gandy and Sieg, let us call Turing’s idealized computing agent a

“computor.” The computor’s paper is divided into squares, and each square is either blank or else

contains a symbol. To calculate, the computor manipulates the symbols inscribed upon the paper.

Turing isolates five constraints governing these symbolic manipulations, summarized as follows

by Sieg ([22], p. 93):

(a) The behavior of a computor is determined uniquely at any moment by two factors: (1) the

symbols or symbolic configurations he observes, and (2) his “state of mind” or “internal state.”

(b) There is a fixed finite number of symbolic configurations a computor can immediately

recognize.

(c) There is a fixed finite number of states of mind that need to be taken into account.

(d) Only elements of observed symbolic configurations can be changed.

(e) The distribution of observed squares can be changed, but each of the new observed squares

must be within a bounded distance L of an immediately previously observed square.
4

According to Turing, constraints (a)-(e) govern the mechanical activity of any human computing

agent. Turing motivates these constraints by citing various limits upon our perceptual and

cognitive apparatus.
5

 Turing then presents a key result, which Sieg labels Turing’s theorem and formulates as

follows: “Any number-theoretic function f that can be computed by a computor, satisfying…

[conditions (a)-(e)], can be computed by a Turing machine” ([22], p. 94). The basic idea is this:

given a computor who satisfies (a)-(e), we construct a Turing machine that mimics the

computor’s computational activity. If we accept that constraints (a)-(e) demarcate the intuitively

computable functions, then Turing’s theorem establishes that every intuitively computable

number-theoretic function is computable by some Turing machine.

 8

Two caveats regarding this argument deserve emphasis. First, Turing’s analysis concerns

only human mechanical activity, not general mechanical activity. For instance, constraints (b)

and (d) imply that there exists some fixed upper bound on the number of symbols that the

computor can manipulate simultaneously. This consequence seems plausible for humans but not

for all possible computing devices. As Gandy notes, “we can conceive of a machine which prints

an arbitrary number of symbols simultaneously” ([6], p. 125). Such a machine would not impugn

Turing’s analysis, because constraints (a)-(e) do not purport to encompass all possible

computations. They describe only human computations. For Turing, “computable” means

“computable by a human,” not “computable by some possible machine.”
6

Second, Turing’s analysis concerns human mechanical activity, not human cognition in

general. As Gödel puts it, “the question of whether there exist finite non-mechanical procedures,

not equivalent with any algorithm, has nothing whatsoever to do with the adequacy of the

definition of… ‘mechanical procedure’” ([10], p. 370). Constraints (a)-(e) do not purport to

govern all possible processes for determining some function’s value. Imagine a computor who

possesses a mysterious cognitive faculty, which enables him to determine some uncomputable

function’s value upon any input. When presented with an input, the computor “just knows” the

correct answer. Constraints (a)-(e) do not deny the existence of this mysterious cognitive faculty.

They merely deny that someone who deploys the faculty thereby computes a number-theoretic

function. By employing the faculty, the computor introduces an essentially non-mechanical

element into his mathematical activity. He implements a non-algorithmic cognitive strategy. We

cannot deny a priori that such cognitive strategies exist. But we can expunge them from our

account of computation. That is precisely what (a)-(e) seek to accomplish.

 9

Given these caveats, how convincing is Turing’s argument? I find certain aspects of it

puzzling. For instance, constraints (a) and (c) include the rather ill-defined phrase “state of

mind.” What are these states of mind, and why should we assume that only finitely many of them

are relevant to a given computation?
7
 I also harbor some worries about “Turing’s theorem,”

which asserts that any function computable within constraints (a)-(e) is computable by a Turing

machine. Turing’s defense of this “theorem” is so elliptical that I find it difficult to understand.
8

I set such worries aside. Even if they prove surmountable, a more serious worry remains.

As I will now argue, Turing’s argument exhibits a crucial lacuna. At best, Turing establishes that

every intuitively computable function is Turing-computable relative to some semantics, not that

every intuitively computable function is Turing-computable relative to semantics d1.

Turing adduces constraints upon mechanical manipulation of syntactic items. Constraint

(a) demands that computational processes be somehow deterministic. Constraints (b) and (c)

mandate that the perceptual and cognitive capacities deployed during computation be finitely

limited. Constraints (d) and (e) impose spatial bounds upon the computor’s ability to observe and

adjust symbols. All five constraints concern how the computor manipulates symbolic

representations for numbers. They do not address how symbolic representations and numbers

relate to one another. They therefore provide no basis for commending certain semantic relations

over others. In particular, they do not favor d1 over dX.
9

Consider the following scenario: a computor manipulates symbols that possess semantics

dX, conforming his manipulations to (a)-(e). Should we classify this scenario as computation?

Should we say that the computor computes non-recursive functions, such as fX? The scenario

satisfies constraints (a)-(e), which are the only constraints Turing advances. Thus, based on

Turing’s analysis, the proposed scenario counts as computational. Yet to classify the scenario as

 10

computational would be to classify certain non-recursive functions as computable, contradicting

Church’s thesis.

Of course, if we restrict the computor to a semantics like d1, then the computor can

compute only recursive functions. Unfortunately, Turing’s discussion provides no reason for

imposing this restriction. The proposed scenario is anomalous because the computor manipulates

items that possess deviant meanings, not because he manipulates syntactic items in a deviant

way. The computor employs a deviant representational relation between symbols and numbers.

Turing cannot criticize the representational relation as deviant, for he recognizes no constraints

governing how symbols represent numbers. He focuses exclusively upon syntactic manipulation,

at the expense of meaning. So he lacks the resources needed for dismissing dX as unacceptable.

He provides no basis for classifying the proposed scenario as non-computational.

Turing therefore fails to establish Church’s thesis. At best, Turing shows that Turing

machines can replicate all syntactic operations implemented mechanically by humans. He shows

that all intuitively computable string-theoretic functions are Turing-computable. But that implies

only that each intuitively computable number-theoretic function is Turing-computable relative to

some semantics, not that each intuitively computable number-theoretic function is Turing-

computable relative to d1. Turing does not exclude the possibility of a computor who computes

non-recursive functions.

To buttress my argument, I now consider the following objection.
10

I just conceded that every intuitively computable string-theoretic function is Turing-

computable. Thus, given any human string-theoretic computation that proceeds relative to some

semantics, there is a Turing-machine that computes the same number-theoretic function relative

to that same semantics. It follows that every intuitively computable number-theoretic function is

 11

Turing-computable. At best, then, my argument shows that Turing fails to establish the

following: every Turing-computable number-theoretic function is recursive. But it is a

mathematical theorem that every Turing-computable function is general recursive, where

“general recursive” is understood in terms of Kleene’s equation calculus. Once supplemented by

this mathematical theorem, Turing’s argument establishes the desired conclusion.

The flaw in this objection lies in a crucial ambiguity surrounding the phrase “Turing-

computable.” If that phrase means something like Turing-computable relative to d1 (or to some

other fixed semantics), then the third sentence of the preceding paragraph does not follow from

the second sentence. We cannot conclude from the fact that a number-theoretic function is

intuitively computable that it is computed relative to d1 either by some intuitively computable

string-theoretic function or by some Turing-computable string-theoretic function. To draw this

inference would beg the question, since we are investigating whether computability relative d1

exhausts the intuitive notion of numerical computability. So far, we have seen no reason to think

that every intuitively computable number-theoretic functions is computable relative to d1.

On the other hand, if we understand the phrase “Turing-computable” to mean “Turing-

computable relative to some semantics,” then the third sentence follows from the second

sentence, given the plausible assumption that any intuitively computable numerical function is

computed relative to some semantics by some intuitively computable string-theoretic function.

But, under this alternative interpretation of “Turing-computable,” we can no longer say that

every Turing-computable number-theoretic function is general recursive. On the contrary,

function fX from the previous section is a counter-example. In the standard mathematical theorem

that every Turing-computable function is general recursive, “Turing-computable” means

something like Turing-computable relative to d1 (or to some other fixed semantics). Under this

 12

interpretation, the theorem is unimpeachable. But the theorem becomes false if we interpret

“Turing-computable” to mean Turing-computable relative to some semantics. Of course, we

might also alter the definition of “general recursive” to mean something like computable in the

equation calculus relative to some semantics, where we allow deviant semantic relations like dX.

Then it would once again become correct to say that every Turing-computable numerical

function is general recursive. But this hardly establishes that every intuitively computable

numerical function is general recursive in the normal sense of “general recursive.”

My objections apply to many discussions besides Turing’s. Consider Boolos and Jeffrey

[1]. Boolos and Jeffrey initially characterize Church’s thesis as the statement that “any

mechanical routine for symbolic manipulation can be carried out in effect by some Turing

machine or other” (p. 52). This characterization is not quite accurate, since it admits non-

recursive functions that are Turing-computable relative to deviant notations like dX. To ensure a

more accurate characterization, Boolos and Jeffrey supplement their initial statement with the

stipulation that Turing machine syntax possesses semantics d1. They call this semantics

“monadic notation.” Boolos and Jeffrey acknowledge the possibility of semantic relations

besides monadic notation. They provide no argument for privileging monadic notation over its

rivals. Instead, they write:

No end of notations might be invented, and there is no hope of proving that everything

computable in any of them is computable in monadic notation. It is for this reason that we adopt

the monadic notation at the outset: define Turing-computability as computability… [relative to

monadic notation]; and interpret [Church’s thesis] in light of that definition.
11

Clearly, we may offer whatever definitions we like. But if we want to defend Church’s thesis,

mere stipulation does not suffice. If we want to show that every intuitively computable function

 13

is Turing-computable relative to monadic notation, we cannot simply assume that all

computations proceed relative to monadic notation.

 Establishing Church’s thesis requires us to move beyond constraints governing syntactic

manipulation. We must address the semantic relation between symbols and numbers. In

addressing this relation, we cannot merely stigmatize correlations like dX as “deviant,”

“artificial,” or “unreasonable.” Nor can we confine ourselves to praising correlations like d1 as

“privileged,” “natural,” or “canonical.” The question is not whether certain semantic relations are

privileged over others. The question is what privileges certain semantic relations over others.

This question deserves a principled answer, one which yields an invidious distinction between

the anodyne d1 and the deviant dX.

In the next section, I address the semantic relation between symbols and numbers, and I

present an emended argument for Church’s thesis.
12

§4. A proposed solution to the difficulty

 Just as we possess the intuitive notion computable number-theoretic function, we possess

the intuitive notion computable semantics. A semantics for some set of symbols is computable

just in case there exists a mechanical procedure for computing what number a given symbol

denotes. For instance, the correlations d1-d3 are clearly computable. The concept computable

semantics will strike some philosophers as mysterious or obscure. But why should the idea of a

computable function from symbols to numbers seem any more obscure than that of a computable

function from numbers to numbers? If we accept the latter as legitimate, we should likewise

accept the former.

 14

 The notion computable semantics is the key ingredient missing from Turing’s account.

By embracing it, we can construct an improved argument for Church’s thesis. In presenting this

argument, I presuppose “Turing’s theorem”: I assume that Turing machines can replicate all

mechanical symbolic manipulation implemented by humans. In other words, I assume that all

intuitively computable string-theoretic functions are Turing-computable. Due to this assumption,

my argument faces many obstacles that face Turing’s. For instance, any worries regarding

Turing’s locution “state of mind” also infect my argument. I continue to set such worries aside.

 My argument for Church’s thesis invokes two intuitive principles:

 The composition of two computable functions is computable.

 The inverse of a bijective computable function is computable.

The first principle, which says that the computable functions are closed under composition,

applies to all computable functions. (Informal proof: given an algorithm for computing f and an

algorithm for computing g, compute f(g(x)) by applying the second algorithm to x and then

applying the first algorithm to the result.) The second principle applies to those computable

functions defined over domains whose elements one can mechanically enumerate. (Informal

proof: given a computable function f, and given y, here is an algorithm for computing f
-1

(y):

enumerate the elements of the domain, computing the value that f attains on each element in the

enumeration, until encountering an element x such that f(x) = y; take x to be f
-1

(y).)

 One might worry about the assumption, which underlies our second intuitive principle,

that one can mechanically enumerate the elements of the relevant domains. Don’t we need

Church’s thesis in order to say which domains conform to the assumption? And, if so, won’t an

argument for Church’s thesis based upon that assumption beg the question?
13

 15

 I respond that, although we may require Church’s thesis to offer a general, precise

characterization of the domains whose elements we can mechanically enumerate, we do not

require Church’s thesis to recognize certain specific examples of mechanically enumerable

domains. Similarly, although we may require Church’s thesis to characterize which number-

theoretic functions are intuitively computable, we do not require Church’s thesis to recognize

that certain particular functions are intuitively computable. We intuitively recognize that the

natural numbers are mechanically enumerable, via the successor function, and that the stroke

language is mechanically enumerable, via adjunction by an additional stroke. This recognition

does not depend upon Church’s thesis. In general, all the domains relevant to this paper are

intuitively recognizable as mechanically enumerable, without reliance upon Church’s thesis. (I

will henceforth ignore the assumption of mechanical enumerability, somewhat sloppily

describing the computable functions as being closed under inverses.)

 Given our two intuitive principles, we can easily establish Church’s thesis. Suppose f is

an intuitively computable numerical function. Define  = d1
-1

 f d1. Note that

(n) = m iff f(d1(n)) = d1(m),

and hence that  is a string-theoretic function that computes f relative to d1. Since d1 is intuitively

computable, and since the computable functions are closed under inverses and composition,  is

computable. By Turing’s theorem,  is Turing-computable. Thus, f is Turing-computable relative

to d1. In other words, f is recursive.
14

 Although the proof is mathematically trivial, it introduces a crucial conceptual ingredient

missing from Turing’s original account: the notion of a computable semantics. Our proof deploys

this notion to establish that d1 yields a notation for the natural numbers sufficiently general for

computing any intuitively computable numerical function. Crucially, our proof invokes no

 16

features of d1 beyond its intuitive computability. So it would work equally well for any

intuitively computable semantics. Indeed, we may instructively view the proof as exploiting the

following generalization:

(*) If a number-theoretic function f is intuitively computable, then, for any intuitively

computable semantics d, there exists an intuitively computable string-theoretic function

that computes f relative to d.

This generalization follows from the fact that the computable functions are closed under inverses

and composition.

 The notion of a computable semantics does not merely help us prove Church’s thesis. It

also helps pinpoint what Turing’s constraints (a)-(e) omit.

 Consider again the scenario described by Turing: an idealized human computor

manipulates symbols inscribed on paper. The computor manipulates these symbols because he

wants to calculate the value some number-theoretic function assumes on some input. The

computor starts with a symbolic representation for the input, performs a series of syntactic

operations, and arrives at a symbolic representation for the output. This procedure succeeds only

when the computor can understand the symbolic representations he manipulates. The computor

need not know in advance which number a given symbol represents, but he must be capable, in

principle, of determining which number the symbol represents. Only then does his syntactic

activity constitute a computation of the relevant number-theoretic function. If the computor lacks

any potential understanding of the relevant syntactic items, then his activity counts as mere

manipulation of syntax, rather than calculation of one number from another.

 These reflections suggest an important new constraint upon Turing’s computor, to

supplement Turing’s original constraints (a)-(e):

 17

The Computability Constraint: The symbols that the computor manipulates bear a

computable semantic relation to the numbers they denote.

If the computor manipulates syntactic items that possess a non-computable semantics, then he

cannot mechanically determine which number a given symbol denotes. He cannot understand the

symbols through purely algorithmic means. But then he cannot calculate which numerical value

the desired function assumes on a given input.

 I must emphasize that, like Turing’s constraints (a)-(e), the Computability

Constraint concerns human mechanical activity. Suppose that our computor possesses a

mysterious cognitive faculty that enables him to understand uncomputable notations. When

confronted with symbolic representations for the natural numbers, the computor “just knows”

which number a given symbolic representation denotes. The Computability Constraint does not

deny that such a faculty exists. It merely denies that someone who exploits the faculty thereby

computes a number-theoretic function. Someone who employs the mysterious faculty introduces

an essentially non-mechanical element into his mathematical activity. He understands the

symbols he manipulates, but he understands them in an irreducibly non-mechanical way. He

implements a non-algorithmic cognitive strategy. We cannot deny a priori that such cognitive

strategies exist. But we can expunge them from our account of computation.

 The Computability Constraint provides a straightforward diagnosis for why semantics dX

seems deviant. Suppose that X is a non-recursive set. If dX were computable, it would follow that

fX, the characteristic function of X, was computable. By Church’s thesis, it would follow that fX

was recursive. But fX is not recursive. Hence, dX is not computable. There exists no mechanical

procedure for determining which number a given symbol denotes under dX. This renders dX

useless for computation.

 18

 Thus, the notion of a computable semantics considerably illuminates the difficulties

raised in §4. It helps us elaborate Turing’s original treatment into a rigorous argument for

Church’s thesis. And it allows us, through the Computability Constraint, to pinpoint why

semantics dX seems so deviant. I urge that we supplement Turing’s account with the notion of a

computable semantics.

§5. The conceptual analysis of computability

 In the previous section, I presented an emended argument for Church’s thesis. I now want

to discuss a related thesis, according to which Turing provides a conceptual analysis of the

intuitive notion computable number-theoretic function. From this perspective, Turing’s account

transcends mere extensional equivalence with our intuitive notion of computability: it somehow

explicates or captures the intuitive notion. Thus, Gandy declares that Turing “provid[es] the

definitive meaning of ‘computable function’” and that “Turing’s work is a paradigm of

philosophical analysis: it shows that what appears to be a vague intuitive notion has in fact a

unique meaning which can be stated with complete precision” ([7], p. 84, 86). Similarly, Gödel

writes that “Turing’s work gives an analysis of the concept of ‘mechanical procedure’ (alias

‘algorithm’ or ‘computation procedure’ or ‘finite combinatory procedure’). This concept is

shown to be equivalent with that of a ‘Turing machine’” ([10], p. 369-70). Gödel contrasts

Turing favorably with logicians like Church, Kleene, and Gödel himself. According to Gödel,

these other logicians offered extensionally adequate characterizations of computability, but they

did not analyze it. The omission left us with little reason to believe that their definitions were

extensionally adequate. Turing offered a genuine analysis, thereby establishing Church’s thesis.

 Sieg, who develops the position more fully than Gödel or Gandy, writes [21, p. 391]:

 19

Church’s or Turing’s thesis [asserts] that an informal notion of effective calculability is captured

fully by a particular precise mathematical concept. Church’s thesis, for example, claims in its

original form that the effectively calculable number-theoretic functions are exactly those

functions whose values are computable in Gödel’s equation calculus. My strategy, when arguing

for the adequacy of a notion, is to bypass theses altogether and avoid the fruitless discussion of

their (un)-provability. This can be achieved by conceptual analysis… There is general agreement

that Turing, in 1936, gave the most convincing analysis of effective calculability… It can be

argued that he gave the only convincing analysis… The detailed conceptual analysis of effective

calculability yields rigorous characterizations that dispense with theses, reveal human and

machine calculability as axiomatically given mathematical concepts, and allow their systematic

reduction to Turing computability.

Sieg centers his account around Turing’s constraints (a)-(e). According to Sieg, (a)-(e) analyze

the intuitive concept of computability. More precisely, we can analyze mechanical procedure

carried out by a computor as computation of a computor satisfying constraints (a)-(e). This

analysis, coupled with Turing’s theorem, underwrites our confidence in Church’s thesis.
15

 Obviously, in evaluating whether Turing analyzes computability, much depends upon

what we mean by “conceptual analysis.” Gandy, Gödel, and Sieg are not very explicit on this

point. However, most philosophers would probably acknowledge the following three desiderata

for a good analysis:

The analysis is extensionally adequate.

The analysis is non-circular, i.e. it does not employ the concept being analyzed.

The analysis “captures the meaning” of the original concept.

The third desideratum is the most problematic, since what it is to “capture the meaning” of a

concept remains quite unclear. Nevertheless, something along these lines seems integral to

 20

analyzing a concept, as opposed to offering necessary and sufficient conditions. I will argue that

Turing’s work provides no analysis of computable number-theoretic function satisfying all three

desiderata.
16

 I begin with a concession: Turing may well successfully analyze computable string-

theoretic function. I find it plausible that constraints (a)-(e), or constraints much like them,

explicate the concept mechanical procedure for manipulating syntactic items. Thus, I concede

that Turing analyzes what it is to compute a string-theoretic function.
17

 However, I deny that Turing analyzes what it is to compute a numerical function.

Number-theoretic computability essentially involves extra-syntactic entities: the numbers. As I

argued in §3, constraints (a)-(e) ignore the semantic relation between numbers and the syntactic

items that represent them. No account based solely upon constraints (a)-(e) disbars deviant

semantic relations. So no such account decrees that the recursive functions exhaust the

computable functions. So no such account satisfies the first desideratum for any conceptual

analysis: extensional adequacy. The concept number-theoretic function computable in accord

with constraints (a)-(e) is not extensionally equivalent to computable number-theoretic function.

Given Church’s thesis, we can remedy this defect. For instance, we might adopt either of

the following characterizations:

computable in accord with constraints (a)-(e) relative to d1

computable in accord with constraints (a)-(e) relative to d2,

or, more generally, any characterization of the form:

 computable in accord with constraint (a)-(e) relative to d,

where d is some specific intuitively computable semantics. By conditional (*) from §4, each of

these infinitely many characterizations is extensionally adequate.

 21

 But which should we choose as our conceptual analysis? I see little basis for choosing

one characterization over the others. Any computable semantics might subserve some

mathematician’s computational activity. Speaking purely historically, humans have employed a

wide variety of numerical notations: Roman numerals, Arabic decimals, etc. The Babylonians

even used a base 60 notation. Why regard one of these notations, rather than another, as

constitutively tied to the concept number-theoretic computability?

 My point here is not simply this: we possess infinitely many extensionally adequate

characterizations, each of which seems as good a candidate for conceptual analysis as any other;

thus, none can provide a conceptual analysis. That is one important point, but it is not, I think,

the most fundamental point.

 The most fundamental point is that none of these infinitely many putative analyses attains

a sufficiently general description of numerical computation. Our essential concept of number-

theoretic computability amounts to this: a number-theoretic function is computable just in case

there exists a mechanical procedure for computing it. Thus, if we want to analyze the concept

computable number-theoretic function, we must analyze the concept mechanical procedure for

computing a number-theoretic function. We must isolate the salient features shared by all

possible number-theoretic computations. Only then do we achieve synonymy with the target

concept number-theoretic computability. None of our putative analyses attains anything like the

requisite generality. Each proposed analysis captures only a limited class of computations,

namely, those computations that occur relative to some fixed semantics.

 Note that an utterly harmless analogue to this phenomenon arises when we define the

mathematical locution “recursive number-theoretic function.” Here, too, we face a choice of

infinitely many computable semantic relations to mention in our characterization. Following

 22

standard mathematic practice, I chose d1-d3 when I defined “recursive” in §2. In the context of

defining new mathematical locutions, such a choice is perfectly legitimate. One can define one’s

terminology however one likes. But an arbitrary choice along these lines becomes fatal if we

seek to analyze a pre-existing concept like numerical computability. In that case, we must attain

a sufficiently general description of what all numerical computations have in common. We

undercut this goal if we center our putative analysis around a particular notation, since not all

computations proceed relative to that notation.
18

 Compare string-theoretic computability. Constraints (a)-(e), or constraints much like

them, quite plausibly govern any possible human mechanical procedure for manipulating

syntactic items. They therefore quite plausibly provide the basis for analyzing the concept

computable string-theoretic function. To analyze the concept computable number-theoretic

function, we must attain an analogous level of generality regarding the semantic relation between

symbols and numbers. Just as Turing adduces general constraints upon the manipulation of

syntactic strings, we must adduce general constraints upon any acceptable notation for the

natural numbers.

 My criticisms echo an enigmatic passage from Emil Post’s posthumously published [17]:

“Finite operations illuminated as generated by three principles (1) Symbolic ‘manipulation’ (2)

Symbolization (3) Iteration” (p. 426).
19

 Turing focuses exclusively upon factors (1) and (3):

symbolic manipulation and iteration. He offers a general theory of iterated human symbol

manipulation. He provides no correspondingly general theory of Post’s second factor:

symbolization. In Post’s words, Turing does not supplement his treatment of iterated symbol

manipulation with “an equally persuasive analysis… [of] all humanly possible modes of

 23

symbolization” (p. 344). Only once we provide such an analysis can we claim to have captured

the concept number-theoretic computability.

 To furnish the requisite analysis, we might invoke the Computability Constraint. In other

words, we might offer the following characterization of number-theoretic computability:

computable in accord with (a)-(e) relative to some computable semantics. This characterization

is extensionally adequate. Moreover, unlike our earlier efforts, it reflects general constraints

upon any possible number-theoretic computation. The problem is that it also seems blatantly

circular, because it presupposes the intuitive notion of computability. Admittedly, it presupposes

the concept computable function from symbols to numbers, not the slightly different concept

computable function from numbers to number. Such a minor discrepancy hardly dispels the

circularity. By adopting the proposed account, we replace mechanical procedure for computing

one number from another with mechanical procedure for computing a number from a symbol.

We leave unanalyzed what it is to calculate a number from an input. We thereby abandon all

pretensions towards reductive analysis.

 We face a dilemma. If we characterize number-theoretic computability by invoking some

fixed computable semantics, our account does not analyze mechanical procedure for computing

a number-theoretic function and hence does not achieve synonymy with the target concept. Yet

when we fix this problem by invoking the notion computable semantics, we inject a blatant

circularity into our account. How can we isolate an extensionally adequate characterization that

is both non-circular and synonymous with the original concept? Lacking a satisfactory answer to

this question, we must conclude that syntactic accounts like Turing’s fail to analyze numerical

computation in more primitive terms. Undoubtedly, Turing’s discussion profoundly illuminates

computability. But illuminating a concept is not the same as analyzing it.

 24

 My argument draws an invidious distinction between string-theoretic and number-

theoretic computability. But it might seem that the distinction is spurious. Don’t my worries

about number-theoretic computation arise just as readily at the level of string-theoretic

computation? To characterize a given physical activity as computing a string-theoretic function,

we must “encode” the strings as physical states. And won’t the problem of deviant encodings

arise here as well, forcing us to invoke intuitively computable correlations between physical

states and strings?

 No. The reason is that strings are fundamentally different entities than numbers.

 In the terminology introduced by Charles Parsons [15], syntactic entities are quasi-

concrete. They are abstract, in that they are not located in space or time, but they bear intrinsic

relations to privileged concrete embodiments. For example, a string of n strokes, viewed as a

type, is an abstract entity, but its tokens are concrete physical inscriptions. The relation between

the string and its tokens is constitutive of the string’s identity. In contrast, numbers are pure

abstract entities. They do not bear intrinsic relations to concrete embodiments. In particular, they

do not bear intrinsic relations to either syntactic-tokens or syntactic-types. The basic insight here

goes back to Frege [5], who observed that “[o]ne could imagine the introduction some day of

quite new numerals, just as, e.g., the Arabic numerals superseded the Roman. Nobody is

seriously going to suppose that in this way we should get quite new numbers, quite new

arithmetical objects, with properties still to be investigated.” Frege concluded from this

observation that “we must distinguish between numerals and their Bedeutungen” (p. 132).

Frege’s observation actually supports a somewhat more general conclusion: the individuation of

the numbers is not tied to particular symbolic representations. If it were, then a change in

symbolic representations would entail a change in the numbers, which it does not.
20

 25

 This asymmetry between strings and numbers explains why my argument applies to

numerical computability but not to string-theoretic computability. A canonical correlation

between string-types and concrete inscriptions is built into the identity of the string-types. For

instance, the type “string of n strokes” is canonically associated with concrete inscriptions

featuring n adjacent strokes, because it is partially individuated by the fact that such inscriptions

are its tokens. We need not worry about disbarring deviant encodings of strings as physical

states, for the individuation of the strings enshrines a single privileged encoding. No canonical

correlation between numbers and syntactic-types or syntactic-tokens is built into the

individuation of numbers. This naturally raises the question of which correlations are admissible

for computation. We have seen no way to answer this question without engendering circularity.

 Perhaps a non-circular analysis of numerical computability exists. But I want to advertise

my inability to locate one. In this vein, I will survey various obvious but unsuccessful maneuvers

through which one might attempt to eliminate the circularity.

 The most obvious maneuver would be to adopt the following analysis:

computable in accord with constraints (a)-(e) relative to every semantics.

However, as Shapiro [20] proves, the only functions that satisfy this condition are those differing

from constant functions or the identity function on at most a finite number of arguments. Thus,

the proposed maneuver is clearly inadequate.

 Another obvious maneuver would be to “go meta-linguistic.” We can introduce symbols

that denote other symbols; the expression “n”, denoting a string of n strokes, is an example. We

can then formulate string-theoretic mechanical procedures that compute symbols from meta-

linguistic symbols, thereby calculating what number a given symbol denotes. Thus, we might

 26

analyze computable semantics by adducing (a)-(e) as constraints upon transforming a meta-

linguistic symbol into non-meta-linguistic symbol.

 Unfortunately, this meta-linguistic maneuver achieves no advance whatsoever. A meta-

linguistic computational procedure computes a numerical output from a syntactic input only

relative to a semantics that correlates meta-linguistic symbols with symbols and non-meta-

linguistic symbols with numbers. Lacking such a correlation, the computational procedure counts

as mere manipulation of syntax, not as computation of a number-valued function. But now our

worries about deviant correlations rematerialize, this time in connection with both meta-

linguistic and non-meta-linguistic symbols.

 A third obvious maneuver would be to invoke the isomorphism between the Dedekind

structure of the notation system and the Dedekind structure of the natural numbers. To take a

specific example, consider again the stroke language. We can view this language as an ω-

sequence, with adjunction by an additional stroke serving as the successor operation. Then there

exists a unique isomorphism between the stroke language and the natural numbers. Surely we

can select that isomorphism as providing the “canonical” interpretation of the stroke language.

 This maneuver fails. The problem is that the stroke language instantiates infinitely many

different ω-sequences. Given semantics d for the stroke language, define the string-theoretic

function S(t) = d
-1

(d(t)+1). We can again view the stroke language as an ω-sequence, with S

rather than adjunction serving as the successor operation. This new ω-sequence is once again

isomorphic to the natural numbers. Thus, the mere appeal to Dedekind structure achieves

nothing. It does not favor one semantics over another.

 A fourth maneuver would be to treat d1-d3 as privileged over all other semantic relations,

on the grounds that they assign the “correct meaning” to the syntactic operation of adjunction.

 27

Unlike most other semantic relations, d1-d3 interpret adjunction as corresponding to the successor

operation on the natural numbers. This interpretation may appear somehow “canonical.”

 A basic difficulty with the proposed maneuver is that it does not generalize beyond the

simple stroke language and thus cannot provide a general criterion of “acceptable notation.” A

subtler but equally serious difficulty is that the proposal does not seem correct even for Turing

machine syntax. Contrary to the proposal, I do not think that adjunction possesses a “canonical”

meaning. Inherently speaking, adjunction possesses no semantic interpretation whatsoever. It is a

meaningless syntactic operation. For instance, binary notation seems no less valid than d1-d3 as

an interpretation of Turing machine syntax. Since adjunction does not possess a canonical

meaning, the difficulties that beset dX cannot involve any failure to preserve adjunction’s

canonical meaning.

 Although the maneuvers just canvassed do not seem very promising, other responses

require more extended treatment. I now discuss four such responses.

§5.1 The Translation Constraint

 Given that the computable functions are closed under composition and inverses,

semantics d for some numerical language is intuitively computable just in case:

The Translation Constraint: The translation between d and d1 is intuitively computable.

More precisely, the string-theoretic function d1
-1

 d is intuitively computable.

So we might offer the following characterization of number-theoretic computability:

 computable in accord with constraints (a)-(e) relative to some semantics d that

 satisfies the Translation Constraint.

 28

This proposal replaces the Computability Constraint with an extensionally equivalent but

intensionally distinct demarcation of the acceptable semantic relations. Since the Translation

Constraint mentions only string-theoretic computability, we can explicate it through Turing’s

constraints (a)-(e), thereby eliminating any hint of circularity.

 While the new proposal improves upon our earlier efforts, I believe that it falls short of

conceptual analysis. Briefly: although the Translation Constraint provides an extensionally

adequate demarcation of the acceptable notations, we determine its extensionally adequacy only

by determining that it is extensionally equivalent to the Computability Constraint. What we

really want is that our notations be intuitively computable. Effective intertranslatability with

monadic notation is a superficial correlate of this more fundamental desideratum. Hence, it is the

Computability Constraint, rather than the Translation Constraint, that constitutively attaches to

our original concept of number-theoretic computability. Notations are not acceptable because

they are intertranslatable with d1; they are intertranslatable with d1 because they are acceptable.

 Clearly, the sheer fact that certain notations are mechanically intertranslatable with some

other notation supplies no reason to deem them suitable for numerical computation. For instance,

it would be absurd to define an “acceptable notation” as a notation mechanically intertranslatable

with dX. The Translation Constraint strikes us as adequate only because we recognize that d1

possesses some inherently desirable property, a property which is not shared by dX but which is

preserved under computable translation. That desirable property, I submit, is intuitive

computability.

 To replace the Computability Constraint with the Translation Constraint is to mistakenly

prioritize translation over interpretation. The fundamental desideratum upon any notation for

numerical computation is that we can mechanically determine what number a given symbol

 29

denotes. Mechanically determining what number a symbol denotes is not the same as

mechanically translating that symbol into monadic notation. Indeed, upon encountering a long

string of strokes, we would surely determine its reference under d1 by translating it into a more

readily intelligible symbolism, like Arabic decimal notation. Thus, the mere fact that one can

mechanically translate some symbol into monadic notation is quite tangential. It seems relevant

only because one can also mechanically interpret monadic notation, thereby mechanically

interpreting the original symbol. This crucial transition from symbols to numbers goes

unmentioned by the Translation Constraint. By shifting attention from the semantic relation

between symbols and numbers to the syntactic relation between symbols and other symbols, the

Translation Constraint obscures the essential features of numerical computation.

 But what is it to interpret a numeral? More generally, how do we achieve reference to the

natural numbers? Many philosophers claim that such reference is mediated by a canonical

notation, such as d1, Arabic notation, or some other favored candidate. An extreme view along

these lines holds that the natural numbers just are elements in a canonical notation. More

sophisticated views, explored by philosophers like Saul Kripke, Per Martin-Löf, and Charles

Parsons, avoid the nominalism while retaining the emphasis upon symbolic mediation.
21

 A

particularly attractive version of this view would regard the relevant symbols as numerals in the

language of thought.
22

 Don’t such views suggest that the Translation Constraint, or something

like it, constitutively attaches to our concept of number-theoretic computability? For don’t they

suggest that interpreting any notation requires, perhaps in a subtle or circuitous way, translation

into some canonical notation?

 Let us grant that some fixed canonical notation, perhaps in the language of thought,

mediates our thinking about the natural numbers. Still, it is hard to deny that other thinkers might

 30

refer to the natural numbers through a different canonical notation. We must therefore ask what

all possible canonical notations have in common. For instance, why couldn’t dX serve as the basis

for some mathematician’s canonical notation? In addressing such questions, the notion of an

intuitively computable semantics will once more prove indispensable. We need it to explain why

certain notations, but not others, could serve as the canonical basis for our thought about the

natural numbers.
23

 Characterizations based upon the Translation Constraint replace an explanatorily

fundamental concept (computable function from symbols and numbers) with an explanatorily

derivative concept (computable intertranslatability with some privileged notation). The former

concept is explanatorily more fundamental because it helps explain why certain notations rather

than others are suitable for numerical computation. I conclude that characterizations based upon

the Translation Constraint fail to attain synonymy with the concept number-theoretic

computability. Such characterizations emphasize a superficial symptom shared by all acceptable

notations, not the more fundamental trait that explains why they are acceptable.

§5.2 Shapiro on the computability of the successor function

 It is not difficult to show that semantics d for some numerical language is computable

just in case it satisfies the following condition:

The Successor Constraint: The successor function is intuitively computable relative to d.

More precisely, there exists an intuitively computable string-theoretic function  such

that d((s)) = d(s) + 1.

 31

A natural proposal is that we replace the Computability Constraint with the Successor Constraint.

We can then explicate the Successor Constraint through Turing’s constraints (a)-(e), thereby

evading circularity.

 This proposal receives powerful support from the crucial role the natural numbers play in

counting. Typically, we measure cardinalities by enumerating elements of some numerical

notation in ascending order. This procedure only works if the successor operation is computable

relative to the notation. Thus, the Successor Constraint, unlike the Translation Constraint,

reflects an inherently desirable property of notations.

 It would be churlish to deny that the Successor Constraint carries us much closer than our

earlier efforts towards something resembling a satisfying conceptual analysis. Note, however,

that the Successor Constraint is not extensionally equivalent to the Computability Constraint if

we momentarily allow non-injective semantic relations. Given a non-recursive infinite set Y =

{y0, y1, y2, …} with y0 = 0, consider the following repetitious enumeration of the natural

numbers: y0, y1, y0+1, y2, y1+1, y0+2, y3, y2+1, y1+2, y0+3, etc. Let c be the semantics that maps n

to the nth element of this enumeration. Then c is not computable, since otherwise the

characteristic function of Y would be computable. Yet the successor operation is intuitively

computable relative to c.

 In case there was any doubt, this example demonstrates that the Successor and

Computability Constraints are intensionally distinct, since they diverge extensionally over non-

injective notations. The example also suggests that the Computability Constraint, rather than the

Successor Constraint, supplies the correct criterion for an “acceptable notation.” Semantics c

conforms to the Successor Constraint, yet it is useless for computation, since there is no uniform

mechanical procedure for interpreting numerals relative to c. Thus, a notation’s suitability for

 32

performing computations stems from conformity not to the Successor Constraint but to the

Computability Constraint, which entails the Successor Constraint but which is entailed by it only

in the special case of injective semantic correlations. Even for that special case, the

Computability Constraint, not the Successor Constraint, is explanatorily fundamental.
24

 In this connection, Shapiro [20] offers a revealing discussion. Shapiro, who works only

with injective notations, initially contemplates something much like Computability Constraint:

“The [computor] should be able to read the notation. If he is given a token for a numeral, he

should (in principle) be able to determine what number it denotes” (p. 18). Shapiro observes that

this informal constraint entails the Successor Constraint. He adopts the Successor Constraint as

his official definition of an “acceptable notation.” Essentially, then, Shapiro motivates his

definition by noting that it follows from something resembling the Computability Constraint. I

contend that Shapiro’s initial, informal characterization is preferable to his final, official

definition. The former, rather than the latter, captures what renders a given notation suitable for

numerical computation.

 Why does Shapiro favor the Successor Constraint over the Computability Constraint? He

criticizes talk about “determining what number a numeral denotes” as “vague and perhaps

obscure,” observing that it “seems to involve the possibility of de re knowledge of particular

natural numbers independent of notation” (p. 18). This complaint suggests that Shapiro finds

congenial the view, discussed in §5.1, that some canonical notation mediates our thought about

the natural numbers. As we saw, however, that view is quite consistent with the Computability

Constraint. Moreover, even if we accept such a view, it is difficult to see why the Computability

Constraint should seem any more obscure than the intuitive concept computable number-

theoretic function.

 33

 Notably, Shapiro seems to regard even this concept rather suspiciously. He writes that

“strictly speaking, computability applies only to string-theoretic functions and not to number-

theoretic functions” (p. 14). Ultimately, he does introduce a notion of numerical computability: a

number-theoretic function f is “computable” just in case some computable string-theoretic

function computes f relative to some acceptable notation, in Shapiro’s sense of “acceptable.” He

then proves a result that he calls “Church’s thesis”: a number-theoretic function f is

“computable” just in case it is recursive (p. 20). The proof is easy, once we assume that all

semantic correlations are injective, for in that case the Successor Constraint entails the

Translation Constraint.

 But does Shapiro really prove Church’s thesis? It seems to me that he does not even

formulate it, let alone prove it. Church’s thesis concerns the pre-theoretic concept computable

number-theoretic function. Shapiro does not employ this pre-theoretic concept. Instead, he

employs a syntactic proxy: computable relative to a notation that satisfies the Successor

Constraint. What Shapiro calls “Church’s Thesis” entails Church’s thesis, as it is normally

understood, only when combined with the further claim that every intuitively computable

number-theoretic function is computable relative a notation that satisfies the Successor

Constraint. Shapiro does not attempt to establish this further claim.

 We may summarize this section as follows. If you think we possess an intuitive concept

of computing a number from an input, then you should reject a putative analysis of that concept

based upon the Successor Constraint. If you do not think we possess an intuitive concept of

computing a number from an input, or if you deny that our formal theorizing answers to any such

intuitive concept, then you are of course perfectly entitled to follow Shapiro in adopting a formal

ersatz based upon the Successor Constraint. In that case, you should not claim that the formal

 34

ersatz analyzes any pre-theoretic concept. Nor should you claim that your position vindicates

Church’s thesis, since that thesis, as it is typically understood, concerns a pre-theoretic concept.

§5.3 The purely syntactic conception of computation

 The conclusion of the previous section naturally leads us to inquire whether we truly

possess a pre-theoretic concept of numerical computability, or at least any such concept worth

preserving. We can develop a concept of numerical computation within our formal theorizing.

But, one might urge, we should not ask whether the formal concept corresponds, either

extensionally or intensionally, to some intuitive notion. The only intuitive notion of

computability to which our theorizing answers is string-theoretic computability. We should

therefore reformulate Church’s thesis so that it concerns string-theoretic, rather than numerical,

computability. Let us call this approach the purely syntactic conception of computation.
25

 The most obvious obstacle facing the purely syntactic conception is that current

mathematical practice just does seem to enshrine a notion of numerical computability. Virtually

every textbook on recursion theory takes as its subject matter the computability of number-

theoretic functions. As a representative sample, see Boolos and Jeffrey [1], Rogers [19], and

Soare [26]. Nor can we dismiss this emphasis upon number-theoretical computability as

reflecting an unfortunate conflation between numerical and string-theoretic computability. For

most of these same textbooks take great pains to distinguish numbers from symbols, in the

context of emphasizing use-mention distinctions. There is little doubt that virtually all

contemporary logicians take themselves to possess a bona fide concept computable number-

theoretic function, which they take to be co-extensive with the concept recursive function.

 35

 These observations demonstrate that the purely syntactic conception is revisionist

regarding current mathematical practice and pedagogy. Its revisionism might seem relatively

plausible if we also adopted a sufficiently extreme nominalist, fictionalist, or formalist

conception of arithmetic, since presumably such a conception would already bar us from taking

ordinary mathematical discourse at face value. However, if one is not antecedently committed to

more thoroughgoing revisionism regarding arithmetic, then revisionism regarding numerical

computability should seem quite unpalatable. Once we accept at face value ordinary

mathematical talk about the existence of numerical functions distinct from string-theoretic

functions, why should we not also accept at face value ordinary mathematical talk about our

ability to compute the values of those functions? Typically, we would not hesitate to say that the

multiplication algorithm taught in elementary school is a mechanical procedure for computing

the product of two numbers, or that the Euclidean algorithm is a mechanical procedure for

computing the greatest common divisor of two numbers. Once we accept that there exist a

multiplication function and a greatest common divisor function about which we can think and

reason, it seems bizarre not to say that we can, by employing the appropriate algorithms,

compute the values those functions assume on given inputs. Yet to say so is to deploy an

intuitive notion of numerical computability.

 Another obstacle faces the purely syntactic conception. When faced with a definition of

“numerical computability” as “computable relative to some notation,” we naturally find it

repugnant, since it allows deviant semantic relations like dX. A good philosophical account must

explain this intuitive verdict. The most natural explanation is that the intuitive verdict reflects our

grasp of an intuitive, pre-theoretic notion of numerical computability. The proposed definition

seems “too broad,” in that it classifies various functions as computable even though, by Church’s

 36

thesis, they are not intuitively computable. Clearly, this explanation invokes the intuitive notion

of numerical computability. Moreover, it is difficult to see how the purely syntactic conception

of computation can provide a similarly satisfactory explanation. If that conception were correct,

then a formal definition of “numerical computability” based upon the Computability,

Translation, or Successor Constraints would apparently deserve no greater approbation than the

definition “computable relative to some notation.” For the formal definitions would answer to no

pre-theoretic concept against which we could measure them for extensional adequacy.

 Despite these obstacles, the purely syntactic conception exerts a powerful appeal. I now

want to examine three arguments one might offer in its favor.

 One argument runs as follows: humans and computers directly manipulate symbols, not

numbers; thus, what humans and computers really compute are string-theoretic functions, not

number-theoretic functions. Shapiro seems to endorse something like this argument:

“[m]echanical devices engaged in computation and humans following algorithms do not

encounter numbers themselves, but rather physical objects such as ink marks on paper…

Furthermore, mathematical automata, such as Turing machines… have only appropriately

constituted strings for inputs and outputs. It follows that, strictly speaking, computability applies

only to string-theoretic functions and not to number-theoretic functions” ([20], p. 18).

 The argument is fallacious. Its premise (humans and computers directly manipulate

symbols, not numbers) does not support its conclusion (strictly speaking, humans and computers

compute only string-theoretic functions). At best, the premise establishes that our computations

of number-theoretic functions are mediated by our computations of string-theoretic functions. It

does not follow that all we really or strictly speaking compute are string-theoretic functions. To

conclude this would be analogous to the inference sometimes drawn by the British empiricists

 37

that, since our ideas mediate our perception of the external world, all we really perceive are our

ideas. To modernize the analogy, consider Jerry Fodor’s version of the representational theory of

mind, according to which propositional attitudes are relations to propositionally contentful items

in the language of thought. As Fodor himself would emphasize, it simply does not follow from

this view that what we really think about are items in the language of thought. All that follows is

that the language of thought mediates our thinking about extra-mental items. The point persists

when the extra-mental items are numbers or number-theoretic functions. More generally, as I

conceded in §5.1, some canonical notation, either mental or non-mental, may well mediate our

thought about the numbers. If so, the mediating notation is not an obstacle that prevents us from

computing numerical functions. On the contrary, it is precisely what enables us to compute those

functions. Mediated computation is still computation.

 Another argument for the purely syntactic conception observes that an appropriately

chosen system of notation, viewed as an ω-sequence, is isomorphic to the natural numbers. One

can therefore develop recursion theory over notations rather than numbers. Machtey and Young

[12] do so, and the resulting theory is, in all mathematical essentials, equivalent to recursion

theory as standardly developed over the natural numbers. What is lost, one might demand, by

retreating in this way from numerical to syntactic computability?

 The basic problem with this argument is that it provides no reason to doubt that we

possess an intuitive notion of numerical computability. It merely insists that, for most or perhaps

all mathematical purposes, we can settle for a syntactic surrogate. Yet, if we possess an intuitive

concept of numerical computability, surely we should try to clarify its extension and intension.

We should elucidate what it is to compute a number-theoretic function, and we should specify

which such functions are computable. One can dismiss these questions as uninteresting. But a

 38

brusque dismissal provides no reason for thinking the questions ill-formed or misguided, so it

will hardly persuade the many philosophers and logicians who find them intrinsically interesting.

 A final argument for the purely syntactic conception cites the historical motivations

underlying research on computability in the 1930s. Much of that research was prompted mainly

by syntactic concerns. For instance, one might argue that Turing’s interest in computability

stemmed most fundamentally from the decision problem for first-order logic, while Gödel sought

primarily to delimit the class of formal systems. Thus, the argument goes, Church’s thesis was

introduced to address computations defined over symbols, not over numbers. Even if there is a

legitimate notion of numerical computation, we need not concern ourselves with trying to

explicate it. We can settle for syntactic computability, the only notion relevant to those problems

that sparked our initial interest in Church’s thesis.
26

 Even if this historical analysis correctly describes the motivations of Turing and Gödel, it

strikes me as rather slanted. Kleene’s historical retrospective [11] offers a very different

interpretation, highlighting the following question as central: “What number-theoretic

functions… are computable?” (p. 21). It also seems clear that Post, who placed great emphasis

upon the representational relation between symbols and what they symbolize, would have

rejected the purely syntactic conception of computation. More importantly, though, observations

about the historical motivations of various logicians, no matter how eminent and brilliant, cannot

support the purely syntactic conception. Historical observations cannot show that we lack a

legitimate pre-theoretic concept of numerical computation or that this concept merits no

mathematical or philosophical clarification. Whether or not Turing and Gödel were exclusively

concerned with syntactic computability, we are not constrained to examine only those topics that

interested Turing and Gödel. Even if Turing did not intend to explicate numerical computability,

 39

we can ask whether his work yields a satisfactory explication. Most contemporary recursion

theory textbooks do in fact ask this question, usually formulated in extensional rather than

intensional terms. As I have urged, the question becomes almost inescapable if we reject

radically revisionary versions of nominalism, fictionalism, and formalism.

 On balance, then, the purely syntactic of computation strikes me as rather unattractive. I

do claim to have refuted it. But I would urge that, unless we have already adopted a more

thoroughgoing revisionary conception of the natural numbers, its costs far outweigh its benefits.

 Once we reject the purely syntactic conception, we must choose among the following

three positions: Turing’s account captures neither the extension nor the intension of the intuitive

concept computable number-theoretic function; or Turing’s account captures the intuitive

concept’s extension and its intension; or Turing’s account captures the intuitive concept’s

extension but not its intension. Virtually no one espouses the first position. Gandy and Sieg

espouse the second. I espouse the third.

§5.4 Who cares about conceptual analysis?

 My argument lacks any significance for research within recursion theory and computer

science. A typical application of Church’s thesis within these fields runs as follows: one shows

that a function is not recursive; by Church’s thesis, one concludes that the function is not

computable. This argument requires only the truth of Church’s thesis. It does not presuppose any

conceptual-analytic claims. Since I endorse Church’s thesis, my discussion generates no

implications for the mathematical study of computability. Accordingly, one might question what

interest attaches to my position. Given that Turing’s account is extensionally adequate, and given

that it provides a foundation for the mathematical study of computation, what more could we

reasonably require? Why not simply relish it as an instance of Quinean regimentation or

 40

Carnapian rational reconstruction? Who cares if Turing’s account fails to provide a genuine

conceptual analysis? Anyway, doesn’t the “paradox of analysis” show that virtually all putative

analyses fall similarly short?

 I have formulated my principal thesis in terms of conceptual analysis, because many

other commentators frame the issue in these terms. But we can restate my position without

invoking notions like synonymy, conceptual analysis, etc.

 Turing centers his discussion around the following question: “What are the possible

processes which can be carried out in computing a number?” ([27], p. 135). A conceptual

analysis of number-theoretic computability must answer this question. But Turing’s question is

intrinsically interesting. Even if we abandon any aspirations towards conceptual analysis, we

should still attempt to characterize all numerical computational processes. We should try to

isolate what, in general, is involved in computing a number from an input. As Sieg puts it,

“Turing asked in the historical context in which he found himself the pertinent question, namely,

what are the possible processes a human being can carry out (when computing a number or,

equivalently, determining algorithmically the value of a number-theoretic function)? The general

problematic required an analysis of the idealized capacities of calculators” ([21], p. 395). I agree.

My point is that, if we restrict ourselves to constraints upon mechanical manipulation of syntax,

then we fail to provide an adequate account of those “idealized capacities,” and we thereby fail

to answer Turing’s question. Indeed, as I argued in §3, a treatment that focuses solely upon

constraints governing mechanical manipulation of syntax is not even extensionally adequate,

since it does not disbar deviant semantic relations like dX.

 We can restore extensional adequacy by stipulating a particular computable semantics,

such as d1. But we thereby abandon any pretense of offering a general characterization of “the

 41

idealized capacities of calculators.” There are infinitely many notations in which calculators can

compute number-theoretic functions, and a characterization based upon a single privileged

notation will not encompass computations conducted relative to alternative notations.

 According to Sieg, a primary “lesson we owe to Turing” is that a characterization of

numerical computability should emphasize symbols: “[t]o investigate calculations is to analyze

symbolic processes carried out by calculators” ([21], p. 290). Maybe so. Intuitively speaking,

though, what all symbolic numerical computations have in common is the mechanical

manipulation of symbols that are themselves mechanically interpretable. Turing may provide a

general theory of mechanical symbol manipulation, but he says virtually nothing about

mechanical symbol interpretation. Only when we provide an account of the latter will we possess

a general theory of what all possible computational symbolic processes have in common.

 In his posthumously published diary, Post pursues a general theory of all possible

computations: “a complete analysis… of all the possible ways in which the human mind could

set up finite processes” ([17], p. 408). He urges that such an account requires “psychological

analysis of the mental processes involved in combinatory mathematical processes” (p. 418).

Much of what Post says in the diary is extremely gnomic. However, his emphasis on the mind

and mental processes strikes me as a salutary corrective to the excessive focus upon syntactic

manipulation that characterizes not only Turing’s exposition but most other modern discussions

of computation. The syntactic approach has proved enormously fruitful. Without it, recursion

theory and computer science would not exist, at least in anything resembling their current form.

Unfortunately, its amazing success has encouraged the conclusion that we can give an entirely

syntactic account of computation. This conclusion strikes me as fundamentally mistaken. A

general theory of numerical computability must eventually breach the circle of syntactic notions,

 42

addressing with suitable generality the cognitive and representational relations we bear to

numbers. Any account that shirks this obligation leaves behind an unexplained residue of

computational mental activity.

1
 Shapiro’s example crucially assumes that semantic relations are injective. If we abandon this constraint, then every

number-theoretic function f is computable relative to some uniform semantics, as illustrated by the following

technique. Consider a repetitious enumeration of the natural numbers: 0, 1, f(0), 2, f(1), f(f(0)), 3, f(2), f(f(1)),

f(f(f(0))), etc. Let c be the (non-injective) semantics that carries n to the nth element in this enumeration. Then f is

Turing-computable relative to c.
2
 As noted in Soare [25], we should distinguish between what Soare calls “Church’s thesis” and what he calls

“Turing’s thesis” (p. 296). The former, which follows Church’s original published formulation, employs the

equation calculus. The latter employs the concept of Turing-computability. The two theses are extensionally

equivalent. But they are intensionally distinct, since they employ different concepts. In Soare’s terminology, I am

discussing “Turing’s thesis,” not “Church’s thesis.” However, what I say would apply to either thesis.
3
 For discussion of some difficulties surrounding the right-to-left direction, see Parsons [16]. Parsons ultimately

endorses this direction.
4
 I have relabeled the five constraints. As Sieg notes, we may eliminate the determinacy constraint (a), since

deterministic machines can simulate non-deterministic machines.
5
 Turing assumes that the paper is divided one-dimensionally into squares. He claims that this assumption induces

no loss of generality, even though people normally calculate on two-dimensional paper. Sieg and Byrnes [23]

attempt to vindicate Turing’s claim, providing a general treatment that includes two-dimensional computations.

Presumably, one could imagine even more general treatments.
6
 For discussion of this point, and related issues, see Copeland [2].

7
 Post raises a related worry in Post [17] (p. 344). For defense of Turing on this point, see the various papers cited in

the References written or co-written by Sieg.
8
 Sieg clarifies many of the obscurities in Turing’s argument. See especially Sieg and Byrnes [23].

9
 Turing [27] concerns computable real numbers, not computable functions from the natural numbers to the natural

numbers. Thus, Turing does not interpret strings of strokes as denoting natural numbers. This aspect of Turing’s

discussion reinforces my point, which is that Turing provides no general criterion for an “acceptable” mapping from

Turing machine syntax to the natural numbers. Turing’s focus on computable real numbers also highlights a more

general theme: d1-d3 do not constitute “default” or “canonical” interpretations for Turing machine syntax.
10

 I am grateful to an anonymous referee who suggested this objection.
11

 For ease of exposition, I have somewhat altered the quote. What Boolos and Jeffrey actually say is that they will

define Turing-computability as computability within various constraints, only one of which concerns monadic

notation. The alteration does not affect my argument in this paragraph.
12

 The literature contains various arguments for Church’s thesis besides Turing’s argument based upon constraints

(a)-(e). For present purposes, I merely note that, like many other commentators, I generally find these arguments

much less convincing than the argument based upon constraints (a)-(e).
13

 I am grateful to an anonymous referee for pressing this point.
14

 I am greatly indebted in this paragraph to Yiannis Moschovakis, who pointed out the streamlined argument in the

main text. Previously, I was employing a much more complicated argument. Needless to say, any remaining errors

are my own.
15

 See especially Sieg and Byrnes [23] (p. 61). And see Sieg [21], pp. 397-8, which asserts that the extensional

equivalence between “calculability of number-theoretic functions” and “calculability by computor satisfying

boundedness and locality conditions” is “given by conceptual analysis.”
16

 W. V. Quine famously challenges the legitimacy of notions like “synonymy.” Accordingly, he rejects the idea

“that analysis must consist somehow in the uncovering of hidden meanings” ([18], p. 259). Quine would dismiss our

third constraint upon conceptual analyses as hopelessly unclear. I am somewhat sympathetic to this Quinean

criticism. However, Quine’s position does not undermine my discussion. My point here is this: if we demand that a

good conceptual analysis “capture the meaning” of the original concept, then, whatever exactly that means, Turing’s

discussion does not plausibly provide a satisfactory conceptual analysis of number-theoretic computability.

 43

17

 We can define the notion of formal system by invoking mechanical manipulation of syntax. Thus, Turing’s work

yields a conceptual analysis of formal system. As Gödel puts it, “due to A. M. Turing’s work a precise and

unquestionably adequate definition of the general notion of formal system can now be given” ([9], p. 195).
18

 I am grateful to comments from an anonymous referee that prompted the addition of this paragraph.
19

 Perhaps one should not read too much into this passage. Post’s diary is notable for its highly fragmentary and

elusive character, sometimes bordering on the mystical. However, it seems undeniable that Post was preoccupied by

what we would now call the semantic relation between symbols and numbers, as in the following passage: “…

Notion of meaning bothers me. Put it as subconscious perception of things associated with symbols” (p. 428).
20

 Although this is in some ways a rather crude argument for the thesis that numbers are pure abstract entities, I think

that it has considerable force. Parsons provides far more subtle and sophisticated arguments for the thesis in [15] and

in his unpublished manuscript Mathematical Thought and its Objects. In the unpublished Whitehead lectures

“Logicism, Wittgenstein, and de re Beliefs about the Numbers,” Saul Kripke flirts with the view that the numbers

are individuated by their relations to syntactic-types, and he sometimes seems to accept the radical consequence that

a change in notation entails a change in the numbers.
21

 Kripke explores these topics in his unpublished Whitehead Lectures. See also Martin-Löf [13] and Parsons [14].
22

 For general discussion of the language of thought, see Fodor [4]. As far as I know, no one has developed the view,

specifically with respect to mathematics, in very great detail.
23

 In his unpublished Whitehead lectures, Kripke suggests that computability is not a sufficient condition for being

an adequate canonical notation. He urges that an adequate canonical notation must satisfy some stricter constraint.

Kripke mentions finite-automata-decidability. Other ideas would include primitive recursiveness or polynomial-time

computability. Might such a proposal help alleviate the circularity engendered by the Computability Constraint? I

doubt it. I suspect that any plausible strengthening of the Computability Constraint would still invoke the intuitive

notion of computability. After all, if we demand that some notation be computable in a certain manner, or within

certain limits, then we do not dispense with the intuitive concept of computability; we merely employ it in

conjunction with certain additional restrictions. (Compare: when analyzing “X knows that p,” it would be circular to

include the clause “X believes that p based upon propositions that he knows through some especially reliable

mechanism.”) Still, I must admit that this seems like a somewhat promising line of response to my argument and

that an adequate assessment would require much more extensive discussion.
24

 What if we supplement the Successor Constraint with the demand that co-reference between numerals be

mechanically decidable? This supplemented criterion is extensionally equivalent to the Computability Constraint.

But is it a plausible candidate for conceptual analysis? I think we appreciate its extensional adequacy only by noting

that it entails the Computability Constraint. We observe that, if a notation satisfies the Successor Constraint, and if

co-reference between numerals is decidable, then there exists a mechanical procedure for interpreting the notation;

we conclude that the notation is suitable for computation.
25

 I am grateful to an anonymous referee for suggesting this objection.
26

 I am grateful to an anonymous referee for pressing this point.

References

[1] Boolos, G. and R. Jeffrey, Computability and Logic, 2nd ed., Cambridge University

 Press, Cambridge, 1980.

[2] Copeland, J., “The Church-Turing Thesis.” Stanford Encyclopedia of

 Philosophy, (Fall 2002 Edition), ed. E. N. Zalta. URL =

 <http://plato.stanford.edu/archives/fall2002/entries/church-turing/>.

[3] Davis, M., ed. The Undecidable, Raven Press, New York, 1965.

[4] Fodor, J., The Language of Thought, Thomas Y. Crowell, New York, 1975.

[5] Frege, G., “Function and Concept,” trans. P. Geach, in The Frege Reader, ed. M. Beaney,

 Malden, Blackwell, 1997.

[6] Gandy, R., “Church’s Thesis and Principles for Mechanism,” The Kleene

 Symposium, ed. J. Barwise, et al., North Holland Publishing Company, Amsterdam,

 44

 1980, pp. 123-148.

[7] Gandy, R., “The Confluence of Ideas in 1936,” The Universal Turing Machine: A

 Half-Century Survey, ed. R. Herken, Kammerer and Unverzagt, Hamburg, 1988,

 pp. 55-111.

 [8] Gödel, K., Collected Works, Volume I, ed. S. Feferman, et al., Oxford

 University Press, Oxford, 1986.

[9] Gödel, K., “On Formally Undecidable Propositions of Principia Mathematica and

 Related Systems I,” rpt. in Collected Works, Volume I, trans. Jean van Heijenoort,

 pp. 145-195.

[10] Gödel, K., “On Undecidable Propositions of Formal Mathematical Systems,” rpt.

 in Collected Works, Volume I, pp. 346-371.

[11] Kleene, S. “Turing’s Analysis of Computability, and Major Applications of It,” The

 Universal Turing Machine: A Half-Century Survey, ed. R. Herken, Kammerer and

 Unverzagt, Hamburg, 1988, pp. 17-54.

[12] Machtey, M., and Young, P., An Introduction to the General Theory of Algorithms,

 Elsevier North-Holland, New York, 1978.

[13] Martin-Löf, P., Intuitionistic Type Theory, Bibliopolis, Naples, 1984.

[14] Parsons, C., “Intuition and Number.” Mathematics and Mind, ed. A. George,

 Oxford University Press, New York, 1994.

[15] Parsons, C., “Mathematical Intuition,” Proceedings of the Aristotelian Society, vol.

 80 (1980): pp. 145-168.

[16] Parsons, C., “What Can We Do “in Principle’?”, in Logic and Scientific Methods,

 ed. M. L. Dalla Chaira, et al., Kluwer, Dordrecht, 1997.

[17] Post, E., “Absolutely Unsolvable Problems and Relatively Undecidable

 Propositions Account of an Anticipation,” in The Undecidable, ed. Martin Davis.

 pp. 338-433.

[18] Quine, W. V., Word and Object, MIT Press, Cambridge, 1960.

[19] Rogers, H., Theory of Recursive Functions and Effective Computability, MIT Press,

 Cambridge, 1987.

[20] Shapiro, S., “Acceptable Notation,” Notre Dame Journal of Formal Logic, vol. 23

 (1982), pp. 14-20.

[21] Sieg, W., “Calculations by Man and Machine: Conceptual Analysis,” in Reflections

 on the Foundations of Mathematics, ed. W. Sieg, et. al., Association for Symbolic

 Logic, Natick, 2002, pp. 390-409.

[22] Sieg, W, “Mechanical Procedures and Mathematical Experience.” Mathematics

 and Mind, ed. A. George, Oxford University Press, Oxford, 1994.

[23] Sieg, W. and J. Byrnes, “Gödel, Turing, and K-Graph Machines.” Logic and

 Foundations of Mathematics, ed. A. Cantini, et al., Kluwer, Dordrecht, 1999.

[24] Sieg., W. and J. Byrnes, “K-Graph Machines: Generalizing Turing’s Machines and

 Arguments,” Gödel ’96, ed. Petr Hájek, Association for Symbolic Logic, Natick,

 1996.

[25] Soare, R., “Computability and Recursion,” Bulletin of Symbolic Logic, vol. 2

 (1996): pp. 284-321.

[26] Soare, R., Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1980.

 45

[27] Turing, A., “On the Computable Numbers, with an Application to the

 Entscheidungsproblem,” The Undecidable, ed. M. Davis, pp. 116-154.

