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Abstract: I critique an ancient argument for the possibility of non-linguistic deductive 

inference. The argument, attributed to Chrysippus, describes a dog whose behavior 

supposedly reflects disjunctive syllogistic reasoning. Drawing on contemporary robotics, 

I urge that we can equally well explain the dog’s behavior by citing probabilistic 

reasoning over cognitive maps. I then critique various experimentally-based arguments 

from scientific psychology that echo Chrysippus’s anecdotal presentation. 

 

§1. Language and thought 

 Do non-linguistic creatures think? Debate over this question tends to calcify into 

two extreme doctrines. The first, espoused by Descartes, regards language as necessary 

for cognition. Modern proponents include Brandom (1994, pp. 145-157), Davidson 

(1984, pp. 155-170), McDowell (1996), and Sellars (1963, pp. 177-189). Cartesians may 

grant that ascribing cognitive activity to non-linguistic creatures is instrumentally useful, 

but they regard such ascriptions as strictly speaking false. The second extreme doctrine, 

espoused by Gassendi, Hume, and Locke, maintains that linguistic and non-linguistic 

cognition are fundamentally the same. Modern proponents include Fodor (2003), 

Peacocke (1997), Stalnaker (1984), and many others. Proponents may grant that non-

linguistic creatures entertain a narrower range of thoughts than us, but they deny any 

principled difference in kind.
1
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 An intermediate position holds that non-linguistic creatures display cognitive 

activity of a fundamentally different kind than human thought. Hobbes and Leibniz 

favored this intermediate position. Modern advocates include Bermudez (2003), 

Carruthers (2002, 2004), Dummett (1993, pp. 147-149), Malcolm (1972), and Putnam 

(1992, pp. 28-30). Proponents may grant that our lower-level cognition resembles the 

mental activity of languageless creatures, but they insist that we also manifest higher-

level cognition unavailable to such creatures. The main challenge facing such a view is to 

describe non-linguistic cognitive processes that differ in a principled way from higher-

level human thought. 

 I will try to meet this challenge by exploring a putative example of non-linguistic 

cognition. Tolman (1948) introduced the notion of cognitive map to explain how rats in a 

laboratory maze take detours and shortcuts to reach destinations. Although Tolman’s 

analysis proved controversial, many psychologists have followed him in proposing that 

human and animal navigation exploits cognitive maps. These have representational 

content: they represent the world as being a certain way, so we can evaluate them as 

veridical or non-veridical. Moreover, they participate in rational mental processes that 

update them based on perception and exploit them during locomotion. Thus, cognitive 

maps are genuinely cognitive. Yet they differ from higher-level human thought in two 

crucial ways: they do not have logical form, and they do not figure in deductive 

inference. 

 To illustrate the explanatory potential of cognitive maps, I will deploy them 

against a venerable philosophical argument for languageless thought and reasoning. 

Sextus Empiricus, who credits the argument to Chrysippus, presents it as follows: 
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[Chrysippus] declares that the dog makes use of the fifth complex indemonstrable 

syllogism when, on arriving at a spot where three ways meet…, after smelling at 

the two roads by which the quarry did not pass, he rushes off at once by the third 

without stopping to smell. For, says the old writer, the dog implicitly reasons thus: 

“The animal went either by this road, or by that, or by the other: but it did not go 

by this or that, therefore he went the other way.”
2
 

Many commentators, including Aquinas, Gassendi, Jevons, Montaigne, and even King 

James I of England, have argued on this basis that non-linguistic creatures execute logical 

reasoning. More recently, Glock (2000) and Horgan and Tienson (1996, p. 93) concur. 

 Despite millennia of discussion, opponents of non-linguistic deduction have not 

yet answered this argument satisfactorily. They have not shown how to explain the 

described phenomena without imputing logical reasoning to Chrysippus’s dog. I seek to 

fill this gap. My proposed explanation, which draws heavily upon research from 

contemporary robotics, cites rational, non-deductive mental processes defined over 

cognitive maps. The explanation shows that we can accommodate Chrysippus’s dog 

without assimilating animal minds to human minds. Yet it also militates against 

Cartesianism, because it invokes representational mental states and rational processes 

defined over those states. Thus, my treatment illustrates the explanatory resources of an 

intermediate position that countenances non-linguistic cognition while sharply 

distinguishing it from linguistic cognition. 

 

§2. Logical form and cognitive maps 
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 I focus on two crucial features of human propositional attitudes: they have logical 

form, and they participate in deductive reasoning sensitive to that form. Both features 

have been recognized since Aristotle, but Frege profoundly enhanced our understanding 

of them. The Fregean tradition, culminating in Tarski’s work, analyzes how truth-

conditions of logically complex thoughts depend on semantic values of their parts. It 

thereby illuminates the semantically and inferentially relevant structure of human thought 

(Burge 2005, pp. 12-26). The paradigmatic structural elements are compositional 

mechanisms of the predicate calculus: truth-functional connectives, universal and 

existential quantifiers, and predication. Additional compositional devices, such as modal 

operators and generalized quantifiers, have also received compelling semantic analysis 

over the past century. 

 My question is whether non-linguistic animals enter into mental states with 

logical form, where “logical form” minimally includes the familiar compositional 

mechanisms of the predicate calculus. As already indicated, I will study a single putative 

case of non-logical cognition: spatial representation. The phrase “cognitive map” appears 

frequently in contemporary psychology and philosophy. As Bermudez (1998, pp. 203-

207) and Kitchin (1994) document, researchers associate it with diverse meanings. 

Gallistel (1990, p. 103) defines a cognitive map as “a record in the central nervous 

system of macroscopic geometric relations among surfaces in the environment used to 

plan movements through the environment.” This definition remains neutral about the 

extent to which cognitive maps resemble ordinary concrete maps. I will employ a more 

literal usage: a cognitive map is a mental representation that represents geometric features 

of the physical environment and that employs the same basic representational 
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mechanisms as a concrete map. On this usage, which seems close to that of O’Keefe and 

Nadel (1978, pp. 80-96, pp. 389-391), cognitive and concrete maps share a common 

representational format. Specifically, they have comparable compositional structures. A 

fuller elucidation of my usage would require systematic discussion of the compositional 

mechanisms underlying concrete cartographic representation. Unfortunately, those 

mechanisms are not completely understood. Despite the efforts of such authors as Casati 

and Varzi (1999), Pratt (1993), and Sloman (1978), we have no canonical cartographic 

semantics analogous to Tarski’s semantics for the predicate calculus. Nevertheless, my 

definition of “cognitive map” seems clear enough for present purposes. 

 I will assume that cognitive maps do not have logical form. This assumption 

follows from two premises: first, ordinary concrete maps do not have logical form; 

second, cognitive maps and concrete maps employ the same basic representational 

mechanisms. Regarding the first premise, most philosophers who address the matter 

agree that maps do not express negation, disjunction, the conditional, or the quantifiers 

(Fodor 1991, p. 295), (Millikan 1993, p. 302), (Pylyshyn 2003, p. 424-5).
3
 This verdict 

merits more extended defense than it typically receives, but it seems plausible enough for 

us to assume it here. Whether concrete maps can express conjunction strikes me as more 

debatable, but I will again assume a negative verdict. More debatable still is the thesis 

that concrete maps do not feature predication. One might propose that attaching a map 

symbol (such as a symbol denoting mountains) to a map coordinate amounts to 

predicating the corresponding property of the corresponding spatial location. Casati and 

Varzi (1999) develop a formal cartographic semantics designed to incorporate this 

proposal. If the proposal is correct, then maps feature rudimentary logical form akin to 
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atomic sentences. I attack this proposal in (Rescorla, in press b), arguing that maps do not 

feature predication, as construed within Fregean or Tarskian semantics. 

 However, suppose we were to concede that maps have predicative structure. A 

system of cartographic mental representations would still not support deductive 

reasoning. It would not allow familiar inference patterns like modus ponens, argument by 

cases, or universal instantiation. Not even the laws of identity would apply, since 

concrete maps do not feature an identity sign. Thus, even if we were to concede that 

cognitive maps have predicative structure, a principled distinction would separate mental 

processes defined over them from higher-level human cognition. 

 Given that cognitive maps do not participate in logical inference, can they figure 

in any rational mental processes? Philosophers often suggest that they cannot, on the 

grounds that rationality requires logically structured mental states (Pylyshyn 1984, pp. 

195-196; Rey 1995, p. 203; Devitt 2006, pp. 146-147). If so, then mental activity defined 

solely over cartographic mental representations is not rational. Accordingly, many 

philosophers will resist calling the activity “cognitive.” 

 To address these worries, I want to discuss an instructive case study: Chrysippus’s 

dog. I will analyze this case study through a detailed description of rational mental 

activity defined over cognitive maps. 

 

§3. Explaining the phenomena 

 Discussions of Chrysippus’s dog typically choose among four strategies: 

(1) Treat the dog as executing a deductive inference. 
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This strategy is probably the most popular. Fry (2002), who works within a cybernetic 

framework, develops it in fairly rigorous detail. Since logical reasoning presupposes 

logical structure, (1) requires us to ascribe logically structured mental states to the dog. 

(2) Attribute logical reasoning to the dog, but construe the attribution instrumentally. 

According to (2), the dog does not “really” execute deductive inference. When we impute 

logical reasoning to the dog, we are interpreting its behavior, not describing observer-

independent states and processes. Ironically, Sorabji (1993, p. 26) suggests that 

Chrysippus himself advocated (2). Similarly, Dennett (1996, p. 115) suggests that our 

attribution of logical reasoning to Chrysippus’s dog is just a matter of adopting the 

“intentional stance.” 

(3) Do not attribute logical reasoning to the dog. Instead, maintain that the dog 

 records relevant sensory observations regarding the third path. 

Plutarch favored (3): “it is perception itself, by means of track and spoor, which indicates 

the way the creature fled; [the dog] does not bother with disjunctive and copulative 

propositions” (1957, 969.a-b). Samuel Coleridge adopted a similar analysis. More 

recently, Gärdenfors maintains that the dog “could have smelled the scent so clearly 

along the third path that it did not need to do any sniffing” (2003, p. 71). 

(4) Grant that the dog records no additional relevant observations beyond those 

 mentioned by Chrysippus. Explain the dog’s behavior by citing observer- 

 independent mental processes distinct from logical reasoning. 

Proponents of (4) include Philo of Alexandria, Basil of Caesarea, and Ambrose. For 

instance, Ambrose cites not logical inference but rather “the training given by nature”  

(1961, vi.4.23).
4
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 Strategy (3) is inadequate. It denies what Chrysippus takes as a datum: that the 

dog forms no relevant observations of the third path. Setting aside whether Chrysippus 

himself saw a dog behave as he describes, many philosophers seem convinced that non-

linguistic animals routinely exhibit similar behavior. To satisfy these philosophers, we 

must show that the behavior could result from a mental process other than logical 

reasoning. 

 Strategy (2) is appealing only if we accept an instrumentalist or “interpretivist” 

approach to intentionality, like that espoused by Brandom, Davidson, or Dennett. I reject 

any such approach. From the realist perspective that I favor, creatures enter into 

representational mental states that depict the world as being a certain way, states whose 

representational contents do not result from interpretation by an observer. Cognitive 

psychology should isolate laws governing how representational mental states interact 

with one another, with perceptual inputs, and with behavioral outputs. As Fodor (1981, 

pp. 100-123) argues, there is no more reason to adopt an instrumentalist stance towards 

the theoretical posits of cognitive psychology than towards those of any other science. 

Thus, we should reject an instrumentalist treatment of Chrysippus’s dog. 

 Strategy (4) is more promising than (2) and (3). The problem is that no one has 

developed it satisfactorily. Vague appeals to “nature” do not suffice. We must describe a 

psychological mechanism that differs in a principled way from logical reasoning, and we 

must show that the proposed mechanism generates the desired behavior.
5
 

 In my view, an adequate development of strategy (4) should satisfy three 

constraints. First, it should predict the desired behavior, rather than dismissing 

Chrysippus’s description in the style of strategy (3). Second, it should support appropriate 
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counterfactuals about how the dog would have behaved had circumstances been different. 

For instance, it should support the counterfactual: if the prey had traversed the second 

path, then the dog would have chosen that path rather than the third. Similarly, it should 

support the counterfactual: if the dog had sniffed the second and third paths without 

detecting the prey, then it would have chosen the first path without bothering to sniff. 

Finally, a good account should isolate a general cognitive mechanism that produces the 

dog’s behavior and that is deployable in diverse circumstances. To take an absurd 

example, we should not posit an innate “hunting at a three-way fork in the road” 

cognitive module with the following property: if the dog pursues its prey to a three-way 

fork in the road, and if the dog detects no signs that the prey traversed two of the three 

forks, then the dog immediately proceeds down the third fork. This putative explanation 

is unsatisfying, because it cites an ad hoc mental module rather than a general mental 

capacity applicable in various environmental contexts. 

 Strategy (1) satisfies all three constraints. I will develop an approach that satisfies 

the constraints while eschewing logical form and logical inference. My proposal is that 

Chrysippus’s dog performs a probabilistic inference over the space of cognitive maps. 

 

§4. Bayesian reasoning over cognitive maps 

 Bayesian decision theory is a formal framework for modeling probabilistic 

reasoning and decision-making. It represents a subject’s “degree of belief” in various 

hypotheses through a subjective probability distribution p. Mathematically precise rules 

dictate how to update p in light of new evidence and how to act based upon p and one’s 

utilities. Given that p measures degree of belief, the question naturally arises: belief in 
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what? It might seem that any adequate answer will cite sentences, propositions, or their 

ilk.
6
 Accordingly, philosophers often present subjective probability distributions as 

defined over logically structured entities. But Bayesianism is more general than this. It 

presupposes only an hypothesis space satisfying certain closure constraints.
7
 Elements of 

the hypothesis space must represent possible states of the world, but they need not have 

logical structure. In particular, they might be cognitive maps. Thus, we may posit a 

probability distribution defined not over logically structured representations but over 

cartographic mental representations. 

 To illustrate, I will present a Bayesian-cum-cartographic model of Chrysippus’s 

dog. My treatment deploys ideas from probabilistic robotics. Indeed, one of my unofficial 

goals is to publicize this important field, which philosophers have largely ignored. 

 I assume that Chrysippus’s dog (henceforth D) hunts its prey (henceforth X) by 

updating and consulting a probability distribution defined over the space of possible 

cognitive maps. When D reaches the crossroads, it recognizes three relevant possible 

states of the world, represented by three cognitive maps, M1, M2, and M3, that correspond 

respectively to the following three concrete maps: 

 

 D  D     D 

 X 
 X 

X 

M1 M2 M3 
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M1, M2, and M3 do not purport to represent distances accurately, but they purport to 

capture relations of location and connectedness. More technically: they purport to capture 

topological properties but not metric properties. In this regard, they resemble subway 

maps.
8
 Since D initially lacks evidence regarding which path X chose, D’s initial 

probability distribution treats all three maps on a par: 

 p(M1) = p(M2) = p(M3) = 1/3. 

The probabilities sum to 1, because M1, M2, and M3 exhaust the space of possibilities. 

 From left to right, label the three branches 1, 2, 3. D can sniff each branch i, an 

observation with two possible outcomes: yi, signifying that D detects some olfactory trace 

of X on branch i; and ni, signifying that D detects no such olfactory trace. Since these are 

the only two possible options, 

 p(yi) + p(ni) = 1. 

I assume that D assigns conditional probabilities p(yi | Mj): the probability of 

measurement yi when D sniffs branch i, assuming that Mj is veridical. Since D’s 

perceptual systems are fallible, p(yi | Mi) is less than 1: even if X chose branch i, D may 

not smell it. To be conservative, I assume the “prior likelihood” 

 p(yi | Mi) = 2/3. 

Since p(yi) + p(ni) = 1, it follows that the chance of false negatives is 

 p(ni | Mi) = 1/3. 

There is also a slight chance of false positives, presumably less than that of false 

negatives. For i  j, I assume that 

 p(yi | Mj) = 1/6, 

and hence that 
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 p(ni | Mj) = 5/6. 

As I explain below, one could vary these numbers considerably without altering the thrust 

of my analysis. 

 I divide D’s activity into three stages. Stage One: D sniffs branch 1. Stage Two: 

D sniffs branch 2. Stage Three: D chooses branch 3 without sniffing. I now describe 

each stage in more detail. 

 

Stage One 

 D sniffs branch 1, obtaining result n1. How does this observation lead D to update 

p? Bayes’s law, a fundamental result of probability theory, asserts that: 

 
)(

)()|(
  )|(
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It is convenient to rewrite this formula as: 

 p(a | b) =  p(b | a) p(a), 

where we regard  as a normalization constant ensuring that relevant probabilities sum to 

1. In the cases that interest us, Bayes’s law entails 

 p(Mi | n1) =  p(n1 | Mi) p(Mi). 

Intuitively: the probability of a given hypothesis, conditional on our evidence, is 

proportional to the prior probability of the hypothesis times the prior likelihood of our 

evidence conditional on the hypothesis. Substituting our assumed values for relevant 

probabilities, it is easy to show that 

 p(M1 | n1) = 1/6 

 p(M2 | n1) = 5/12 

 p(M3 | n1) = 5/12. 
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Following standard Bayesian procedure, we assume that D “conditionalizes”: as a result 

of observation n1, D updates its probabilities so that the new probability assigned to Mi is 

p(Mi | n1). Thus, D redistributes probabilities over M1, M2, and M3 to 1/6, 5/12, and 5/12, 

respectively. This is intuitively plausible. Since D did not detect any sign of X down path 

1, D lowers the probability it assigns to M1. No evidence yet differentiates between M1 

and M2, so D assigns them equal probability. 

 

Stage Two 

 D sniffs branch 2, obtaining result n2. How does this observation lead D to update 

p? We employ a generalized form of Bayes’s law: 

 p(a | b, c) = β p(b | a, c) p(a | c), 

where p(x | y, z) is the probability of x given that y and z obtain, and where β is a 

normalization constant ensuring that relevant probabilities sum to 1. Thus, 

 p(Mi | n1, n2) = β p(n2 | Mi, n1) p(Mi | n1). 

Following typical practice in probabilistic robotics (Thrun, et. al., 2005, p. 33), we deploy 

the Markov assumption: given the current state of the world, past observations are 

irrelevant to predictions about future observations. More formally, 

 p(n2 | Mi, n1) = p(n2 | Mi). 

Under this assumption, it is easy to show that 

 p(M1 | n1, n2) = 2/9 

 p(M2 | n1, n2) = 2/9 

 p(M3 | n1, n2) = 5/9. 



 14 

Assume that D conditionalizes once again. Then D assigns probabilities 2/9, 2/9, and 5/9 

to M1, M2, and M3, respectively. This is intuitively plausible. D’s two observations render 

M3 most probable, and they do not differentiate between M1 and M2. 

 

Stage Three 

 So far, we have considered how D updates probabilities. We must now examine 

D’s utilities. I assume that D has four available actions: remain at the fork of the road 

(whether performing further observations or merely abandoning the chase); or else 

traverse branches 1, 2, or 3, respectively. Call these actions H, x1, x2, and x3. Action u and 

map Mi jointly determine a new map, depicting what the world would be like if it begins 

in the state depicted by Mi and then changes only in that D performs u. I denote this new 

map with “(Mi, u).” For instance, (M1, H) is just M1, while (M1, x2) is 

 

Note that, although I defined the meta-linguistic term “(Mi, u)” by using the material 

conditional, the cognitive map denoted by this meta-linguistic term does not itself have 

conditional structure, or logical form more generally. There are twelve maps (Mi, u), each 

associated with a payoff C(Mi, u). The following chart summarizes one possible set of 

payoffs: 

 

 D 
 X 
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 M1 M2 M3 

H 0 0 0 

x1  1 -1 -1 

x2 -1  1 -1 

x3 -1 -1  1 

 

Columns correspond to possible initial states of the world. Rows correspond to D’s four 

possible actions. The entry in column Mi and row u is the payoff C(Mi, u) if map (Mi, u) 

is veridical. Our chart reflects two assumptions: D prefers catching X to not catching X; 

and D prefers remaining immobile to wasting resources in failed pursuit of X. 

 The expected payoff E(u) of action u is a weighted average of the possible payoffs 

resulting from u: 

 E(u) = 



3,2,1

),() |),((
i

ii uMCuuMp , 

where p((Mi, u) | u) is the conditional probability that map (Mi, u) is veridical given that 

D performs u. I assume that D’s actions generate no additional uncertainty, so that 

p((Mi, u) | u) = p(Mi). Thus, 

 E(u) = 



3,2,1

),()(
i

ii uMCMp . 

At Stage One, 

 E(H) = 0, E(x1) = E(x2) = E(x3) = -1/3 

At Stage Two, 

 E(H) = 0, E(x1) = -2/3, E(x2) = E(x3) = -1/6 

At Stage Three, 

 E(H) = 0, E(x1) = E(x2) = -5/9, E(x3) = 1/9. 



 16 

Under the standard assumption that D performs the action with highest expected payoff, 

our analysis predicts that D performs H at Stage One, H at Stage Two, and x3 at Stage 

Three. This is the phenomenon we wished to explain. 

 

§5. A general theoretical framework 

 Our Bayesian model of Chrysippus’s dog satisfies the three criteria from §3. First, 

it explains the desired phenomena. Second, it supports appropriate counterfactuals. For 

instance, if X had chosen path 2 rather than path 3, then at Stage Two D would have 

recorded observation y2. It is easy to show that D would then have immediately chosen 

path 2. Third, our model depicts D’s behavior as reflecting a more general capacity to 

perform Bayesian reasoning over cognitive maps. 

 That capacity extends far beyond the scenario described in §4. Probabilistic 

robotics studies how robots equipped with the capacity can navigate through diverse 

physical environments (Thrun, et al. 2005). It offers computational models describing 

how perceptual input induces a rational robot to update its probability distribution over a 

space of possible maps. Recently, robots along these lines performed impressively in the 

DARPA Grand Challenge Race, sponsored by the United States Department of Defense. 

Of course, current robotics algorithms are far more sophisticated than the tinker-toy 

model from §4. But the basic ingredients are the same: probability distributions over 

cognitive maps, Bayes’s law, conditionalization, the Markov assumption, expected utility 

maximization, and so on. Thus, our simplistic model of Chrysippus’s dog illustrates a 

flexible theoretical framework that has already enjoyed great practical success. 
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 We could refine our model in various ways. For instance, we might consider maps 

that represent metric features of the environment, such as distances and angles. Or we 

might describe how D alters its heading as it sniffs different branches. Or we might 

describe D’s actions not in terms of their environment-involving consequences (e.g. D 

travels down the third path) but in terms of more specific environment-independent 

motor commands. Or we might describe D as updating its probability distribution and its 

motor commands even after it begins moving down path 3. Or we might treat D’s actions 

as introducing additional uncertainty, in which case we would abandon the assumption 

that p((Mi, u) | u) = p(Mi). Contemporary robotics offers many ideas about how to effect 

these and other refinements. Although refinement might improve our analysis, it would 

not change the moral: we can build a robot that employs Bayesian reasoning over 

cognitive maps and that behaves as Chrysippus describes. The robot would also behave 

appropriately in counterfactual variants upon Chrysippus’s scenario. 

 

§6. Comparing the two explanatory strategies 

 How might proponents of strategy (1) react to my discussion so far? I consider 

three possible objections. 

 

Objection: The model from §4 is an instance of strategy (1), not an alternative to it. Even 

if we grant that the model assigns probabilities and utilities to non-logical 

representations, the assignments employ identities, such as “p(M1) = 1/3” and “C(M1, H) 

= 0,” that have logical structure. Moreover, the proposed model treats D as performing 



 18 

mathematical calculations, which requires logical inference from mathematical axioms. 

Thus, §4 implicitly posits deductive reasoning over logically structured mental states. 

 

Reply: Identities such as “p(M3) = 1/3” and “C(M1, H) = 0” describe which probabilities 

and utilities D assigns to which maps. But D itself can assign probabilities and utilities 

without employing these identities. The “assignment” consists in suitable functional 

relations between cognitive maps and mental representations denoting numbers.
9
 What is 

it for D to assign probability 1/3 to M1? It is for D to enter into a mental state bearing 

appropriate functional relations to other mental states: the functional relations described 

in §4. An assignment of probabilities or utilities to cognitive maps is a mental state that 

occupies a suitable role in probabilistic calculation. Nor does probabilistic calculation 

presuppose logical structure or logical inference. The literature offers numerous models 

of mathematical computation, such as Turing machines and register machines, that do not 

employ logical inference. These computational models demonstrate that mathematical 

calculation need not involve deducing theorems from axioms. 

 

Objection: The map-like character of cognitive maps plays no essential role in §4. The 

same probabilistic calculations would apply if p were defined over unstructured 

representations, rather than representations with internal structure akin to concrete maps. 

Since Bayesianism rather than cartographic structure does all the work, §4 illustrates 

nothing about the explanatory potential of cognitive maps. 
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Reply: A model defined over unstructured representations fails to explain a crucial 

phenomenon: systematicity. As Fodor (1987, pp. 147-153) emphasizes, a basic empirical 

fact about cognition is that creatures able to instantiate certain contentful mental states 

are necessarily able to instantiate certain other contentful mental states. For instance, it 

seems plausible that any terrestrial animal able to entertain the possibility represented by 

M1 could also entertain the possibilities represented by M2 or M3. Fodor argues that a 

cognitive model based on unstructured mental representations cannot explain these 

systematic interrelations among possible mental states. He argues that a satisfying 

explanation should treat contentful mental states as relations to structured mental 

representations. We explain systematicity by noting that a representation’s parts can be 

recombined to form new representations. The model from §4 implements this proposal, 

treating relevant mental states as relations to mental representations whose semantically 

relevant structure resembles that of ordinary concrete maps. As Braddon-Mitchell and 

Jackson (2007, p. 182) note, ordinary cartographic representation is systematic, so a 

system of cartographic mental representations would likewise be systematic. I conclude 

that §4 is far more satisfying than a model that replaces cognitive maps with unstructured 

representations. 

 

Objection: §4 relies on post hoc assumptions about D’s mental states. It assumes that D 

has winnowed the space of possibilities to M1, M2, and M3. It assumes that D has selected 

appropriate prior probabilities --- p(M1), p(M2), and p(M3) --- and prior likelihoods --- 

p(yi | Mj) and p(ni | Mj). It assumes that D associates various payoffs with various 

outcomes. Altering these assumptions would block the proposed derivation of D’s 
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behavior or, even worse, generate an incorrect prediction. Since §4 retroactively tailors 

its assumptions to the desired outcome, it yields a thoroughly vacuous account. 

 

Reply: The key question is how my account compares to strategy (1). Presumably, 

proponents of (1) envisage something like the following explanation: 

(*) D tracks X to the fork in the road, so D believes that X chose one of the three 

paths. D observes no olfactory signs that X chose either path 1 or path 2, so 

it concludes that X chose neither path. By logical reasoning, D concludes that X 

chose path 3. Since D prefers catching X to not catching X, D chooses path 3. 

(*) assumes that D believes itself to be facing a three-pronged fork in the road. It assumes 

that D believes X could have traveled down any of the three paths. It assumes that D can 

record relevant olfactory observations, which D then takes at face value as veridical. 

Finally, it assumes that D prefers catching X to not catching X. Altering any of these 

assumptions would block the proposed explanation of D’s behavior, or, even worse, yield 

an incorrect prediction. Our question is whether (*)’s assumptions are any less “post hoc” 

than those required by my treatment. 

 In many respects, the assumptions seem comparable. The main apparent 

difference is that my assumptions are more specific. I assign precise numerical 

probabilities and payoffs, and I exploit my numerical assumptions in an essential way. 

Let us consider the various assumptions in turn. 

 Prior probabilities: It is highly plausible that D initially assigns approximately 

equal probabilities to M1, M2, and M3, since by stipulation D lacks any differentiating 

evidence. If desired, we could extend our model backwards in time, discussing how D 
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generates an initial probability distribution over the space of possible maps. Mapping is a 

central research topic of probabilistic robotics, which offers a wealth of theories. Any 

such extended model should depict D as tending to assign roughly equal probabilities to 

M1, M2, and M3 until it collects relevant differentiating evidence. 

 Prior likelihoods: My assumptions here are quite conservative. Specifically, the 

assumed high probability of false negatives --- p(ni | Mi) = 1/3 --- shows that D can act 

appropriately even if it treats its own perceptual faculties as unreliable. Furthermore, we 

could vary my specific numerical assumptions considerably while generating the same 

predictions. Holding fixed the utilities and prior probabilities, and assuming that D treats 

the three paths symmetrically, we can easily show that any assignment of prior 

likelihoods yields the desired behavior if it satisfied these constraints: 

 p(ni | Mi) > 0 

 p(ni | Mi) < p(ni | Mj) / 2, 

where i  j. In other words, we achieve our desired result if D allows some probability of 

false negatives and if that probability is not too outrageously large. 

 Payoffs: Once again, we can vary the specific numbers considerably while 

generating the same predicted behavior. Let a = C(Mi, ui). If i  j, let b = -C(Mi, uj). Let 

C(Mi, H) = 0. Holding fixed the prior probabilities and likelihoods, we can easily show 

that any values of a and b yield the desired behavior if 

 4b/5 < a < 7b/5. 

This inequality imposes a non-trivial constraint upon possible models of D. The 

constraint is a virtue, not a defect. It yields a quantitative analysis of how D’s payoffs and 

probabilities jointly determine action. For instance, if a < 4b/5, then the prospect of 
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wasted resources outweighs the prospect of catching X, so D remains immobile even 

while realizing that X probably chose path 3. In contrast, (*) appeals vaguely to a 

“preference” for catching X. It offers no guidance in comparing that preference with D’s 

preference for conserving resources. Bayesian decision theory provides an appealing 

framework for conducting such comparisons, as illustrated by the above analysis. 

 Apparently, then, §4 is no less a priori plausible than (*). If so, then a satisfying 

treatment of Chrysippus’s dog need not cite logical reasoning over logically structured 

mental states. We can instead cite Bayesian reasoning over cognitive maps. 

 

§7. Animal cognition 

 Chrysippus’s dog is scarcely more than a thought experiment. To what extent 

does my discussion bear on actual non-linguistic creatures? Do such creatures perform 

Bayesian reasoning over cognitive maps? Do they execute deductive inferences? These 

questions, which transgress the limits of a priori analysis, impel us to leave the armchair 

and engage with scientific psychology. Thought experiments are useful. They facilitate 

comparison of alternative theories in a relatively clean setting. But they must eventually 

yield to actual experiments featuring quantitative measures and proper controls. 

 In this spirit, let us first ask whether the approach sketched in §§4-5 illuminates 

navigation. As already noted, many psychologists enthusiastically posit cognitive maps. 

Bayesian models are also popular within psychology, as applied to perception, word 

learning, and many other phenomena. A few researchers combine these two strands into 

cognitive models that posit probabilistic reasoning over cognitive maps. For instance, 

Balakrishnan, Bousquet, and Honavar (1999) argue that such models help explain various 
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experimental results. This approach seems likely to receive further empirical application 

as its success within robotics becomes better known among psychologists. Of course, the 

particular model from §4 is highly simplified. An empirically credible model would 

feature many refinements, including those mentioned in §5. But the basic strategy looks 

promising. For further discussion, see (Rescorla, in press a). 

 What about logical reasoning? Many psychologists claim that non-linguistic 

creatures perform deductive inferences. Building on work of Premack and Premack 

(1994), Call and Carpinter (2001) presented a chimpanzee with two hollow tubes. As the 

chimpanzee watched, experimenters placed food inside one tube. A screen obscured 

which tube they selected. They then allowed the chimpanzee to search inside the tubes 

for the food. In 20-30% of the trials, a chimpanzee who discovered that one tube was 

empty immediately selected the second tube without searching inside it. Call (2004) 

concludes that the chimpanzee employed disjunctive syllogistic reasoning to determine 

which cup contained food. Erdőhegyi, et al. (2007) report a similar but somewhat weaker 

result for dogs. In another series of experiments, Call (2004) presented apes with two 

opaque cups, only one of which contained food. He then shook the empty cup so that the 

ape could observe that no noise was produced. Three out of nine test subjects performed 

above chance in selecting the unshaken cup. Call (2004; 2006) argues that these subjects 

executed a disjunctive syllogism. 

 Each of the foregoing studies sought to disconfirm rival hypotheses through 

appropriate controls. For instance, Call (2004) employed controls to show that his apes 

were not just smelling the hidden food or detecting inadvertent cues about its location 

from experimenters. He performed additional experiments designed to show that the 
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apes’ behavior did not simply reflect a reinforcement history resulting in learned 

associations, such as an aversion to a noiseless shaken cup (Call 2006; Call 2007). 

 Nevertheless, many psychologists remain unconvinced. According to Penn and 

Povinelli (2007), proponents of non-linguistic logical inference mistakenly assume a rigid 

dichotomy between associationist and deductivist theories of mental activity: either 

learned associations exhaust a creature’s mental activity, or else the creature performs 

logical inferences. This rigid dichotomy neglects the possibility of non-deductive mental 

processes vastly more sophisticated than associative learning. Penn and Povinelli caution 

that, even if we disconfirm an associationist explanation of some observed phenomena, 

we should not immediately embrace a deductivist conclusion. 

 My approach, articulated in §§4-5, occupies Penn and Povinelli’s desired middle 

ground. It is neither deductivist nor associationist. Rather than positing logical inferences 

or learned associations, it posits rational probabilistic inferences over contentful mental 

representations. This approach can explain many behavioral phenomena supposedly 

indicative of non-linguistic syllogistic reasoning. For instance, the results from (Call and 

Carpinter 2001; Erdőhegyi, et al. 2007) recall Chrysippus’s dog. We can readily explain 

those results through suitably altered versions of §4’s simplistic model. We treat the 

animal as updating a probability distribution over possible maps of its surroundings. 

 The results reported in (Call 2004) are harder to accommodate, because they 

introduce a novel element: the relation between the cup’s contents, the shaking of the 

cup, and the noise thereby produced. We might accommodate this novel element through 

prior likelihoods p(n | M, s), where M is a map, s represents that a shaking of the cup 

occurs, and n represents that the ape’s sensors detect noise. But this maneuver 
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substantially alters the model from §4, in which prior likelihoods are conditional only 

upon cognitive maps, not upon spatiotemporal events (such as a shaking of a cup). An 

adequate theory of how the ape arrives at a suitable prior likelihood p(n | M, s) will go 

substantially beyond the models of map-learning and navigation currently employed 

within probabilistic robotics. 

 What additional representational and inferential resources beyond those posited in 

§4 would an adequate theory require? According to Call, his results show that the ape 

represents and reasons about causal relations.
 
Penn and Povinelli (2007, pp. 109-110) 

disagree. But suppose we concede that Call is correct. In particular, suppose we concede 

that the prior likelihood p(n | M, s) reflects the ape’s grasp of causal relations among 

physical events. We do not thereby concede that the ape engages in anything resembling 

logical reasoning. There is no obvious reason why a systematic theory of causal 

representation and reasoning must invoke logically structured mental states. 

 For instance, consider the theory of causal Bayes nets (Pearle 2000). A causal 

Bayes net is a directed acyclic graph. Each node is a variable whose values represent 

possible events or states of the world. A directed edge from one node to another 

represents direct causal influence of the former upon the latter. Every node is associated 

with a subjective probability distribution, conditional on the values of its parents. Causal 

influence and probabilistic dependence relate through the causal Markov Condition: a 

node is probabilistically independent of its nondescendants, conditional on its parents. 

Under the Markov assumption, conditional probability distributions for individual nodes 

determine a unique joint probability distribution defined over all the nodes. 
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 This formalism yields an elegant framework for representing and reasoning about 

causal relations among events. Working within the framework, researchers have proposed 

various algorithms for inferring causal relations from observed correlations. Although the 

framework originated in statistics, computer science, and philosophy, several cognitive 

scientists have recently deployed it within empirical theories of causal reasoning in 

humans (Gopnik and Schulz 2007) and non-humans (Blaisdell, et al. 2006). To my 

knowledge, no one has yet integrated cognitive maps and causal Bayes nets into a 

synthesized theory of map-learning, navigation, and causal reasoning. But I see no 

obvious bar to an integrated theory. Since neither element of the proposed synthesis 

requires logically structured representations or deductive inferences, I see no reason why 

the proposed synthesis would require those resources. Clearly, the topic deserves further 

investigation. 

 Although my discussion of causal reasoning may seem intolerably vague, I have 

offered more detail than psychologists who attribute logical reasoning to non-linguistic 

animals. As Penn and Povinelli note, such psychologists never provide or even gesture 

towards formal models. For instance, Call offers only vague folk psychological talk about 

“causal-logical reasoning,” without hinting how to convert such talk into actual 

psychological models. Thus, my proposal is no vaguer than Call’s. 

 I submit that many experimental results supposedly indicative of non-linguistic 

deduction can be explained without citing logical reasoning or logically structured mental 

states. Admittedly, I have addressed only one strand in the relevant psychological 

literature. A more thorough discussion would survey the many other experimental results 

that purportedly reflect non-linguistic deduction.
10

 Nevertheless, we can draw some 
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preliminary conclusions. First, rational psychological processes defined over cartographic 

mental representations are possible. The relevant processes, grounded in Bayesian 

decision theory, differ markedly from deduction. Second, behavioral phenomena that 

superficially appear to involve logical reasoning may instead reflect non-deductive 

mental processes defined over non-logical mental representations. Hence, we must 

exercise caution when arguing through anecdotes, thought experiments, or scientific 

experiments that non-linguistic creatures’ mental states have logical form. Whether non-

linguistic cognition features logically structured mental states is an open question, to be 

settled through sustained engagement between philosophy and scientific psychology. 
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1
 Wilson (1995) offers an historical overview. 

2
 From Outlines of Pyrrhonism, I.69, as translated in (Floridi, 1997).   

3
 Camp (2007) considers how one might enrich maps with semantic devices akin to negation, disjunction, 

the conditional, and the quantifiers. However, she seems to grant that these semantic devices go beyond 

ordinary cartographic representational mechanisms. 
4
 Floridi (1997) offers a useful overview of the extensive historical literature. 

5
 Bermudez (2003, pp. 140-149) denies that non-linguistic creatures execute logical reasoning, but he 

ascribes to them a more primitive mode of reasoning (“proto-logic”) not involving standard logical 

connectives. Specifically, he isolates a proto-logic analogue to the inference “p or q; not-p; therefore q.” He 

does not apply his discussion of proto-logic to the case of Chrysippus’s dog. However, one might try to 

elaborate (4) by citing Bermudez’s proto-logical analogue to the disjunctive syllogism. My alternative 

approach should be seen as complementary to Bermudez’s. For criticism of Bermudez, see (Lurz, 2007). 
6
 I am indebted to José Luis Bermudez for pressing this question. 

7
 More precisely, the standard Kolmogorov axiomatization of probability defines a probability space as (Ω, 

A, p), where Ω is a non-empty set, A is a -algebra over Ω (i.e. a set of subsets of Ω that contains Ω and is 

closed under countable union and complementation in Ω), and p is a probability measure. It is consistent 

with this axiomatization to construe Ω as containing cognitive maps. 
8
 Some writers restrict the phrase “cognitive map” to representations that represent metric structure. 

However, this usage is hardly universal. For instance, Gallistel’s official definition, quoted in §2, mentions 

“geometric relations” without privileging metric over topological properties. 
9
 For empirical evidence that even fairly primitive animals such as rats represent and perform computations 

involving numbers, including non-integral rationals, see (Gallistel, 1990, pp. 317-383). Note also that much 

of the scientific literature on perception treats low-level visual processes as performing sophisticated 

Bayesian computations (Knill and Richards, 1996). Thus, the fact that my Bayesian-cum-cartographic 

model attributes numerical computation to Chrysippus’s dog should not seem at all problematic. 
10

 For critical discussion of relevant psychological literature, see (Allen, 2006), (Bermudez, 2003, pp. 112-

114), and (Penn, Holyoak, and Povinelli, forthcoming). 


