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Abstract: Sensorimotor psychology studies the mental processes that control goal-directed 

bodily motion. Recently, sensorimotor psychologists have provided empirically successful 

Bayesian models of motor control. These models describe how the motor system uses sensory 

input to select motor commands that promote goals set by high-level cognition. I highlight the 

impressive explanatory benefits offered by Bayesian models of motor control. I argue that our 

current best models assign explanatory centrality to a robust notion of mental representation. I 

deploy my analysis to defend intentional realism, to rebut eliminativism and instrumentalism 

regarding mental representation, and to explore the relation between intentionality and 

normativity. 

 

1. Motor Control and Mental Representation 

 

We routinely achieve our goals by moving our bodies. The mental processes that generate these 

bodily motions are already quite non-trivial for everyday actions, let alone for highly skilled 

activities such as playing a musical instrument or hitting a tennis ball across the net. For 
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example, suppose I resolve to pick up a nearby book. Achieving this goal requires that my motor 

system estimate the book’s location (so that my hand reaches to the right place), shape (so that 

my hand grips the book), and weight (so that I exert enough force to lift the book). Even 

assuming suitable estimates of these properties, choosing appropriate motor commands remains a 

non-trivial task. There are indefinitely many different ways I might move my body so as to pick 

up the book. (Try it!) Somehow, my motor system must quickly choose from among these 

indefinitely many alternatives. How does the motor system so reliably and so effortlessly select 

motor commands that promote my goals? How does it transform sensory inputs into suitable 

motor outputs? Such questions are the research focus of sensorimotor psychology, which studies 

the mental processes that control goal-directed bodily motion.
1
 

This paper investigates the philosophical foundations of sensorimotor psychology. My 

main thesis is that our best current sensorimotor psychology assigns a central explanatory role to 

mental representation. The science describes how representational mental states mediate 

between sensory input and bodily motion. It thereby presupposes the traditional picture of the 

mind as a representational organ. Sensorimotor psychologists elaborate that picture into well-

confirmed, mathematically rigorous models of motor control. 

Sections 2 and 3 discuss how current sensorimotor psychology uses Bayesian decision 

theory to model the motor system. Section 4 argues that the resulting Bayesian models assign a 

pivotal role to mental representation. Based on my analysis, I conclude that representational 

properties are scientifically indispensable aspects of mentality. To bolster my position, I critique 

philosophical treatments that seek to eliminate mental representation from scientific discourse 

                                                 
1
 ‘Sensorimotor psychology’ is my name for a field typically called ‘motor control’ by its practitioners. Many of 

these practitioners are institutionally affiliated with engineering, computer science, physiology, or neuroscience 

rather than psychology. I contend that their research is thoroughly psychological, by virtue of its heavy reliance 

upon mental representation. The label ‘motor control’ is regrettably ambiguous between the study of various mental, 

neural, and physiological processes versus the processes themselves. 
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(Section 5) or that construe representational locutions in purely instrumental terms (Section 6). I 

conclude by exploring the relation between representation and normativity (Section 7). 

My underlying goal is to bring sensorimotor psychology into contact with traditional 

philosophy of mind. Contact benefits both disciplines. It benefits philosophy of mind by placing 

some familiar notions, such as representational content, in a broader scientific context. It 

benefits sensorimotor psychology by clarifying the field’s conceptual foundations. I hope to 

enrich some familiar philosophical apparatus with empirical details and to show how that 

apparatus illuminates scientific research into motor control. 

 

2. Bayesian Modeling of Motor Control 

 

The motor system operates under conditions of considerable uncertainty. There are at least three 

main sources of uncertainty: 

- Ambiguity of sensory input. Sensory stimulations underdetermine their environmental 

causes. For instance, I may receive retinal stimulations ambiguous between two 

possibilities: that the perceived object is convex and that light comes from overhead; or 

that the perceived object is concave and that light comes from below. 

- Noise, i.e. corruption by random errors. Neural noise plagues the transmission of signals 

from sensory organs to the brain and from the brain to muscles. 

- Dynamic environment. The environment (including the subject’s own body) constantly 

changes, often in ways highly relevant to the motor task. Much of the variation arises 

from unpredictable factors, including motor noise, fatigue, injury, or external disruption. 
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All three factors arise even in relatively simple motor tasks (e.g. reaching towards a target), and 

they ramify in more complex tasks (e.g. returning an incoming tennis ball across the net). How 

does the motor system overcome uncertainty to achieve desired results? 

 Contemporary researchers address this question by deploying Bayesian decision theory, 

the standard mathematical model of reasoning and decision-making under uncertainty. The most 

successful models feature two main elements: estimation and control. 

 

2.1 Estimation 

On a Bayesian approach, the motor system estimates environmental state through a statistical 

inference. The core notion is subjective probability p(h), where h is an hypothesis that reflects a 

possible state of the world: a possible hand position; or a possible shape of some distal object; or 

a possible weight of some distal object; and so on. Intuitively, p(h) is “degree of belief” in h. A 

hypothesis space H contains all hypotheses h relevant to the motor task. The motor system 

maintains a probability assignment over H, regularly updated in light of motor commands and 

sensory input. 

 Motor efference copy plays a crucial role. For every motor command u, the motor system 

transmits a copy of u back to the Bayesian estimator. The estimator deploys a forward model, 

encoding the likely effect of u upon environmental state. In Bayesian terms, the forward model 

encodes a conditional probability p(h | h*, u): degree of belief in h given that h* currently obtains 

and given motor command u. In effect, the forward model mirrors relevant dynamics of the 

environment (Grush, 2004). For example, the forward model employed during estimation of 

hand position mirrors the dynamics of the human arm (Wolpert, Ghahramani, and Jordan, 1995). 
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 Execution of motor commands is noisy. For that reason, a forward model by itself is 

inadequate: errors quickly accumulate, rendering the state estimate useless. Sensorimotor 

processing corrects the forward model’s initial prediction by exploiting sensory input (e.g. visual 

or proprioceptive input). Bayes’s Rule dictates that, when one receives sensory input e, one 

should update the prior probability p(h) by replacing it with the posterior probability p(h | e): the 

degree of belief in h given e. Bayes’s Theorem states that 

p(h | e) = η p(h) p(e | h), 

where the prior likelihood p(e | h) is degree of belief in e given h, and where η is a normalizing 

constant to ensure that probabilities sum to 1. Bayes’s Rule and Bayes’s Theorem jointly specify 

how to reallocate probabilities across the hypothesis space in light of sensory input. 

During a typical motor task, the motor system issues multiple motor commands and 

receives multiple sensory signals. Bayesian decision theory yields precise algorithms that dictate 

how to update the probability assignment in light of these developments. The algorithms embody 

a recursive strategy along the following lines: 

(1) Initial state estimate. The forward model receives two inputs: a state estimate, and 

efference copy of the latest motor command. It converts these inputs into a prediction 

of the subsequent state resulting from the motor command. 

(2) Corrected state estimate. The Bayesian estimator corrects the feedforward prediction 

from step (1), using sensory feedback, the prior likelihood, and Bayes’s Rule. 

(3) Return to step (1), using as inputs the estimate from step (2) and efference copy of 

the latest motor command. 

The motor system maintains a running probabilistic state estimate (an assignment of 

probabilities to hypotheses), updated in rough accord with steps (1)-(3). In some Bayesian 
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models, although not all, the motor system also maintains a privileged non-probabilistic state 

estimate suitably related to the probabilistic state estimate.
2
 

 Bayesian sensorimotor psychology develops these ideas into empirically well-confirmed 

models that describe how the motor system forms probabilistic state estimates. The estimates 

may concern either one’s own body (e.g. current hand position) or the external environment (e.g. 

the location, shape, size, and weight of an external object). The resulting models help explain 

how sensorimotor processing surmounts the three sources of uncertainty enumerated above: 

- Ambiguity of sensory input. The prior probability treats certain environmental conditions 

as likelier than others. Bayesian estimation uses the prior to discriminate among 

hypotheses that are equally compatible with sensory input. For example, the motor 

system maintains a prior that assigns higher probability to convex face shapes than 

concave face shapes (Hartung, Schrater, Bülthoff, Kersten, and Franz, 2005). It uses this 

prior when presented with face shapes, assigning higher posterior probability to 

convexity even when retinal input is ambiguous between concavity and convexity. 

- Noise. Under appropriate assumptions, the posterior probability has lower variance than 

either the prior probability or the prior likelihood (Bays and Wolpert, 2007). So Bayesian 

updating can reduce uncertainty arising from noise. 

- Dynamic environment. A forward model generates real-time predictions about the 

expected consequences of motor commands. Sensory correction mitigates errors arising 

from motor noise, external interference, and other factors. 

For more detailed overviews of Bayesian sensorimotor modeling, see (Franklin and Wolpert, 

2011), (Shadmehr and Mussa-Ivaldi, 2012), (Wolpert, 2007), (Wolpert and Landy, 2012). 

                                                 
2
 The Kalman filter implements recursive Bayesian estimation when the priors are Gaussian and the dynamical 

system is linear. The Kalman filter encodes a Gaussian probability distribution by its median and its covariance 

matrix. However, nothing about the Bayesian framework per se requires non-probabilistic state estimates. 
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An experiment due to Saunders and Knill (2004) illustrates the empirical support for 

Bayesian sensorimotor models. Subjects in a virtual reality set-up reached quickly towards a 

target. Experimenters surreptitiously altered visual feedback regarding finger position and/or 

velocity. By perturbing the subject’s virtual fingertip (actually a small sphere), they generated 

conflict between visual input and other information sources. Subjects responded by altering 

finger trajectory. Observed trajectories conformed to a Bayesian model describing estimation of 

finger position and velocity. Alternative theoretical frameworks have great difficulty explaining 

the observed trajectories. For example, consider a homing model, on which the motor system 

attempts to keep finger motion directed towards the target. A rotation perturbation shifts the 

virtual fingertip’s position but not its motion relative to the target. The rotation perturbation 

generates no change in relative motion, so the homing model predicts no trajectory change. Yet 

finger trajectory changes markedly, disconfirming the homing model. See Figure 1 for details. 

 

INSERT FIGURE 1 ABOUT HERE 

 

Bayesian modeling of mental activity raises some pressing questions: Where do prior 

probabilities and prior likelihoods come from? To what extent do they derive from genetic 

endowment? To what extent, and through what mechanisms, does experience shape them? See 

(Clark, 2013a) for helpful discussion. For present purposes, we may set these issues aside. 

 

2.2 Control 

Motor control faces a redundancy problem (Bernstein, 1967). Consider a relatively simple motor 

goal: moving one’s right hand to some location. There are infinitely many paths carrying the 
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hand from one location to another; infinitely many trajectories along each path; multiple joint 

angle combinations that achieve each trajectory; and multiple muscle activations that yield each 

joint angle combination. The motor system must choose from among these infinitely many 

redundant options. Despite the large space of options, actual observed behavior is confined to a 

narrow subspace. Of course, there is trial-to-trial variation. But we reliably execute sensorimotor 

tasks in relatively stereotyped fashion (Todorov, 2004). How does the motor system solve the 

redundancy problem? And why do the resulting solutions fall within a comparatively narrow 

range of theoretical possibilities? 

 The most successful models address these questions through a framework called optimal 

control (Todorov and Jordan, 2002). A cost function c(u, h) assigns a cost to issuing motor 

command u when hypothesis h obtains. The cost function typically has two components: 

- The first component penalizes deviation from the task goal (e.g. distance between actual 

hand position and desired hand position). 

- The second component reflects additional task-independent desiderata. For example, it 

may penalize energy expenditure, or it may reward smooth motion. 

A motor command is optimal when it minimizes expected total costs. The mathematical details 

here are rather complex, and we need not explore them. The key point is that, under suitable 

assumptions, a state estimate and a cost function determine a unique optimal motor command. At 

each stage of the motor task, a controller converts the current state estimate and the cost function 

into the optimal motor command. Intuitively, the motor system selects the best motor command 

given its estimate of environmental conditions. An optimal control model of a motor task yields a 

sequence of optimal motor commands, thereby predicting an average trajectory for the task. 
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 Trial-to-trial variation from the average trajectory arises through several sources, 

including noise, fatigue, and external interference. Whenever a deviation occurs, the motor 

system faces a choice: correct the deviation or ignore it. Correction expends energy and 

generates further noise. The optimal policy is to correct a deviation from the average trajectory 

only if the deviation is relevant to the task goal. Todorov (2004) calls this the minimal 

intervention principle. To illustrate, suppose one’s goal is to maintain a certain hand position. 

One can maintain this position while shoulder, elbow, and wrist joint angles vary considerably. 

These variations are task-irrelevant, so the optimal policy is to leave them uncorrected. 

Many areas of human motor control --- including reaching, grasping, bimanual control, 

speech, and object manipulation --- display much lower variation along task-relevant dimensions 

than task-irrelevant dimensions (Todorov and Jordan, 2002). Task-constrained variability is 

precisely what optimal control predicts, because the minimal intervention principle dictates that 

one should correct only those deviations that bear upon the task goal. Thus, optimal control 

explains complex patterns of uniformity and variation in human motor control. Those same 

patterns elude rival theoretical frameworks. To illustrate, consider the desired trajectory 

hypothesis, according to which sensorimotor processing selects a desired limb trajectory and then 

tries to implement that trajectory. Assuming the desired trajectory hypothesis, one would expect 

sensorimotor processing to correct deviations by adjusting motor organs back to pre-selected 

trajectories. Yet numerous studies demonstrate a pervasive bias towards task-specific correction 

of motor perturbations. At every stage, the motor system selects motor commands that promote 

the overall task goal, without trying to maintain some pre-selected trajectory. 

An experiment by Liu and Todorov (2007) illustrates the explanatory power of optimal 

control. Experimenters instructed subjects to reach for a target within a certain timeframe. In 
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some cases, the target jumped during the reaching motion. When the target jumped early in the 

motion, subjects easily changed course to reach it. When the target jumped late in the motion, 

subjects undershot the target even though there still was ample time to reach it. Almost all extant 

theories find undershooting difficult or impossible to explain, but optimal control explains it 

quite easily. The intuitive idea is that the cost function balances several desiderata: accuracy 

(hitting the target); stability (stopping once the target is reached); and energy expenditure 

minimization. Rapid last-minute course corrections consume substantial energy. They also 

generate considerable noise, thereby imperiling accuracy. Finally, they undermine stability by 

threatening to keep the hand moving when it should stop. Thus, attempting a full last-minute 

course correction is not optimal. Liu and Todorov codified these intuitive formulations through 

an optimal control model that captures observed hand trajectories quite well. The model predicts 

that subjects undershoot to a lesser degree when stability is relatively less important (i.e. when 

the cost function assigns relatively less weight to stability). Liu and Todorov confirmed this 

prediction by comparing two scenarios. In the first scenario, subjects were instructed to slow 

down their hand motion and touch the target gently. In the second, subjects were not so 

instructed but were instead allowed to hit the target hard. Thus, stability was an important 

desideratum in the first scenario but not the second. Undershooting occurred in both scenarios, 

but much more so in the first. So accuracy increased when stability became less important --- as 

predicted by the optimal control model. 

 

2.3 Motor Control as Unconscious Inference and Decision-making 

Helmholtz (1867) hypothesized that perception involves an ‘unconscious inference’ from 

sensory stimulations to perceptual states. Contemporary perceptual psychology uses Bayesian 
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modeling to develop a broadly Helmholtzian conception (Geisler and Kersten, 2002), (Knill and 

Richards, 1996). The basic idea is that the perceptual system executes an unconscious statistical 

inference from sensory input (e.g. retinal stimulations) to perceptual estimates of environmental 

state (e.g. estimates of the shapes, sizes, locations, and colors of distal objects). Researchers have 

used the Bayesian framework to explain numerous perceptual illusions and constancies. For 

philosophical analysis of Bayesian perceptual psychology, see (Clark, 2013a) and (Rescorla, 

2015). 

 The optimal control framework extends Helmholtz’s conception to motor control, 

positing unconscious inferences that estimate environmental state and unconscious decisions that 

select motor commands. Figure 2 summarizes the basic explanatory template. Researchers have 

applied this template, or variants on it, to numerous motor tasks. 

 

INSERT FIGURE 2 ABOUT HERE 

 

Mental activity depicted between the dotted lines in Figure 2 is subpersonal. The agent 

herself does not compute a sensory estimate, nor does she issue a motor command to her motor 

organs. Those tasks are instead performed by her mental subsystems. In rare cases, agents 

monitor and select detailed aspects of limb trajectories. But agents do not usually consider such 

details --- we are busy with more pressing matters. Agents typically choose a fairly abstract goal 

(e.g. grasping an object with one’s hand), relying on the motor system to convert the goal into 

motor commands. Even when agents attentively guide limb trajectories, many details regarding 

those trajectories and the muscle activations that cause them are not consciously accessible 

(Pacherie, 2008). Likewise, many detailed aspects of subpersonal sensorimotor estimation are 
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not consciously accessible. For example, subjects in the Saunders and Knill experiment did not 

notice the perturbation depicted in Figure 1, yet sensorimotor processing took the perturbation 

into account. Thus, the motor system converts task goals into motor commands through mental 

processes that lie outside the agent’s conscious purview. Practical reasoning interfaces with 

bodily motion only as mediated by these unconscious processes. 

 Higher-level mental activity influences subpersonal sensorimotor processing by setting a 

task goal. In rare cases, the task goal dictates relatively detailed limb trajectories. In more typical 

cases, it specifies a desideratum without dictating detailed trajectories to achieve the 

desideratum. For example, I may seek to move my hand to some location; or to move my hand to 

some location and then another distinct location; or to grasp some visually perceived object; or to 

hit an incoming ball with a racket; and so on. Each task goal induces a different cost function. A 

few exceptions aside (Trommershäuser, Maloney, and Landy, 2003), sensorimotor psychology 

does not explicitly model the mental processes that determine tasks goals. Most models simply 

take the task goal as exogenously determined by higher-level mental processes. 

 How does sensorimotor estimation relate to perception? The estimates deployed during 

motor control are subpersonal, whereas perception yields a personal-level percept that can serve 

as input to reasoning, planning, and decision-making by the individual. According to the ‘two 

visual systems’ hypothesis (Milner and Goodale, 1995), there exist distinct mental subsystems 

that process visual input for distinct purposes (motor control vs. conscious perception) and that 

are largely functionally independent from one another. However, this hypothesis is controversial 

(Briscoe, 2008), (Schenk, Franz, and Bruno, 2011). For present purposes, we need not address 

the controversy. I focus on the mental processes that underwrite motor control, without settling 

how exactly those processes relate to perceptual processing. 
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Current Bayesian models of motor control are often highly idealized. For example, 

Bayesian inference and expected cost minimization are computationally intractable in many 

motor tasks. We would eventually like to delineate less idealized models that posit only tractable 

computations. AI, engineering, and robotics offer various techniques for constructing tractable 

approximations to idealized Bayesian computation. How to apply these techniques to 

psychological modeling is a topic of active research. 

 

3. Alternative Viewpoints 

 

Having canvassed optimal control models of goal-directed bodily motion, let us consider some 

alternative viewpoints. I first examine several popular objections to the optimal control 

framework (Section 3.1). I then consider two rival frameworks: the equilibrium point hypothesis 

(Section 3.2); and active inference (Section 3.3). 

 

3.1 Objections to Optimal Control 

A recurring worry about Helmholtzian unconscious inference is that it requires an ‘inner 

homunculus.’ If we postulate unconscious inferences, mustn’t we also postulate a homunculus 

who executes the inferences? A version of this worry applies to Bayesian sensorimotor models. 

Don’t these models require a homunculus who consults Bayesian norms? 

 I respond that nothing about Bayesian sensorimotor psychology mandates an inner 

homunculus. Bayesian sensorimotor modeling requires that the motor system conform (at least 

approximately) to Bayesian norms. It does not require that the motor system represent Bayesian 

norms. For example, it does not require that the motor system represent Bayes’s Rule. There is 
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no reason why the motor system must consult Bayes’s Rule in order to conform (or 

approximately conform) to Bayes’s Rule. Modern computer science provides an existence proof. 

We can easily program a computer so that it conforms to Bayesian norms, including Bayes’s 

Rule and expected cost minimization. Yet the computer need not somehow represent or consult 

those norms during its computations. The computer does not have an inner homunculus. This 

analogy shows that Bayesian sensorimotor models do not require a homunculus. 

 A second objection condemns Bayesian modeling as ad hoc curve fitting. Critics 

complain that a Bayesian model is a mere ‘just so story’ depicting how some behavior might 

have arisen (Bowers and Davis, 2012). With enough ingenuity, one can choose priors and a cost 

function to generate desired behavioral data. Since one can adjust these parameters at will, the 

Bayesian framework is vacuous and unfalsifiable. 

 This objection may have merit when applied to Bayesian modeling of certain mental 

phenomena. It is less convincing when applied to Bayesian modeling of the motor system, where 

the priors and costs usually reflect independently motivated physical, biological, and 

psychological constraints: 

- The prior usually mirrors law-like or statistical regularities in the environment (e.g. that 

convex face shapes are much more common than concave face shapes). 

- The forward model mirrors environmental dynamics (e.g. dynamics of the human arm). 

- The task-dependent component of the cost function reflects the task goal itself. 

- The task-independent component of the cost function often reflects well-motivated 

desiderata, such as energy expenditure minimization. 

Of course, fitting a Bayesian model to the data always requires some curve-fitting. We must set 

various free parameters (e.g. variances of probability distributions). However, the model’s main 
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qualitative predictions often do not depend upon these parametric choices. For example, the 

qualitative explanation summarized in Figure 1 is highly robust to parametric variation. 

 Most importantly, optimal control has the unifying power characteristic of good 

explanation. It explains task-constrained variability in diverse motor tasks: reaching, speech, 

object manipulation, etc. It also explains motor behavior resulting from diverse experimental 

interventions, including perturbed visual feedback on bodily state (Figure 1), perturbed target 

location (Section 2.2), and altered task instructions (Section 2.2). There are many similar results 

along these lines that I have not discussed. This remarkable unifying power establishes that 

optimal control offers genuine explanations, not just post hoc redescriptions of the data. 

 Another common complaint is that Bayesian sensorimotor psychology does not say how 

the nervous system implements Bayesian activity (Bowers and Davis, 2012), (Loeb, 2012). 

However, a similar complaint applies to many areas of cognitive psychology. The complaint 

strikes me as misguided. As Marr (1982) argues, one may legitimately describe mental activity at 

an abstract level that prescinds from neural implementation details. Certainly, any complete 

Bayesian sensorimotor psychology must illuminate neural implementation. How does neural 

activity encode (or approximately encode) a probability assignment? How do neurophysiological 

processes implement (or approximately implement) Bayes’s Rule? The literature offers some 

tentative suggestions (Pouget, Ma, Beck, and Latham 2013). Even lacking well-confirmed 

neurophysiological underpinnings, Bayesian models can explain numerous motor phenomena. 

 A final objection maintains that optimal control cannot accommodate various motor 

tasks. Sensorimotor psychologists have only used optimal control to model a fairly limited array 

of tasks, such as reaching and pointing. Can we extend the framework to more sophisticated 
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tasks, such as walking, writing, or tying one’s shoes? Opponents contend that this will prove 

difficult or even impossible (Bowers and Davis, 2012), (Friston, 2011). 

 I favor a ‘wait and see’ attitude here. Predicting in advance whether a scientific 

framework will accommodate recalcitrant phenomena is a risky endeavor. For example, 

satisfactory treatment of the three-body problem within Newtonian physics took more than two 

centuries. At present, we cannot say how well optimal control will handle more sophisticated 

motor tasks.
3
 But we can say that it offers excellent explanations for some relatively simple 

motor tasks. No other known framework approaches it in explanatory power. I now substantiate 

this assessment by considering two prominent rival frameworks. 

  

3.2 The Equilibrium Point Hypothesis 

A long tradition in neuroscience seeks to explain motor control without invoking state estimation 

by the motor system. One manifestation is the equilibrium point hypothesis (EPH), espoused by 

Feldman (2011) and Latash (2010). According to EPH, voluntary bodily motion occurs when 

motor organs transit through a series of ‘equilibrium points’ along a desired trajectory. The 

motor system uses proprioceptive feedback to adjust resting lengths of muscles, whose springlike 

properties ensure that organs move through desired equilibrium points. Motor control does not 

involve sensory estimation of environmental state. It does not involve complex computations of 

any kind. It involves peripheral reflex responses to proprioceptive feedback. 

 Although EPH still finds some proponents, there are good grounds to find it unsatisfying. 

I mention three particularly important points: 

                                                 
3
 Friston (2011) claims that optimal control cannot model tasks, such as walking, that involve cyclic movement. Yet 

a suitably general version of the optimal control framework can in fact model cyclic movement, as Friston (2011, p. 

494) basically concedes. For cost minimization models of robotic walking, see (Erez and Todorov, 2012), 

(Srinivasan and Ruina, 2006). These models conclusively demonstrate that one can model cyclic movement within 

an optimal control framework. (Thanks to Emanuel Todorov and Daniel Wolpert for discussion of these issues.) 
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- As Shadmehr (2010) notes, EPH predicts that subjects with proprioceptive loss cannot 

make normal voluntary movements. This prediction is false. In contrast, optimal control 

correctly predicts that voluntary motion can proceed absent proprioceptive feedback, 

because subpersonal state estimation can exploit visual feedback and efference copy. 

- As Figure 1 illustrates, there is compelling evidence that the motor system continually 

alters trajectories based upon subpersonal estimates of bodily state. This evidence 

conflicts with EPH, which rejects anything like subpersonal estimation. 

- EPH assumes that the motor system pursues some desired trajectory. But how does the 

motor system determine a desired trajectory? Proponents of EPH do not try to answer this 

question. They simply assume an exogenously fixed trajectory (Rosenbaum, 2002). They 

thereby leave unexplained a huge, vital component of the overall phenomenon we wish to 

explain: the mental transition from goals to motor commands. In contrast, optimal control 

explains how the motor system computes a trajectory in real time. Thus, optimal control 

offers a large increase in explanatory power. 

EPH offers many insights. It shows that surprisingly sophisticated motor activity can arise from 

the interaction between motor reflexes and proprioceptive feedback. Proponents of optimal 

control should try to accommodate these insights. In that spirit, Shapiro and Körding (2010) 

propose a hybrid approach incorporating ideas from both traditions. Viewed as a competitor to 

optimal control, EPH is not satisfactory. 

 

3.3 Active Inference 

Friston (2011) advocates a version of Bayesian sensorimotor psychology that dispenses with cost 

functions. According to Friston, the motor system maintains a prior probability over possible 
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trajectories. Intuitively, the motor system expects motor organs to follow some desired 

trajectory. Using Bayesian inference, the motor system predicts proprioceptive consequences of 

the expected trajectory. If motor organs deviate from the expected trajectory, then proprioceptive 

prediction error results. Motor reflexes suppress proprioceptive prediction error, steering motor 

organs towards the expected trajectory. Bodily motion does not reflect an attempt by the motor 

system to minimize costs. Rather, it reflects an ongoing effort to minimize sensory predictive 

error. Hohwy describes the view as follows: ‘Action therefore does not come about through 

some complex computation of motor commands that control the muscles of the body. In simple 

terms, what happens instead is that the muscles are told to move as long as there is prediction 

error’ (2014, p. 82). Friston calls this approach active inference. See (Clark, 2013b) and (Hohwy, 

2014) for philosophical analysis of active inference. 

 Although active inference employs Bayesian apparatus, the underlying picture differs 

considerably from optimal control. In many respects, the picture more closely resembles EPH. 

Like EPH, active inference rejects complex computation of motor commands. Like EPH, active 

inference holds that interaction between motor reflexes and proprioceptive feedback impels 

motor organs towards desired trajectories. 

 Friston (2011, p. 492) writes: ‘Perhaps the most definitive argument in favor of active 

inference, as a normative model of motor control, is that prior beliefs about behavior emerge 

naturally as top-down or empirical priors during hierarchical perceptual inference. This contrasts 

with optimal control, which, at the end of the day, still has to explain how cost functions 

themselves are optimized. In short, active inference eliminates the homunculus implicit in cost 

functions.’ Friston does not say how hierarchical perceptual inference generates an expected 

trajectory. Despite what he intimates, his model does not explain how expected trajectories come 
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to be expected. His model simply takes expected trajectories as exogenously determined, even 

for relatively simple reaching motions. Thus, his model does not explain why the motor system 

follows one trajectory rather than another when pursuing a task goal.
4
 By assuming an 

exogenously determined prior over trajectories, Friston leaves unexplained how the motor 

system selects a trajectory. Like proponents of EPH, Friston does not even try to explain a huge, 

vital component of the mental transition from goals to motor commands.
5
 

 Optimal control explains how the motor system determines a trajectory in real time. 

Contrary to what Friston suggests, the explanation requires no homunculus. True, the 

explanation assumes a cost function with exogenously determined properties. But scientific 

theories always presuppose exogenously determined explanantia. The question is whether those 

explanantia subserve good explanations. By assuming an exogenously determined but well-

motivated cost function, optimal control explains numerous features of the resulting bodily 

motions. To illustrate, consider the Liu and Todorov (2007) experiment, where different 

instructions cause different degrees of undershooting. Optimal control readily explains this 

phenomenon: different instructions cause the motor system to instantiate a different cost 

function, thereby causing a different sequence of optimal motor commands. Active inference 

does not explain the variation in undershooting, because it does not explicitly model causal 

influences upon the putative prior over trajectories. 

 Active inference also seems unable to explain task-constrained variability in motor 

behavior (Scott, 2004). According to Friston, the motor system strives to eliminate prediction 

errors that arise when the actual trajectory deviates from some expected trajectory, whether or 

                                                 
4
 In certain passages, Friston appears to reject the very idea of goal-directed bodily motion. But I think it more 

charitable to interpret him as countenancing goal-directed bodily motions and as trying to elucidate the subpersonal 

mental processes that produce those motions. Hohwy (2014, pp. 81-92) pursues an interpretation along these lines. 
5
 My argumentation in this paragraph is heavily influenced by unpublished work by Emanuel Todorov and Tom 

Erez, who argue along similar lines. Needless to say, the blame for any mistakes or infelicities lies entirely with me. 
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not the deviations are task-relevant. This framework provides no principled reason to expect 

task-constrained variability. In contrast, optimal control offers a principled explanation for task-

constrained variability: namely, that the optimal policy is to correct only task-relevant deviations. 

By invoking expected cost minimization, optimal control explains a crucial phenomenon that 

Friston does not even try to explain. So optimal control once again offers decisive advantages 

over active inference. 

 

4. Representation as Explanatorily Central 

 

I now discuss how sensorimotor psychology illuminates mental representation. 

Philosophers and scientists use the phrase ‘mental representation’ in many different ways. 

The type of mental representation that concerns me involves representational content 

(sometimes called intentional content). In many important cases, a mental state has a content that 

represents the world as being a certain way. We can ask whether the world is indeed that way. 

These states are semantically evaluable with respect to such properties as truth, accuracy, and 

fulfillment (Fodor, 1987, pp. 10-11), (Searle, 1983, pp. 10-13). To illustrate: 

- Beliefs are evaluable as true or false. For example, my belief that John has gone fishing 

is true iff John has gone fishing. 

- Perceptual states are evaluable as accurate or inaccurate. For example, my perceptual 

experience as of a red sphere standing before me is accurate only if a red sphere is 

standing before me. 

- Intentions are evaluable as fulfilled or unfulfilled. For example, my intention to donate 

money to Oxfam is fulfilled iff I donate money to Oxfam. 
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In all three cases, a mental state is associated with some condition under which the state achieves 

‘representational success’ (truth, accuracy, or fulfillment). Intuitively, the state achieves 

representational success when it correctly represents reality. Following Burge (2010), I use 

veridicality as an omnibus term to describe representationally successful mental states. Burge 

(2010) regards truth and accuracy as distinct species of veridicality, but I remain neutral on this 

question. The crucial point is that many important mental states are associated with veridicality-

conditions: conditions for veridical representation of reality. 

 There are many conflicting philosophical theories of representational content. The basic 

idea behind most theories is to posit abstract entities --- representational contents --- related in 

some systematic way to veridicality-conditions. Popular candidates include Fregean thoughts, 

Russellian propositions, and sets of possible worlds. I will not wade into these turbulent waters. 

For our purposes, the differences among philosophical theories of representational content do not 

matter. What matters is a core doctrine shared by virtually all such theories: many important 

mental states are evaluable as veridical or non-veridical. 

 What is it for mental states to have representational content? Various philosophers have 

tackled this question, trying to elucidate representation in non-representational terms. I will not 

take sides here. I am not addressing how mental states come to have representational content. My 

concern is the more basic thesis that many mental states have representational content, in the 

minimal sense that they are associated with conditions for veridical representation. As Bermúdez 

(1995) stresses, both personal-level mental states and subpersonal mental states can have 

representational content in this minimal sense. 

 I contend that our current best sensorimotor psychology assigns a central role to 

representational content. The science posits intentions that have fulfillment-conditions (e.g. an 
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intention to move my hand to a location, or an intention to grasp some perceived object). It also 

posits subpersonal state estimates: probability assignments to hypotheses with accuracy-

conditions (e.g. hypotheses that represent hand position, or hypotheses that represent the 

location, shape, or weight of a perceived object). Mathematically precise generalizations describe 

how these mental states interact with one another and with sensory input to yield bodily motion. 

Thus, sound philosophical discussion of motor control must acknowledge the indispensable role 

that representational mental states play in mediating between sensory input and motor output. 

 I will develop my position by considering intentions (Section 4.1) and subpersonal state 

estimates (Section 4.2). I will then discuss how mental representation informs the explanatory 

generalizations offered by sensorimotor psychology (Section 4.3).
6
 

 

4.1 Intention 

Philosophical discussion of practical reason assigns a pivotal role to intentions (Anscombe, 

1957), (Davidson, 1980). Philosophers vigorously debate the nature of intentions, but most 

discussants agree that intention has the following three properties: 

(a) It is a personal-level state, i.e. a state of the individual rather than her subsystems. 

(b) It represents some goal of the individual. 

(c) It has a fulfillment-condition, which is satisfied if the intention causes bodily motion that 

achieves the relevant goal. 

                                                 
6
 Grush (2004) also discusses the relation between sensorimotor psychology and mental representation. He focuses 

especially on forward models and the Kalman filter. I place much more emphasis than Grush does upon Bayesian 

underpinnings and upon veridicality-conditions. I also deploy the science to rebut various views (e.g. eliminativism 

and instrumentalism) that Grush does not explicitly consider. 



23 

 

I claim that sensorimotor psychology presupposes mental states with these properties. I call the 

mental states ‘intentions,’ but I am not concerned with how closely they resemble intentions as 

standardly construed by philosophers. The key point is that they have properties (a)-(c). 

 As Shadmehr, Smith, and Krakauer observe, ‘[m]otor control is the study of how 

organisms make accurate goal-directed movements’ (2010, p. 89). Our topic is goal-directed 

bodily motion, i.e. motion in pursuit of a goal. Research proceeds from the assumption that 

people routinely achieve their goals by moving their bodies. We want explain how people do this 

so well. In some cases, an individual may not consciously choose the relevant goal. While 

immersed in my work, for example, I may thoughtlessly scratch my cheek without forming any 

conscious intention to do so. However, many core cases involve goals consciously pursued by 

the individual, not merely her subsystems (Pacherie, 2000), (Jeanerrod, 2006, pp. 1-21). To 

pursue a goal, the individual must mentally represent the goal as one to be pursued. She must 

instantiate a personal-level mental state that is fulfilled when resulting bodily motions achieve 

the goal. In other words, she must instantiate a mental state with properties (a)-(c). 

 For this reason, sensorimotor psychology presupposes intentions. Researchers want to 

explain how mental activity converts intentions into bodily motions that fulfill or approximately 

fulfill those intentions. We cannot even specify the explanandum unless we presuppose personal-

level mental states with fulfillment-conditions. 

 Intention plays a particularly central role within optimal control modeling. The main idea 

behind the optimal control framework is that motor activity chooses commands suited to advance 

some goal. This idea underlies the framework’s distinctive explanations, including the 

explanation for task-constrained variability. In many cases (though perhaps not all), the relevant 
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goal is set by higher-order cognition. In any such case, there must be a personal-level mental 

state that represents the goal, i.e. an intention. 

More concretely, suppose we want to model some reaching task using optimal control. 

Then we must isolate a cost function appropriate to the task. The cost function enshrines a task 

goal (e.g. reach to this location and then that location). When deciding which cost function to 

attribute to the motor system, we evaluate what goal the subject is pursuing. In other words, we 

identify the intention operative during the motor task. Identifying the operative intention is easier 

in some cases than others. In a typical experiment, we simply tell the subject what goal to pursue. 

We assume that the subject understands our instructions and seeks to obey them. In more 

naturalistic settings, identifying the subject’s intentions may be less straightforward. In all cases, 

we explicitly or implicitly rely upon our general folk psychological capacity to discern one 

another’s mental states. We deploy this capacity to identify the operative intention, thereby 

constraining the class of plausible cost functions. Thus, applying an optimal control model to a 

specific individual requires us to consider the individual’s intentions. 

A good illustration is the Liu and Todorov (2007) experiment, where instructions 

influence degree of undershooting. The optimal control explanation for this phenomenon hinges 

upon a contrast in the cost function, reflecting the relative importance of stability. But what 

causes the contrast in the cost function? And how do we decide which cost function to attribute 

in which scenario? Intention is key here. The subject understands our instructions and forms a 

suitable intention, which causes the motor system to instantiate a suitable cost function. We 

decide which cost function to attribute by evaluating what the subject intends (i.e. whether she 

aims to hit the target gently, or whether she merely aims to hit it). Our explanatory paradigm 

presupposes personal-level intentions that mediate between instructions and cost functions. 
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 Most intentions influence behavior only as mediated by further intentions. My intention 

to donate money to Oxfam causes bodily motion only as mediated by an intention to sign my 

name to a check, an intention to place the check in the mailbox, and so on. As this example 

illustrates, only relatively ‘low-level’ intentions can serve as input to subpersonal sensorimotor 

processing. Which intentions can interface directly with subpersonal processing? Where should 

we draw the line between the personal-level processes that produce intentions and the 

subpersonal processes that convert intentions into bodily motions? Philosophers standardly 

tackle these questions by distinguishing among intentions. For example, Searle (1983) 

distinguishes between prior intentions and intentions-in-action, while Mele (1992) distinguishes 

between distal intentions and proximal intentions. The details vary considerably, but the basic 

idea is to identify relatively low-level intentions that can initiate a bodily motion, sustain the 

motion until completion, and guide the motion as it unfolds (Pacherie, 2006). There is room here 

for fruitful interchange between philosophers and scientists. Such interchange might clarify how 

personal-level decision-making and subpersonal motor activity relate. For present purposes, we 

need not settle precisely which intentions interface directly with subpersonal processing.
7
 

 

4.2 Subpersonal State Estimation 

Intuitively, we often achieve our goals because we have true beliefs. The models canvassed in 

Section 2 extend this intuitive idea to the subpersonal realm. Researchers postulate a 

probabilistic state estimate: a probability assignment to hypotheses. The science remains fairly 

                                                 
7
 Pacherie (2008) distinguishes between distal intentions, proximal intentions, and motor intentions. Motor 

intentions are non-propositional representational mental states that represent the task goal and that figure in motor 

processing. She offers a detailed theory of the ‘intentional cascade’ from distal to proximal to motor intentions. 

Similarly, Butterfill and Sinigaglia (2014) argue that we should recognize non-conceptual motor representations of 

the task goal, distinct from personal-level intentions. I am sympathetic to the thesis that subpersonal, non-

propositional, non-conceptual representations of the task goal mediate between personal-level intentions and 

subpersonal cost assignments. Officially, though, I am not committed to that thesis. 
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neutral regarding the nature of ‘hypotheses,’ but it makes one crucial assumption: each 

hypothesis is accurate or inaccurate, depending on the environment. Thus, each hypothesis has 

an accuracy-condition. For example, an hypothesis that represents some object as having a 

certain weight is accurate only if the object has that weight. The Bayesian estimator begins with 

priors that mirror law-like or statistical regularities in the environment (e.g. that certain shapes 

are likelier than others). Efference copy and sensory input cause reallocation of probabilities, 

conforming roughly with Bayesian norms. Assuming favorable environmental conditions, the 

resulting state estimate assigns high probability to accurate or approximately accurate 

hypotheses. The motor system selects a motor command apt to advance the task goal, assuming 

that high probabilities attach to approximately accurate hypotheses. The motor system thereby 

converts sensory inputs into bodily outputs apt to advance the task goal. 

This explanation turns upon the notion of accurate representation. To explain why motor 

behavior yields (approximately) intended results, we cite high probability assignments to 

(approximately) accurate subpersonal hypotheses. We presuppose subpersonal hypotheses with 

accuracy-conditions, and we cite satisfaction of those accuracy-conditions to explain why bodily 

motions fulfill intentions.
8
 

Sensorimotor psychology also studies cases where motor behavior does not yield desired 

results. There are diverse possible sources of failure: neural noise, muscle fatigue, internal 

malfunction, external interference, and so on. One particularly notable source of failure is 

misestimation, i.e. assignment of overly high probabilities to inaccurate hypotheses. Figure 1 

                                                 
8
 Nanay (2013) postulates pragmatic representations that mediate between sensory input and motor output. 

Pragmatic representations represent action-relevant features of the environment. For example, when I pick up a 

book, my motor system deploys pragmatic representations of the book’s location, shape, size, and weight. Pragmatic 

representations have accuracy-conditions, and they are typically unconscious. Thus, they share many important 

features with the probabilistic state estimates emphasized by my account. One difference is that Nanay’s pragmatic 

representations do not seem to be probabilistic in nature. As indicated in note 2, I am open to the possibility that 

motor control deploys non-probabilistic state estimates, but nothing about the Bayesian framework per se requires 

such items. 
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illustrates how misestimation can stymie consummation of the task goal. To explain why the 

subject’s virtual finger misses the target, we cite an inaccurate subpersonal estimate of current 

finger state (or overly high probability assignments to inaccurate subpersonal hypotheses). Our 

explanation presupposes subpersonal hypotheses with accuracy-conditions. 

There are important connections here between sensorimotor psychology and perceptual 

psychology. In a perceptual illusion, misleading sensory input causes an inaccurate percept. 

Analogues to many well-known perceptual illusions --- including the Ebbinghaus illusion (Franz, 

Bülthoff, and Fahle, 2003) and the Müller-Lyer illusion (Bruno and Franz, 2009) --- arise for 

sensorimotor estimation. Consider the hollow face illusion, in which a concave mask appears 

convex despite several visual cues that it is concave. A comparable illusion afflicts motor 

control: subjects trying to touch the nose on the mask fail systematically, due to misestimation of 

the mask’s shape (Hartung, Schrater, Bülthoff, Kersten, and Franz, 2005).
9
 There are at least two 

potential contrasts between perceptual illusions and corresponding motor illusions: 

(a) A perceptual illusion concerns a personal-level percept. A motor illusion concerns a 

subpersonal estimate. How the personal-level percept and the subpersonal estimate relate 

to one another is an important open question. 

(b) Introspectively, it seems clear that perception produces a determinate non-probabilistic 

percept. In contrast, we do not know whether the motor system produces a non-

probabilistic state estimate. It may simply deploy an updated probability assignment. 

                                                 
9
 Proponents of the ‘two visual systems’ hypothesis  frequently claim that motor control resists various well-known 

perceptual illusions, including the Ebbinghaus, Müller-Lyer, and hollow face illusions. Numerous papers by Franz 

and his colleagues, including the papers cited above, cast such claims into doubt. Carefully designed experiments 

that match the perceptual task to the motor task seem to eradicate the alleged asymmetry between perception and 

motor control. One apparent exception is the size-weight illusion: perception dramatically overestimates the weight 

of smaller objects, but the motor system is somewhat biased in the opposite direction (Brayanov and Smith, 2010). 
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Still, there is a fundamental affinity between perceptual illusion and motor illusion. In both 

cases, misleading sensory input causes sensory misestimation of environmental conditions. 

 Bayesian perceptual psychology offers satisfying explanations for numerous perceptual 

illusions (Rescorla, 2015). The same basic template can also explain numerous motor illusions. 

For example, the hollow face illusion arises because the prior assigns high probability to convex 

face shapes (Hartung, Schrater, Bülthoff, Kersten, and Franz, 2005). A concave mask flouts this 

prior, thereby inducing Bayesian misestimation of shape. More generally, Bayesian estimation 

deploys priors to overcome the inherent ambiguity of sensory input. No matter how apt the 

priors, there are possible circumstances that flout them. Thus, the strategy through which sensory 

estimation handles ambiguous sensory input ensures that sensory misestimation will occur under 

certain conditions. Misestimation in unfavorable circumstances is a corollary of successful 

estimation in favorable circumstances. (Cf. Burge, 2010, pp. 87-98.) 

 

4.3 Representational Explanation in Sensorimotor Psychology 

I submit that representation is firmly embedded within our current best sensorimotor psychology. 

The science explains how motor activity causes bodily motions that fulfill (or approximately 

fulfill) intentions. The central explanatory strategy is to illuminate why subpersonal estimation 

routinely assigns high probability to accurate (or approximately accurate) hypotheses. The 

science also illuminates cases where intentions go unfulfilled due to subpersonal misestimation, 

i.e. overly highly probability assignments to inaccurate hypotheses. These explanations 

presuppose personal-level intentions with fulfillment-conditions and subpersonal hypotheses 
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with accuracy-conditions. The aims, methods, and results of our current best sensorimotor 

psychology embody a representationalist viewpoint.
10

 

Optimal control modeling describes how the controller converts state estimates and cost 

assignments into bodily motions. A state estimate allocates probabilities to hypotheses, where 

each hypothesis h is accurate only if the environment meets certain conditions. A cost 

assignment allocates costs to pairs (u, h), where u is a motor command and where h once again 

has an accuracy-condition. Thus, state estimates and cost assignments are defined over 

representationally contentful hypotheses. The hypotheses might represent possible hand 

positions, or possible shapes of some distal object, and so on. Mathematically precise ceteris 

paribus generalizations describe how a state estimate and a cost assignment jointly determine a 

specific motor command. The generalizations characterize state estimates and cost assignments 

by describing hypotheses in representational terms --- as representations of specific hand 

positions, or specific distal shapes, and so on. The generalizations describe how mental states as 

characterized partly through environmental conditions those states represent interact with one 

another and with sensory input to cause motor commands. 

Current sensorimotor psychology also describes formation of subpersonal state estimates 

in great detail. It cites priors, the forward model, sensory input, and efference copy to explain 

how the motor system estimates environmental conditions. For example, Saunders and Knill 

(2004) present a Bayesian model that describes estimation of finger state based upon visual 

feedback and efference copy. The model delineates precise rules for reallocating probabilities 

over a hypothesis space whose component hypotheses represent possible finger positions and 

velocities. Detailed explanatory generalizations describe how the current state estimate as 

described representationally influences the next state estimate as described representationally. 

                                                 
10

 In (Rescorla, 2015), I develop a kindred representationalist analysis of Bayesian perceptual psychology. 
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Hence, representational mental states figure crucially as both explanantia and explananda 

within our current best sensorimotor psychology. To explain bodily motion, the science cites 

representational properties of mental states, including intentions, subpersonal state estimates, and 

subpersonal cost assignments. To explain a state estimate with certain representational 

properties, the science cites representational properties of an earlier state estimate.
11

 

Admittedly, sensorimotor psychologists do not use locutions such as ‘representational 

content’ or ‘veridicality-condition.’ Nevertheless, such locutions illuminate the explanatory 

structure of optimal control sensorimotor modeling. Here again there is room for fruitful 

exchange between philosophers and scientists. Tools from philosophy of mind can help 

sensorimotor psychologists better understand the conceptual foundations of their own research. 

 

4.4 Intentional Realism 

I favor a broadly scientific realist viewpoint: explanatory success is a prima facie guide to truth. 

From a scientific realist viewpoint, sensorimotor psychology supports intentional realism, i.e. 

realism towards mental representation. Our current best sensorimotor psychology offers 

successful explanations for diverse bodily motions. The explanations attribute veridicality-

conditions at both the personal level and the subpersonal level. There is no evident way to forego 

these intentional attributions while preserving the explanatory benefits that they provide. Thus, 

                                                 
11

 Consider two thinkers X1 and X2 who are duplicates save that they inhabit distinct, qualitatively indistinguishable 

spatial environments. Suppose that each thinker’s motor system forms a subpersonal non-probabilistic estimate of 

hand position. Call the estimates E1 and E2. The estimates have different accuracy-conditions, because each estimate 

denotes a different location. For many explanatory purposes, one may want to “hive off” the external denotation, 

isolating context-free representational properties shared by X1 and X2. I believe that this is how current models 

proceed. The models cite context-free representational properties, abstracting away from contextually-determined 

differences between subjects. The models individuate subpersonal estimates not through contextually-determined 

veridicality-conditions, but through context-free representational properties that contribute to veridicality-

conditions. Developing my analysis would require extensive inquiry into various subtle issues involving context, 

content, and psychological explanation. For present purposes, it does not matter which representational properties of 

mental states figure within sensorimotor modeling. What matters is simply that the science assigns a crucial 

explanatory role to some representational properties of mental states.  
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current sensorimotor psychology assigns a central explanatory role to representational content. 

We should embrace representation as a genuine, scientifically indispensable aspect of mentality. 

 Intentional realism is a fairly popular position, espoused by Burge (2010), Fodor (1987), 

Peacocke (1992), and many others. However, it has encountered substantial opposition over the 

past few decades. To bolster my intentional realist perspective, I will now examine opposing 

eliminativist (Section 5) and instrumentalist (Section 6) positions. 

 

5. Eliminativism 

 

Eliminativists seek to expunge representationality (or intentionality) from scientific psychology. 

In this spirit, Quine bemoans ‘the baselessness of intentional idioms’ (1960, p. 221). He 

maintains that, when we are ‘venturing to formulate the fundamental laws of a branch of 

science,’ we should reject intentionality in favor of the ‘the physical constitution and behavior of 

organisms.’ Similarly, Stich wants to ‘banish talk of content in scientific settings.’ He dismisses 

‘intentional locutions’ as ‘not the sort of locutions we should welcome in serious scientific 

discourse’ (1991, p. 240). Both philosophers think that scientific psychology should eschew 

intentional discourse. Churchland (1981) also inclines towards this position, although officially 

he only rejects personal-level propositional attitudes. Quine and Stich explicitly aim to purge 

scientific psychology of all intentional attribution, including intentional attributions to 

subpersonal states. They hold that rigorous theorizing about the mind should reject 

representational content in general. 

 Eliminativists defend their position through various arguments, which I will not try to 

canvass or rebut. Burge (2010, pp. 296-298) contends that the arguments are unconvincing, and I 
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agree. Burge (2010) also argues that eliminativism conflicts with perceptual psychology, a 

conclusion that I likewise defend in (Rescorla, 2015). For present purposes, my main point is that 

eliminativism conflicts with our current best sensorimotor psychology. Bayesian models of 

motor control reveal a rich structure of representational mental states that mediate between 

sensory stimulation and bodily motion. The science posits personal-level intentions with 

fulfillment-conditions. It also posits subpersonal hypotheses with accuracy-conditions. Rigorous 

explanations describe how representational mental states interact with one another and with 

sensory input to yield bodily motion. 

 Eliminativists often claim that folk psychology is ill-suited for incorporation into mature 

science. It may be useful for daily life, but it does not meet proper scientific standards of clarity, 

precision, rigor, or depth. For example, Churchland (1981, p. 75) critiques folk psychology as a 

‘stagnant or degenerating research program’ unlikely to inspire fruitful theories of the mind. 

 I disagree. To delineate an optimal control model of an actual human subject, we must 

identify the relevant cost function. As I argued in Section 4.1, we identify the cost function in a 

typical motor task by deploying general folk psychological capacities to discern personal-level 

propositional attitudes (especially intentions). Only by deploying those capacities can we isolate 

the task goal enshrined by the cost function. Thus, even though an optimal control model 

describes subpersonal rather than personal-level mental activity, we apply the model to an actual 

subject only by supplementing it with broadly folk psychological analysis of personal-level 

mental activity. We cannot preserve the science in anything resembling in its current form if we 

utterly reject all common sense discourse about personal-level propositional attitudes. The 

science may not vindicate every aspect of folk psychology. But it requires us to posit personal-

level states that share key features with intentions, as characterized by folk psychology. 
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 There is a second important respect in which optimal control builds upon folk 

psychology. As Davidson (1980) emphasizes, Bayesian decision theory refines ordinary belief-

desire explanation. Thus, optimal control sensorimotor modeling refines common sense 

psychological discourse. It transmutes folk psychology into ceteris paribus explanatory 

generalizations as mathematically precise and empirically fruitful as one could desire. Granted, 

an optimal control model differs in important ways from folk psychological description. Most 

notably, an optimal control model describes subpersonal activity, while folk psychology 

describes personal-level mental activity. Nevertheless, optimal control lends scientific rigor to a 

broadly folk psychological explanatory template. 

 

5.2 Eliminating Intentionality? 

Eliminativists usually insist we can eschew intentional locutions while retaining any explanatory 

benefits offered by intentional psychology. They maintain that we can offer equally good 

explanations cast in non-intentional terms. Generally speaking, though, one cannot radically alter 

how a science taxonomizes its subject matter while preserving the science’s explanatory 

successes. Why expect that we can transfigure the taxonomic scheme employed by current 

sensorimotor psychology while retaining its explanatory benefits, any more than we can eschew 

talk about gravity or genes while retaining the benefits offered by current physics and current 

biology? Only a detailed demonstration should convince us that we can purge sensorimotor 

psychology of representationality while preserving its explanatory achievements. Eliminativists 

have not even begun to provide such a demonstration. 

 Field concedes that we may need to cite representational properties when ‘explaining 

behavior described in an intentional way (“murdered his wife”)’ (2001, p. 77), or when 
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explaining mental states under intentional descriptions. But he questions whether we must cite 

such properties when explaining behavior described non-intentionally, as when we try to answer 

the question ‘Why did her arms move in that way?’ (p. 77). He suggests that we can forego 

representational locutions when explaining bodily motions under non-intentional descriptions. 

 As we have seen, there is abundant evidence that sophisticated mental processes mediate 

between sensory feedback and bodily motions. If we want to explain why someone moved her 

arm a certain way, we must model these mental processes. The most successful models postulate 

probabilistic updating over hypotheses individuated through their representational properties. 

Sensorimotor psychologists postulate mental states with representational properties because 

doing so yields excellent explanations for bodily motion, just as physicists postulate gravity 

because doing so yields excellent explanations for celestial and terrestrial motion. Pace Field, 

our best science of motor control assigns an essential role to representational properties when 

explaining bodily motions under non-intentional descriptions. 

 Over the past century, numerous scientists have tried to explain bodily motion in entirely 

non-representational terms. This anti-representationalist program persists among many 

contemporary proponents of embodied cognition (Chemero, 2009) and dynamical systems theory 

(Kelso, Dumas, and Tognoli, 2013). These scientists commonly motivate their approach through 

physicalist or naturalist rhetoric much like that advanced by eliminativist philosophers. Anti-

representationalist research has proved unable to explain the complex ways that sensory input 

influences bodily motion. Indeed, anti-representationalists do not usually even try to explain the 

vast range of behavioral data that the models canvassed in Section 2 easily accommodate. 

 

5.3 The Computational Theory of Mind 
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Many philosophers hold that cognitive science should assign a central role to non-

representational computational description. The most familiar version of this view emphasizes 

formal syntactic manipulation, epitomized by a Turing machine manipulating stroke marks on a 

machine tape. Stroke marks are formal syntactic items that do not have inherent representational 

import. Fodor (1987) applies this picture to the mind. He models mental activity as Turing-style 

computation over formal syntactic mental items. Other proponents of the formal syntactic picture 

include Chalmers (2011), Cummins (1989), Field (2001), Pylyshyn (1984), and Stich (1983). 

Proponents vary in their attitude towards intentionality. At one extreme, Fodor (1987) espouses 

intentional realism. He wants to reserve a central explanatory role for representational content in 

addition to formal mental syntax. At the opposite extreme, Field and Stich deploy the formal 

syntactic picture to support eliminativism. They recommend that we eschew intentional 

psychology in favor of formal syntactic computational modeling. 

 Formal syntactic description is supposed to be multiply realizable in Putnam’s (1967) 

sense. Physical systems with radically different physical properties can instantiate the same 

formal syntactic properties. For example, a carbon-based creature and a silicon-based creature 

might satisfy the same formal syntactic description. Formal syntactic description prescinds from 

both neural and representational properties of mental activity. 

Our current best sensorimotor psychology does not feature formal syntactic description 

along these lines. The science describes how efference copy and sensory feedback as 

characterized neurophysiologically combine with a state estimate as characterized 

representationally to yield a new state estimate as characterized representationally. It describes 

how a subpersonal cost assignment as characterized representationally combines with the state 

estimate as characterized representationally to yield a motor command as characterized 
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neurophysiologically. Formal syntactic individuation of mental states plays no role. There may 

be many excellent reasons to postulate formal syntactic mental items, but our current best 

sensorimotor psychology postulates no such items. The science does not employ formal syntactic 

descriptions that prescind from both representational and neural details. It individuates mental 

states in representational terms as opposed to formal syntactic terms.
12

 

 Field (2001, pp. 72-82, pp. 153-156) proposes a version of Bayesian modeling on which 

subjective probabilities attach to formal syntactic items individuated without regard to meaning 

or content. He claims that this framework can preserve any explanatory benefits offered by 

intentional explanation. However, he does not indicate anything resembling a detailed Bayesian 

model of specific psychological phenomena. He simply asserts that Bayesian models defined 

over formal syntactic items offer the same explanatory advantages as Bayesian models defined in 

representational terms. 

The details of Field’s account call into question whether his favored formal syntactic 

models can match the explanatory benefits of representationally-specified models. According to 

Field, there is no viable interpersonal notion of type-identity for mental representation tokens 

(2001, p. 75, fn. 3). As he puts it, ‘the notion of type-identity between tokens in one organism 

and tokens in the other is not needed for psychological theory, and can be regarded as a 

meaningless notion’ (2001, p. 57, fn. 32). Thus, Field’s formal syntactic taxonomic scheme 

cannot type-identify the mental states of distinct subjects. Field’s proposal departs markedly 

from actual sensorimotor psychology, which routinely type-identifies mental states of distinct 

subjects. To illustrate, consider two subjects Y1 and Y2 executing the same reaching task. In 

principle, Y1 and Y2 can instantiate precisely the same Bayesian sensorimotor computations. They 

                                                 
12

 In (Rescorla, 2012; forthcoming), I argue that we can model the mind as a computational system while eschewing 

any appeal to formal mental syntax. On this view, computational models of the mind can individuate mental states 

through their representational properties rather than through any alleged formal syntactic properties. 
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can receive the same sensory input and efference copy, yielding the same state estimate, 

interacting with the same cost assignment to yield the same motor command. Bayesian 

sensorimotor psychology can offer a unified psychological explanation for the bodily motions of 

Y1 and Y2. In contrast, Field envisions a disunified treatment. He recognizes no useful sense in 

which Y1 and Y2 are psychological duplicates. 

In practice, there are always differences between two subjects. People have different 

bodies, possibly yielding slightly different forward models. They receive slightly different 

sensory feedback, possibly yielding different state estimates. There may be other differences. 

Sensorimotor modeling often ignores these differences, just as physical modeling often ignores 

the fact any two objects have slightly different masses, slightly different forces acting upon them, 

and so on. Even when a sensorimotor model registers minor psychological differences between 

subjects, it simultaneously highlights various uniformities and similarities: that the task goal is 

the same, or that one state estimate is similar to another, and so on. Sensorimotor psychology can 

offer a relatively unified treatment even when Y1 and Y2 differ in various ways. Yet Field must 

treat all such cases in equally disunified fashion. 

Sensorimotor psychology offers unified or relatively unified explanations for the bodily 

motions of diverse subjects. Field vows instead to explain those bodily motions in highly 

disunified fashion. So Field’s favored approach seems unlikely to preserve the explanatory 

benefits offered by current sensorimotor psychology. 

 

6. Instrumentalism 
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Instrumentalists regarding intentionality acknowledge that intentional psychology is predictively 

successful, but they question whether mental states really represent. Dennett (1987) develops a 

broadly instrumentalist approach. According to Dennett, theorists who attribute representational 

properties to mental states are not literally asserting that mental states have representational 

properties. They are merely adopting the ‘intentional stance.’ Hornsby (2000) and McDowell 

(1994) agree with Dennett regarding intentional attribution to the subpersonal level, although 

they favor a literal construal of intentional attributions to personal-level states. As Hornsby puts 

it, ‘[a]dopting the [intentional] stance towards… subsystems… is a matter of treating them as if 

they had some of the intentional properties that persons have’ (2000, p. 20). Similarly, 

McDowell writes that ‘the content-involving truth at the “sub-personal” level is irreducibly 

metaphorical’ (1994, p. 197). Dennett, Hornsby, and McDowell share an instrumentalist attitude 

towards subpersonal intentional states. 

 Sensorimotor psychology casts doubt upon instrumentalism regarding intentionality, 

including instrumentalism directed solely towards subpersonal representational states. The 

science describes numerous subpersonal states in representational terms. Contrary to what 

Dennett, Hornsby, and McDowell suggest, the science does not advance these intentional 

attributions in a metaphorical or ‘as if’ fashion. It advances them as true (or approximately true) 

descriptions. Talk about subpersonal mental representation within sensorimotor psychology is no 

more metaphorical than talk about gravity within physics or talk about genes within biology. 

 Colombo and Seriès (2012) advance an opposing instrumentalist analysis. They hold that 

‘Bayesian models should be understood as no more than toolboxes for making predictions and 

systematizing data’ (p. 714). The apparatus of forward models, priors, state estimates, and cost 
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assignments is nothing but a useful device for predicting bodily motions. We should not construe 

Bayesian sensorimotor models as true (or approximately true) descriptions of mental activity. 

 I think that Colombo and Seriès seriously underrate the explanatory aspirations and 

achievements of sensorimotor psychology. The science does not merely aim to provide 

systematic tabulations of behavioral data. It aims to explain human motor performance. Why 

does the subject follow this trajectory rather than that one? Why does she successfully execute 

the task goal in these conditions but not those? Why does motor behavior vary less along task-

relevant dimensions than task-irrelevant dimensions? Bayesian sensorimotor psychology 

illuminates these and many other questions. The science purports to offer, and in many cases 

does offer, satisfying explanations for the target phenomena. Talk about forward models, priors, 

state estimates, and cost assignments is not just a useful predictive device. Sensorimotor 

psychologists postulate these theoretical entities for their explanatory power, just as physicists 

postulate gravitational forces and biologists postulate genes for their explanatory power. In all 

cases, the resulting explanatory power provides good reason to believe that the postulated entities 

exist. Instrumentalism towards sensorimotor psychology is no more justified than 

instrumentalism regarding physics, biology, or any other successful science. 

 Readers may complain that I have applied scientific realism to sensorimotor psychology 

in an overly crude fashion. Even committed scientific realists must acknowledge that some 

explanatorily successful scientific models posit non-existent entities, such as frictionless planes 

or massless strings. Explanatory success does not mandate a realist attitude towards all entities 

postulated by a scientific model. But then why should we adopt a realist attitude towards the 

subpersonal estimates postulated by sensorimotor psychologists? 
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 I agree that we should not believe some entity exists simply because it figures in an 

explanatorily successful theory. For example, we should not believe that frictionless planes exist 

simply because explanatorily successful models invoke them. However, we should believe that 

an entity exists when it figures in our best explanations in a seemingly indispensable way. We 

are confident that, in principle, we could expunge frictionless planes from physics while 

preserving any important explanatory achievements. There is no evident way to preserve those 

achievements without citing gravity. That is why physics provides reason to believe in gravity 

but not frictionless planes. 

A similar diagnosis applies to sensorimotor psychology. Existing models are highly 

idealized, neglecting various information-processing constraints that more realistic models would 

take into account. Moreover, as Colombo and Seriès (2012) note, researchers often choose the 

details of a model (e.g. the precise form of the priors and the cost function) based mainly on 

mathematical convenience rather than psychological realism. However, we feel confident that 

more realistic models would preserve the explanatory achievements of current models. In 

contrast, there is no evident way to preserve those explanatory achievements while eschewing 

subpersonal state estimation. For example, the explanation summarized by Figure 1 hinges upon 

the claim that visual feedback influences a subpersonal estimate of finger state. Similarly, the 

optimal control explanation of task-constrained variability requires (some approximation to) 

subpersonal expected cost minimization grounded in (some approximation to) subpersonal 

Bayesian estimation. These explanations assign an essential role to subpersonal hypotheses with 

accuracy-conditions. Apparently, then, subpersonal representational mental states figure 

indispensably within our best explanations for important motor phenomena. This provides strong 

reason to believe that subpersonal representational mental states exist. 
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To appreciate the advantages of realism over instrumentalism, let us compare possible 

intentions I1, …, Ir. For example, these might be intentions to reach one’s right hand to r 

different locations. Each intention In induces a distinct mapping Mn from sensory input to motor 

commands. The mapping reflects how sensorimotor processing transforms sensory input into 

motor commands, assuming that the subject currently seeks to execute intention In. The mapping 

is stochastic, rather than deterministic, due to noise and other interfering factors. 

 Realists can offer a unified explanation for the diverse mappings M1, …, Mr. Each 

intention In causes a subpersonal cost assignment, which combines with the current state estimate 

to yield the next motor command. Varying the intention while holding fixed the Bayesian 

estimator (including the priors and the forward model) alters the mapping Mn from sensory input 

to motor commands, in a way made precise by the Bayesian model. So realists can offer a 

systematic account that reveals the diverse mappings M1, …, Mr as manifestations of a single 

underlying Bayesian estimator. Instrumentalists cannot offer a systematic explanation along 

these lines. They cannot say that the diverse mappings M1, …, Mr reflect a uniform Bayesian 

estimator, because they dismiss as metaphorical all talk about subpersonal Bayesian estimation. 

Can instrumentalists offer an alternative explanation, perhaps grounded in neurophysiological or 

other non-intentional properties? Given present scientific knowledge, the suggestion is idle 

speculation. We have no idea how to explain the mappings within a unified framework, save as 

manifestations of subpersonal estimation and control. 

  

7. Normative Constraints on Intentional Attribution 
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Many philosophers view intentional psychology as an inherently normative enterprise. Quine 

(1960) anticipates this view. Davidson (1980) develops it at length. According to Davidson, a 

constitutive ideal of rationality informs how we interpret the mental states and speech acts of 

others. We can ascribe representational content to a creature’s mental states only when we depict 

the creature as largely conforming to norms of logic, probability theory, and decision theory. 

Davidson recognizes that people deviate from rational norms due to self-deception, akrasia, and 

various other factors. But he insists that these deviations occur against a baseline of conformity. 

Good interpretation should not impute too much irrationality to the interpreted subject. In that 

respect, normative evaluation constrains psychological description. Dennett (1971) espouses a 

similar position, as do many other philosophers. 

 The research canvassed in Section 2 embodies a broadly Davidsonian methodology. 

Researchers adopt a two-step approach: first, construct a normative model describing how an 

optimal Bayesian decision-maker would proceed; second, fit the normative model as well as 

possible to the data. We begin with Bayesian norms governing estimation and control, as 

encapsulated by Figure 2. To apply those norms to a specific motor task, we specify details left 

open by the norms: the cost function, the forward model, the priors, and so on. By specifying 

these details, we construct a detailed normative model of the task. Our model yields ceteris 

paribus generalizations relating sensory input, mental activity, and behavior. We evaluate 

through experimentation how well the generalizations describe actual humans. Hence, the basic 

explanatory strategy is to use Bayesian normative models as descriptive psychological tools. 

This explanatory strategy presupposes that the motor system largely conforms (at least 

approximately) to Bayesian norms. Deviations can arise due to malfunction, external 
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interference, and various other factors. If our current best sensorimotor psychology is on the right 

track, then those deviations occur against a baseline of conformity. 

 Davidson emphasizes beliefs, desires, and other personal-level propositional attitudes. In 

contrast, sensorimotor psychology emphasizes subpersonal activity. The science extends 

standard Bayesian norms (e.g. Bayes’s Rule and expected cost minimization) from the personal 

level to the subpersonal level. It treats motor processes as unconscious inferences and decisions 

that largely conform (approximately) to appropriate Bayesian norms.
13

 

 Philosophers sometimes suggest that normative constraints undermine the scientific 

pretensions of intentional psychology. Science aims to describe how the world is, not how it 

should be. But then what business does science have with rational norms? Setting aside this 

worry, normative constraints on intentional description may still seem to conflict with proper 

scientific methodology. How can a true science base itself on dogmatic allegiance to the 

rationality of mental activity? Davidson, Dennett, Quine, and many others argue in this vein.
14

 

 Bayesian sensorimotor psychology casts doubt upon all such arguments. The field seems 

as scientific as one could desire. It is mathematically rigorous, empirically well-confirmed, and 

explanatorily powerful. Yet it employs the broadly Davidsonian methodology highlighted above: 

fit behavior as well as possible to normative models. This methodology, which assigns rational 

norms an essential constraining role, allows us to connect behavioral data with the explanatorily 

fruitful apparatus of forward models, Bayesian estimation, cost minimization, and so on. Rather 

than undermining scientific rigor, normative constraints promote scientific explanation of bodily 

                                                 
13

 See (Rescorla, 2013) for further discussion of how Bayesian cognitive science relates to Davidson’s philosophy, 

especially his emphasis upon rationality as a constitutive ideal. 
14

 Davidson, citing normative constraints on intentional ascription, argues that intentional generalizations are always 

ceteris paribus. On that basis, he draws an invidious distinction between psychology and physics. However, as 

Fodor (1987) notes, all special sciences require ceteris paribus generalizations. Reliance on such generalizations 

does not distinguish intentional psychology from biology, geology, or other special sciences. 
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motion. They guide us towards mathematical structures of Bayesian decision theory instantiated 

by the motor system. Normative constraints need not flout proper scientific methodology. 

 According to Dennett (1971, p. 99), ‘[i]ntentional psychology is vacuous as psychology 

because it presupposes and does not explain rationality or intelligence.’ As Fodor (1981, pp. 100-

123) observes, it is unclear why Dennett thinks that rationality presuppositions render 

intentionality psychology vacuous. Dennett’s worry seems to be that rationality presuppositions 

are just heuristic idealizations, so that a theory based upon them cannot be entirely factual. In any 

case, I disagree with Dennett’s assessment. Intentional psychology may look vacuous if one 

confines attention to folk psychological platitudes, but there is nothing vacuous about Bayesian 

sensorimotor psychology. Researchers develop the Bayesian framework by providing detailed 

models of specific motor tasks. Non-vacuity stems from mathematically precise generalizations, 

patterned after Bayesian norms. The generalizations yield substantive predictions, which we 

compare with behavioral data. When the data confirm the generalizations, we attain satisfying 

explanations of bodily motion. This methodology presupposes that motor processes largely 

conform (approximately) to Bayesian norms. 

The presupposition is not an unwarranted dogma or a heuristic idealization. It is a 

working hypothesis. Researchers elaborate the hypothesis into well-confirmed models of specific 

motor tasks. By analogy: Newtonian physicists take as a working hypothesis that physical 

systems conform to Newton’s laws, and they elaborate that hypothesis into well-confirmed 

models of specific systems (pendulums, orbiting planets, etc.). In each case, we adopt the 

working hypothesis because it has produced some striking explanatory successes. In each case, 

the working hypothesis enables fruitful theorizing. Thus, normative presuppositions of Bayesian 

sensorimotor modeling generate no evident pressure towards eliminativism or instrumentalism. 
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 Scientifically-minded philosophers often regard intentionality and normativity quite 

warily. Although relatively few authors overtly endorse eliminativism or instrumentalism, many 

authors downplay both intentional content and rational norms when limning the foundations of 

scientific psychology (e.g. Chalmers, 2011; Cummins, 1989; Egan, 2010). I have argued that 

intentionality and normativity figure irreplaceably within explanatorily powerful theories of 

motor control. The theories postulate representationally contentful mental states that causally 

interact in approximate accord with Bayesian norms. If these theories lie anywhere close to the 

truth, then intentional description guided by normative evaluation provides unsurpassed insight 

into the etiology of goal-directed bodily motion. We should embrace intentionality and 

normativity as indispensable contributors to any complete scientific psychology. 

 

Word count: 14,077 
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Figure 1. The open circle in the top panel is the target location. The black circle is the 

virtual fingertip, whose movement is controlled by the subject’s hand motion. The 

subject’s real hand is not visible. Due to sensory delay, visual feedback always reflects an 

earlier state of the finger. In a rotation perturbation (top panel), visual space is rotated 

around the target location, so that the virtual fingertip has a different location than the 

subject’s real hand but still moves towards the target location. Subjects do not 

consciously notice the perturbation, which occurs while an occluder obscures the virtual 

fingertip. Contrary to the homing model’s predictions, subjects systematically alter 

course downwards, thereby missing the target location. The lower panel illustrates how 

Bayesian modeling explains this phenomenon. On a Bayesian approach, the motor 

system estimates finger state (position and velocity). The estimator receives delayed 

visual feedback, which it uses to make a corrected estimate of delayed state. The 

estimator then uses the forward model and efference copy of motor commands issued 

during the delay period to make a feedforward prediction of current state. The resulting 

mistaken state estimate causes the motor system to “correct” finger trajectory 

downwards, away from the target location. (From Saunders and Knill, 2004; Figure 6. 

Reproduced with permission of the Society for Neuroscience.) 
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Figure 2. A template for Bayesian models of sensorimotor control. Some models vary 

the template somewhat. For example, the Saunders and Knill (2004) model handles 

sensory delay by transmitting the initial state estimate rather than the corrected state 

estimate to the controller. 
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