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Bayesian Perceptual Psychology 

Michael Rescorla 

Abstract 

Contemporary perceptual psychology uses Bayesian decision theory to develop Helmholtz’s 

view that perception involves ‘unconscious inference’. The science provides mathematically 

rigorous, empirically well-confirmed explanations for diverse perceptual constancies and 

illusions. The explanations assign a central role to mental representation. This article highlights 

the explanatory centrality of representation within current Bayesian perceptual models. The 

article also discusses how Bayesian perceptual psychology bears upon several prominent 

philosophical topics, including: eliminativism about representation (defended by Churchland, 

Field, Quine, and Stich); relationalism about perception (endorsed by Brewer, Campbell, Martin, 

and Travis); phenomenal content (postulated by Chalmers, Horgan and Tienson, and Thompson); 

and the computational theory of mind (espoused by Fodor and many other philosophers). 
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Bayesian decision theory is a mathematical framework that models reasoning and decision-

making under uncertainty. Around 1990, perceptual psychologists began constructing detailed 

Bayesian models of perception.
1
 This research program has proved enormously fruitful. As two 

leading perceptual psychologists put it, ‘Bayesian concepts are transforming perception research 

by providing a rigorous mathematical framework for representing the physical and statistical 
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properties of the environment, describing the tasks that perceptual systems are trying to perform, 

and deriving appropriate computational theories of how to perform those tasks’ (Geisler and 

Kersten, 2002, 508). To understand perception, one must acquire detailed knowledge of 

Bayesian perceptual psychology. Or so I hope to convince you. 

. 

 

Perception as unconscious inference 

Perception solves an underdetermination problem. The perceptual system estimates 

environmental conditions, such as the shapes, sizes, colours, and locations of distal objects. It 

does so based upon proximal stimulations of sensory organs. The proximal stimulations 

underdetermine their environmental causes. For instance, a convex object under normal lighting 

generates retinal stimulations ambiguous between at least two possibilities: that the object is 

convex and that light comes from overhead; or that the object is concave and that light comes 

from below. Similarly, light reflected from a surface generates retinal stimulations consistent 

with various colours (e.g. the surface may be red and bathed in daylight, or the surface may be 

white and bathed in red light). In general, then, retinal input underdetermines possible states of 

the distal environment. We cannot yet programme a computer that solves this 

underdetermination problem. The perceptual system solves it quickly, effortlessly, automatically, 

and reliably. How? 

Helmholtz (1867) proposed that the perceptual system executes an ‘unconscious 

inference’ from sensory stimulations to hypotheses about the environment. The inference reflects 

‘implicit assumptions’ concerning the environment or the interaction between environment and 

perceiver. For instance, the visual system deploys an ‘implicit assumption’ that light comes from 
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overhead. Helmholtz’s approach, now called constructivism, helps explain two notable 

phenomena: perceptual constancies and illusions. 

Perceptual constancies are capacities to represent properties or entities as the same 

despite large variation in proximal stimulation. To varying degrees, human vision displays 

constancies for numerous properties, including size, shape, location, colour, depth, and motion. 

How does the perceptual system achieve constancies? By using ‘implicit assumptions’ to 

discount variations in proximal stimulation. Colour constancy provides a good illustration. This 

is the capacity to perceive surface colour as constant despite large variation in viewing 

conditions, including background illumination. To estimate surface colour, the perceptual system 

first deploys various ‘implicit assumptions’ (such as that the light source is fairly uniform, or that 

certain surface colours are likelier than others) to estimate background illumination based upon 

overall retinal stimulation. The perceptual system then deploys this background illumination 

estimate so as to estimate a surface’s colour based upon retinal stimulation caused by that 

surface. As Helmholtz famously put it, the perceptual system ‘discounts the illuminant’. 

Perceptual constancies are reliable but fallible, as demonstrated by illusions. Consider 

again the assumption that light comes from overhead. The assumption is correct in normal cases, 

so it usually supports an inference to an accurate percept. When the assumption fails, the 

resulting percept is inaccurate. For instance, lighting a concave object from below generates an 

illusory percept as of a convex object. Constructivists explain the mistaken shape-estimate by 

isolating its source: the implicit assumption that light comes from overhead. Similarly, a red 

spotlight directed upon a single object violates the implicit assumption of a fairly uniform 

illuminant, thereby inducing an illusory colour percept. These examples illustrate 

constructivism’s template for explaining illusions: isolate an implicit assumption deployed 
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during perceptual inference; show how failure of the assumption can induce an inaccurate 

percept. 

Perceptual processes are subpersonal and inaccessible to the thinker. There is no good 

sense in which the thinker herself, as opposed to her perceptual system, executes perceptual 

inferences. For instance, a normal perceiver simply sees a surface as having a certain colour. 

Even if she notices the light spectrum reaching her eye, as a painter might, she cannot access the 

perceptual system’s inference from retinal stimulations to surface colour.
2
 

The twentieth century produced various rivals to constructivism, including Gibson’s 

direct perception framework. Gibson (1979) denied that perception involves complex 

psychological activity, inferential or otherwise. He held that the perceptual system directly ‘picks 

up’ certain distal properties by ‘resonating’ to them. Gibson’s work yielded many invaluable 

insights, such as the importance of optic flow, which can be incorporated into constructivism. 

Viewed as an alternative to constructivism, Gibson’s direct perception framework has difficulty 

explaining the vast bulk of constancies and illusions (Fodor and Pylyshyn, 1981). That is why 

the direct perception framework remains marginal within perceptual psychology. 

A satisfactory development of constructivism must answer three questions: 

a. In what sense does the perceptual system execute ‘inferences’? 

b. In what sense do the inferences ‘reflect’ various ‘implicit assumptions’? 

c. In what sense does perceptual inference yield the ‘best’ hypothesis? 

Different versions of constructivism answer these questions differently. For instance, some 

constructivists regard ‘implicit assumptions’ as stored premises fit to participate in unconscious 

deductive, inductive, or abductive inferences (Rock, 1983, 272–282). Bayesian perceptual 

psychology develops constructivism in a different direction, as I will now explain. 
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Perception as unconscious statistical inference 

The perceptual system operates under conditions of uncertainty, stemming from at least three 

sources: 

a. Ambiguity of sensory input, as described above. 

b. Noisiness of perceptual organs and neural mechanisms: that is, their vulnerability to 

corruption by random errors. 

c. Potential conflict between sensory modalities (e.g. visual versus auditory cues to an 

object’s location) or between cues within a modality (e.g. binocular disparity cues 

to depth versus monocular linear perspective cues to depth). 

It therefore seems natural to formalize constructivism through Bayesian decision theory, which 

models decision-making under uncertainty. 

The core notion underlying Bayesian decision theory is subjective probability. Subjective 

probabilities reflect psychological facets of the individual or her subsystems, rather than 

‘objective’ features of reality. To formalize probabilities, we introduce a hypothesis space H 

containing various hypotheses h. Each hypothesis h reflects a possible state of the world (e.g. a 

possible shape of some distal object; or a possible colour of some distal surface; or a possible 

assignment of distal objects to spatial locations). A probability function p maps each hypothesis 

h to a real number p(h), reflecting the agent’s subjective probabilities.
3
 

Bayesian decision theory dictates how to update subjective probabilities based on new 

evidence. Bayes’s Theorem states that: 

)()|()|( hphepehp   
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meaning that the left-hand side is proportional to the right-hand side. p(h | e) and p(e | h) are 

conditional probabilities. For instance, p(e | h) is the probability of e, conditional on h. Bayes’s 

Rule states that, when one receives evidence e, one should update p(h) by replacing it with p(h | 

e). To execute Bayes’s Rule, one multiplies the prior probability p(h) by the prior likelihood p(e 

| h). One then normalizes so that all probabilities sum to 1. Finally, one adopts the resulting 

posterior probability p(h | e) as a revised probability assignment for h. Thus, the new probability 

of h is proportional to its original probability, multiplied by the likelihood of evidence e given h.
4
 

Bayesian perceptual psychologists use this framework to model perceptual inference 

(Knill and Richards, 1996). On a Bayesian approach, the perceptual system entertains hypotheses 

drawn from a hypothesis space H. The perceptual system assigns prior probabilities to 

hypotheses h and prior likelihoods to (e, h) pairs, where each e corresponds to some possible 

sensory input. After receiving input e, the perceptual system reallocates probabilities across the 

hypothesis space, in rough accord with Bayes’s Rule. 

To illustrate, consider the extraction of shape from shading (Mamassian, Landy, and 

Maloney, 2002). Let s reflect possible shapes, θ reflect possible lighting directions, and e reflect 

possible patterns of retinal illumination. The visual system encodes: 

A prior probability p(s), which assigns higher probability to certain distal shapes 

than others (e.g. it may assign higher probability to convex shapes). 

A prior probability p(θ), which assigns higher probability to an overhead lighting 

direction than to alternative lighting directions. 

A prior likelihood p(e | s, θ), which assigns a higher probability to an (e, s, θ) 

triplet if distal shape s and lighting direction θ are likely to cause retinal 

illumination e. 
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Upon receiving retinal illumination e, the perceptual system redistributes probabilities over 

shape-estimates, yielding a posterior p(s | e). Depending on the case, the posterior might assign a 

much higher probability to convexity than concavity. For details, see Stone (2011). 

Perception normally yields a determinate percept. For instance, one sees an object as 

having a determinate shape, not a spectrum of more or less probable shapes. Accordingly, 

Bayesian models explain how the perceptual system selects a single hypothesis h based on the 

posterior p(h | e). Typical models invoke expected utility maximization. The ‘action’ is selection 

of h. The utility function, which is task-dependent, reflects the penalty for an incorrect answer. If 

the utility function has a suitable shape, then expected utility maximization reduces to a much 

simpler decision rule, such as selecting the mean or the mode of the posterior probability. 

As another example, Bayesian models of surface colour perception proceed roughly as 

follows. A surface has reflectance R(λ), specifying the fraction of incident light that the surface 

reflects at each wavelength λ.
5
 The illuminant has spectral power distribution I(λ): the light 

power at each wavelength. The retina receives light spectrum C(λ) = I(λ) R(λ) from the surface. 

The visual system seeks to estimate surface reflectance R(λ). This estimation problem is 

underdetermined, since C(λ) is consistent with numerous I(λ)-R(λ) pairs. Typical Bayesian 

models posit that two surfaces have the same colour appearance for a perceiver when her 

perceptual system estimates the same reflectance for each surface. To estimate R(λ), the visual 

system estimates I(λ). It does so through a Bayesian inference, based upon overall retinal 

stimulation, that deploys a prior probability over possible illuminants and possible surface 

reflectances. To a first approximation, the illuminant prior assigns higher probability to 

illuminants that resemble natural daylight, while the surface prior assigns higher probability to 

surface reflectances that occur more commonly in the natural environment. This framework can 
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explain both the success and the failure of human colour constancy under various conditions. For 

details, see Brainard (2009).
6
 

We can schematize a typical Bayesian model through the template depicted in Figure 1. 

[COMP: INSERT FIGURE 1 ABOUT HERE] 

Note that this template does not require perception to represent Bayesian norms. There is 

no evidence that the perceptual system explicitly represents Bayes’s Rule or expected utility 

maximization. The perceptual system simply proceeds in rough accord with Bayesian norms. 

A typical Bayesian model dictates a unique outcome given four factors: prior 

probabilities, prior likelihoods, sensory input, and the utility function.
7
 In that sense, the model is 

deterministic. Of course, the model’s generalizations are ceteris paribus. Perceptual malfunction, 

external interference, or corruption by internal noise can induce exceptions. 

Most Bayesian models conform roughly to the foregoing template. But some models vary 

the template. For instance, some models augment the template by incorporating motor efference 

copy.
8
 Other models replace expected utility maximization with probability matching, a non-

deterministic process whereby the probability that the perceptual system selects some hypothesis 

matches the posterior probability assigned to that hypothesis (Mamassian, Landy, and Maloney, 

2002). One phenomenon sometimes analyzed through non-deterministic Bayesian modelling is 

multistable perception (such as the Necker cube). During multistable perception, experience 

fluctuates between distinct percepts, rather than yielding a unique percept.  

One can construe Bayesian models of perception in two different ways (Kersten and 

Mamassian, 2009). On the first construal, a Bayesian model describes how an ‘ideal observer’ 

would estimate environmental conditions based upon sensory input. We construct the model only 

so as compare human performance with an ideal benchmark. On the second construal, a 

Bayesian model approximately describes actual mental processes. The model seeks to describe, 
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perhaps in an idealized way, how the perceptual system actually transits from sensory input to 

perceptual estimates. Both construals figure in the scientific literature. I emphasize the second 

construal. I am discussing Bayesian models as empirical theories of actual human perception. 

Many Bayesian models are fairly unrealistic. For example, the hypothesis space is often 

uncountable. In general, Bayesian inference over an uncountable hypothesis space is 

computationally intractable. So I think that we should regard most Bayesian perceptual models 

as idealizations, akin to models from physics that postulate frictionless surfaces or infinite wires. 

Of course, we eventually want less idealized descriptions. However, I see no principled problem 

here. Artificial Intelligence (AI) offers numerous tools for constructing computationally tractable 

approximations to idealized Bayesian computation. No doubt we will eventually supplement or 

replace current perceptual models with computationally tractable approximations. 

Bayesian perceptual psychology provides detailed answers to the three questions (a), (b), 

and (c) posed at the end of the previous section: 

a. Transitions among perceptual states approximately conform to norms of Bayesian 

inference. In that sense, the transitions are statistical inferences. 

b. Bayesian models replace talk about ‘implicit assumptions’ with talk about prior 

probabilities and likelihoods. The models thereby depart substantially from many 

earlier versions of constructivism. On Rock’s approach, for example, an ‘implicit 

assumption’ that light comes from overhead corresponds to a single stored 

premise whose content is that light comes from overhead. Bayesians instead posit 

a prior assignment of probabilities to possible lighting directions. This prior 

figures not as a premise but rather as input to Bayesian reallocation of subjective 

probabilities over shape-estimates. 
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c. The perceptual system produces an estimate that is ‘best’ or ‘optimal’ insofar as it 

conforms to rational norms of Bayesian decision theory. In this manner, Bayesian 

models depict numerous perceptual illusions as natural by-products of a near-

optimal process that infers environmental conditions from ambiguous sensory 

stimulations. 

Hence, the Bayesian framework converts talk about ‘implicit assumptions’ and ‘unconscious 

inferences’ into mathematically rigorous, quantitatively precise psychological models. 

Where do the prior probabilities and prior likelihoods come from? The human visual 

system evolved over millennia in a fairly stable environment. Accordingly, one might expect 

certain lawlike or statistical environmental regularities to be ‘encoded in the genes’. 

Nevertheless, Bayesian perceptual priors do not simply reflect innate programming. For instance, 

even the ‘light-from-overhead’ prior reflects a complex interplay between nature and nurture. It 

gathers considerable strength during early childhood (Stone, 2011), and it changes rapidly upon 

adult exposure to deviant environments (Adams, Graf, and Ernst, 2004). At present, we do not 

know how genetic endowment and individual experience jointly determine Bayesian priors. 

Current research mainly tries to identify the priors, not to explain the etiology of the priors.
9
 

Ultimately, we want detailed theories explaining how Bayesian priors originate and 

develop. Even lacking such theories, we can cite the priors to explain constancies and illusions. 

In this connection, I stress that the priors postulated by Bayesian perceptual psychology are not 

ad hoc. Admittedly, a precise quantitative match usually requires some ‘curve fitting’. 

Qualitatively, though, the priors typically reflect antecedently motivated claims about lawlike or 

statistical properties of our environment. It is plausible that the perceptual system acquires these 

priors through some combination of nature and nurture, even if we do not yet know how.
10
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How can we legitimately postulate Bayesian priors, lacking a developed theory of their 

etiology? Because Bayesian priors generate the unifying predictive power characteristic of good 

explanation. To illustrate, consider motion perception.
11

 The visual system can directly measure 

local retinal image velocities, which underdetermine the distal motions that cause them. The 

visual system must estimate distal motion based upon local retinal image velocities. It does so 

fairly well but not perfectly, as illustrated by the fact that low-contrast stimuli appear to move 

more slowly than high-contrast stimuli. (This may explain why drivers accelerate in the fog—

they underestimate relative velocities.) Weiss, Simoncelli, and Adelson (2002) offer a Bayesian 

motion perception model with two features: 

The prior probability favours slow distal motions. 

The visual system treats low-contrast retinal images as less reliable.
12

 

This model explains why vision underestimates velocity under low-contrast conditions: namely, 

because the slow-motion prior exerts more influence over the velocity-estimate. The model also 

explains other motion illusions, including the following: a fat rhombus moving horizontally 

appears to move horizontally, but a thin rhombus seems to move diagonally at low contrasts and 

horizontally at high contrasts. (Readers can experience this effect at 

[www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html].) Thus, a single Bayesian model explains 

diverse illusions that otherwise resist unified treatment. Subsequent models have elaborated the 

Bayesian approach to motion perception in increasingly sophisticated ways (Ernst, 2010). 

Bayesian perceptual psychology offers illuminating, rigorous explanations for numerous 

constancies and illusions. It is our best current science of perception. We should carefully 

consider how it bears upon contemporary philosophy of mind—a task to which I now turn. 
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Estimation and representation 

A natural view holds that perceptual states are evaluable as accurate or inaccurate. For instance, 

suppose I perceive a concave object that appears convex due to misleading lighting. It seems 

natural to say that my percept is inaccurate. To say this, we must ascribe truth, accuracy, or 

veridicality conditions to the percept. Some philosophers distinguish among ‘truth’, ‘accuracy’, 

and ‘veridicality’ (Burge, 2010), but I remain neutral on this issue. Call the view that perceptual 

states have veridicality-conditions representationalism. Burge (2005, 2010, 2011) argues that 

current perceptual psychology supports representationalism. I will now defend the same 

conclusion by examining Bayesian models of perception.
13

 

On the Bayesian approach, perceptual inference reallocates probabilities over a 

hypothesis space and then selects a favoured hypothesis. This favoured hypothesis is 

incorporated into the final percept, whose accuracy depends upon whether the hypothesis is 

accurate. To illustrate, consider Bayesian models of shape perception. The perceptual system 

assigns prior probabilities to estimates of specific distal shapes. After receiving sensory input, 

perceptual inference revises the probability assignment and selects a favoured estimate of a 

specific distal shape. The resulting percept incorporates this favoured shape-estimate. The 

percept may also incorporate various size-estimates, motion-estimates, and so on. Accuracy of 

the percept depends upon accuracy of the individual estimates. By describing perceptual 

inference in this way, we type-identify perceptual states representationally. We individuate 

perceptual states partly through environmental conditions that must obtain for the states to be 

accurate. 

What exactly are the accuracy-conditions of percepts? According to Davies (1992), a 

percept involves something like existential quantification. The percept is accurate when there 
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exist objects with properties represented by the percept. An opposing view, espoused by Burge 

(2005), holds that perceptual accuracy-conditions are object-dependent. A percept represents 

environmental particulars, such as physical bodies or events. The percept attributes properties to 

those particulars. It is accurate only if those particulars have the represented properties. I remain 

neutral between these two views. I emphasize a shared presupposition underlying both views: 

that perceptual states have accuracy-conditions. This presupposition is integral to perceptual 

psychology. The science seeks to explain how the perceptual system generates a percept that 

estimates specific environmental conditions. Estimates can be either accurate or inaccurate. 

Following standard philosophical usage, I say that a mental state has representational 

content when it has a veridicality-condition. On this usage, perceptual states have 

representational content. I do not assume a specific theory of representational content. One might 

gloss perceptual contents as sets of possible worlds, or Russellian propositions, or Fregean 

senses. There are many other options.
14

 The key point for us is that the science routinely 

individuates perceptual states through their representational import. 

Bayesian models individuate both explananda and explanantia in representational terms. 

The science explains perceptual states under representational descriptions, and it does so by 

citing other perceptual states under representational descriptions. For instance, Bayesian models 

of shape from shading assume prior probabilities over hypotheses about specific distal shapes 

and about specific lighting directions. The models articulate generalizations describing how 

retinal input, combined with these priors, causes a revised probability assignment to hypotheses 

about specific distal shapes, subsequently inducing a unique estimate of a specific distal shape. 

The generalizations type-identify perceptual states as estimates of specific distal shapes. 

Similarly, Bayesian models of surface colour perception type-identify perceptual states as 
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estimates of specific surface reflectances. Thus, the science assigns representation a central role 

within its explanatory generalizations. The generalizations describe how mental states that bear 

certain representational relations to the environment combine with sensory input to cause 

mental states that bear certain representational relations to the environment. 

In what follows, I develop my analysis by examining various philosophical theories that 

either reject representationalism or else downplay the importance of representational content. 

 

The relational view of perception 

Brewer (2007), Campbell (2010), Martin (2004), and Travis (2004) espouse a relational view of 

perception. Relationalists eschew all talk about perceptual representation. They treat perceptual 

states as relations not to representational contents but rather to objects or properties in the 

perceived environment. For instance, Campbell (2010, 202) holds that ‘the content of visual 

experience is constituted by the objects and properties in the scene perceived’, rather than by 

anything resembling an accuracy-condition. He cautions that we should not ‘think of experience 

itself as already a representational state’ (ibid.). The relational approach is sometimes allied with 

Gibsonian direct perception, sometimes not. 

To illustrate, consider two counterfactual situations A and B in which I perceive the same 

object O, yielding qualitatively indistinguishable percepts PA and PB: 

In situation A, O is convex and looks convex. 

In situation B, O is concave but looks convex through misleading lighting. 

Representational taxonomization type-identifies PA and PB by correlating them with the same 

accuracy-condition. In particular, both percepts estimate the same distal shape: convexity. In 

situation A, the estimate is correct. In situation B, the estimate is incorrect. By contrast, 
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Campbell’s relational taxonomization treats PA and PB as type-distinct. Campbell type-identifies 

the first percept through its relation to a distal property (convexity) to which the second percept 

is not appropriately related. 

Bayesian perceptual psychology supports representationalism over relationalism. 

A core postulate underlying the science is that perception produces an estimate of 

environmental conditions, where the estimate may be either accurate or inaccurate. Consider 

Figure 1. If we neglect noise, malfunction, and external interference, then a unique percept-type 

is determined by four factors: the prior probability, the prior likelihood, proximal sensory input, 

and the utility function. We may stipulate that all four factors are the same in situations A and B. 

It follows that percepts PA and PB are type-identical from the perspective of the Bayesian model. 

In both cases, the final percept incorporates a convexity-estimate. The perceptual system 

produces a convexity-estimate whether or not the perceived object is convex. (Cf. Burge, 2005, 

22–25; 2010, 362–364.) An appropriately modified diagnosis applies to non-deterministic 

Bayesian models, such as models that replace expected utility maximization with probability 

matching. For such models, the probability that situation A yields a convexity-estimate equals the 

probability that situation B yields a convexity-estimate. Thus, explanatory generalizations of 

Bayesian perceptual psychology enshrine a representational, non-relational taxonomic scheme. 

The generalizations type-identify percepts by specifying environmental conditions that must 

obtain for a given percept to be accurate. 

Campbell (2010) suggests that we can interpret perceptual science in relational terms. 

This suggestion seems unpromising, because the Bayesian explanation of illusion relies 

essentially upon non-relational taxonomization. The central idea is that the perceptual system 

estimates some environmental state, which may or may not obtain. Bayesian modelling seeks to 
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explain the environmental state estimate, regardless of whether the estimate is veridical. Contrary 

to Campbell’s relationalist strictures, the science routinely type-identifies veridical and non-

veridical percepts. Of course, there is a difference between the veridical and the non-veridical 

percept. Perceptual psychologists acknowledge this difference. Yet they also emphasize 

fundamental representational commonalities between the two percepts. Those commonalities 

play a key individuative role within Bayesian explanatory generalizations. So a relational, non-

representational taxonomic scheme flouts explanatory practice within perceptual psychology. 

Brewer (2007, 173) seeks to accommodate illusions inside a relational framework. He 

concedes that there can be a ‘visually relevant similarity’ between a veridical and a non-veridical 

percept. He compares: (i) a red surface in daylight; and (ii) a white surface surreptitiously bathed 

in red light. He acknowledges that the surface in scenario (ii) looks red. He says that ‘this 

consists in the fact that [the surface] has visually relevant similarities with paradigm red objects: 

the light reflected from it is like that reflected from such paradigms in normal viewing 

conditions’ (ibid.). 

Naturally, I agree that (i) and (ii) emit similar light spectra. However, merely noting this 

commonality does not capture the fact that both surfaces look red. A surface that emits the same 

light spectrum under different viewing conditions may not look red. A surface that emits a 

radically different light spectrum under different viewing conditions can still look red. Thus, we 

must reject Brewer’s proposed analysis of looks red. In contrast, representationalists can say that 

a surface looks red when one’s percept represents the surface as red. 

Brewer’s account omits crucial scientifically relevant commonalities between the two 

percepts. A key scientifically relevant commonality is that both percepts result from perceptual 

estimation of a single surface reflectance R(λ). The estimate is correct in (i), incorrect in (ii). We 
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do not capture this key commonality between the percepts simply by noting that (i) and (ii) emit 

similar light. The perceptual system can estimate reflectance R(λ) despite large variation in the 

light spectrum C(λ) emitted by a surface. Moreover, depending on the perceptual system’s 

estimate of illumination I(λ), it may not estimate R(λ) even when the surface emits the same light 

spectrum C(λ). Capturing the scientifically relevant commonalities between (i) and (ii) requires 

us to cite perceptual estimation (and hence perceptual representation) of surface reflectance. Yet 

relationalists eschew all talk about perceptual representation. 

There are delicate issues here surrounding the relation between colours and surface 

reflectances. According to current science, a percept that represents a surface as red is caused by 

perceptual activity that represents reflectance. But does the final percept itself represent 

reflectance? There are at least three salient options: 

a. The percept represents colour but not reflectance. 

b. The percept represents reflectance and separately represents colour. 

c. The percept represents reflectance and thereby represents colour. 

The choice between (a), (b), and (c) depends upon other matters, including the metaphysics of 

colour (cf. note 6). We need not choose among (a)–(c) here. The crucial point is that 

relationalists must reject all three options. Relationalists do not countenance perceptual 

representation of colour, reflectance, or any other distal property. 

In summary, relationalism cannot accommodate a core postulate underlying 

contemporary perceptual psychology: that perception produces an estimate of environmental 

conditions, where the estimate may be either accurate or inaccurate. 

 

Eliminativism, instrumentalism, and realism 
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Beginning with Quine (1960), various philosophers have argued that intentionality (or 

representationality) deserves no place in serious scientific discourse. They have argued that we 

should replace intentional psychology with some alternative framework, such as Skinnerian 

behaviourism (Quine, 1960) or neuroscience (Churchland, 1981). This eliminativist position 

concedes that representational locutions are instrumentally useful in everyday life. It denies that 

they offer literally true descriptions. Dennett (1987) advocates a broadly instrumentalist position 

intermediate between intentional realism and eliminativism. He acknowledges that the 

‘intentional stance’ is instrumentally useful for scientific psychology, but he questions whether 

mental states really have representational content. 

I assume a broadly scientific realist perspective: explanatory success is a prima facie 

guide to truth. From a scientific realist perspective, the explanatory success of Bayesian 

perceptual psychology provides prima facie reason to attribute representational content to 

perceptual states. The science is empirically successful and mathematically rigorous. It routinely 

individuates perceptual states through representational relations to the environment. We have no 

clue how to preserve the resulting explanatory benefits without employing representational 

locutions. Thus, current perceptual psychology strongly supports intentional realism over 

eliminativism and instrumentalism. We should no more adopt an eliminativist or instrumentalist 

posture towards intentionality than we should adopt an eliminativist or instrumentalist posture 

towards electrons. The famous Quinean criticisms of intentional psychology are notably less 

rigorous and compelling than the science they purport to undermine. Philosophers who reject 

intentionality as spooky, obscure, or otherwise unscientific are in fact opposing our current best 

science of perception. 
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One might greet my argument by proposing an instrumentalist interpretation of 

perceptual psychology. In this vein, McDowell insists that appeals to representational content 

within perceptual psychology are ‘metaphorical’ (2010, 250). On his analysis, perceptual 

psychologists do not literally claim that perception represents. They claim only that perception 

proceeds as if it represents. Representational talk is mere heuristic. 

McDowell’s proposal misinterprets perceptual psychology. (Cf. Burge, 2011, 67–68.) A 

fundamental idea underlying how the science treats illusion is that a perceptual estimate can be 

inaccurate. An estimate is accurate only if the environmental conditions that it estimates actually 

obtain. Thus, intentional attribution is embedded within the foundations of the science. 

Representational locutions do not play a metaphorical role within Bayesian perceptual 

psychology. They are not heuristic chitchat. They reflect the central, explicit goal of the science: 

to describe how the perceptual system estimates environmental conditions. Instrumentalism is no 

more justified toward Bayesian perceptual psychology than toward any other science. 

Even readers who reject full-blown instrumentalism may contemplate a moderate 

instrumentalist agenda: construe representational description literally when applied to 

explananda but metaphorically when applied to explanantia. Consider again Figure 1. Moderate 

instrumentalism adopts a realist stance towards sensory input e and the output hypothesis h but 

an instrumentalist stance towards the priors, posterior, and utility function. On this approach, the 

priors, posterior, and utility function are simply useful tools for predicting how certain sensory 

inputs cause certain perceptual states. The perceptual system transits from retinal input to 

perceptual estimates as if it encodes Bayesian priors. Moderate instrumentalism concedes that 

the perceptual system implements a mapping from sensory inputs to perceptual estimates, but it 

remains neutral regarding how the perceptual system implements that mapping. For defence of 
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moderate instrumentalism regarding Bayesian perceptual psychology, see Colombo and Seriès 

(2012). 

Moderate instrumentalism does not flout the science as blatantly as full-blown 

instrumentalism. Nevertheless, it strikes me as unsatisfactory. A key point here is that experience 

can alter the mapping from proximal input to perceptual estimates. For example, Adams, Graf, 

and Ernst (2004) manipulated the light-from-overhead prior by exposing subjects to deviant 

haptic feedback regarding shape. The new prior caused altered shape-estimates. Moreover, the 

new prior transferred to a different task that required subjects to estimate which side of an 

oriented bar was lighter than the other. Realists can offer a principle, unified explanation for the 

altered shape-estimates and lightness-estimates: namely, that there is a change in the prior over 

lighting directions. Moderate instrumentalists seem unable to offer a comparably satisfying 

explanation. Moderate instrumentalists must simply say that the mapping from retinal input to 

shape-estimates changes and that the mapping from retinal input to lightness-estimates changes, 

without offering any underlying explanation for why the mappings change as they do. In this 

case, at least, realism seems more explanatorily fruitful than moderate instrumentalism.
15

 

We must exercise care in stating the realist position. As already noted, current Bayesian 

models are highly idealized. When the hypothesis space is large enough, the perceptual system 

may only approximately encode the priors and the posterior. What does it mean to 

‘approximately encode’ a probability assignment? What is the difference between saying that the 

mind approximately implements Bayesian inference and saying that the mind merely behaves as 

if it implements Bayesian inference?
16

 These questions—which lie at the intersection of 

philosophy, AI, and empirical psychology—merit extensive further study. 
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Phenomenal content 

Relatively few philosophers reject representationalism. However, many popular philosophical 

theories downplay perceptual representation of the distal environment. Most of these theories are 

consistent with but unsupported by contemporary science. I will now illustrate by considering 

phenomenal content, as postulated by Chalmers (2006), Horgan and Tienson (2002), Thompson 

(2010), and various other philosophers. 

A distinguishing feature of phenomenal content is that it supervenes upon phenomenal 

aspects of experience. For example, suppose that a normal perceiver Nonvert observes a red 

object and experiences a perceptual state with a certain phenomenological character. Suppose 

that a spectrally inverted perceiver Invert observes a green object and experiences a 

phenomenally indistinguishable perceptual state. Chalmers and Thompson hold that, in both 

cases, the resulting percept is veridical. Nonvert’s percept correctly attributes redness, while 

Invert’s percept correctly attributes greenness. Chalmers and Thompson also hold that the two 

percepts share a uniform phenomenal content. The content represents red as used by Nonvert and 

green as used by Invert. Similarly, Chalmers and Thompson hold that a single phenomenal 

content might represent circularity as used by one perceiver and non-circular ellipticality as used 

by a phenomenological twin suitably embedded in a sufficiently different environment. 

There may be many good reasons for positing phenomenal contents. However, Bayesian 

perceptual psychology makes no use of such contents. The science delineates explanatory 

generalizations dictating how perceptual states that represent certain environmental properties 

induce other perceptual states that represent certain environmental properties. Bayesian models 

describe how the perceiver, exercising standing capacities to represent specific environmental 

properties, executes perceptual inferences yielding estimates of specific environmental 
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properties. To illustrate, let us follow Thompson (2010) by considering phenomenological twins 

embedded in such different environments that one twin’s percept P represents circularity while 

the other twin’s qualitatively indistinguishable percept P* represents non-circular ellipticality. 

There may be many worthy explanatory projects that type-identify P and P*. But Bayesian 

perceptual psychology does not type-identify the two percepts. The science studies perceptual 

estimation of environmental conditions. P and P* estimate radically different environmental 

conditions: P estimates circularity, while P* estimates non-circular ellipticality. The science 

features no explanatory generalizations that assimilate these two percepts, because the relevant 

generalizations are tailored to specific shapes. Phenomenological overlap per se is irrelevant to 

the current science. What matters is representational overlap. 

Similarly, suppose that Nonvert observes a red object, while spectrally inverted Invert 

observes a green object. Chalmers and Thompson associate the resulting qualitatively 

indistinguishable percepts with a shared phenomenal content. In contrast, Bayesian perceptual 

psychology does not type-identify the percepts. Bayesian models treat surface colour perception 

as involving estimation of reflectance. Explanatory generalizations cite representational relations 

to specific reflectances. Current Bayesian models of Nonvert describe how retinal illumination 

C(λ) induces an estimate of illuminant I(λ), subsequently inducing an estimate of reflectance 

R(λ). Current Bayesian models of Invert describe how different retinal illumination C*(λ) 

induces an estimate of a different reflectance R*(λ). Reflectance-estimate R(λ) as used by 

Nonvert and reflectance-estimate R*(λ) as used by Invert may be associated with the same 

phenomenology. But this phenomenological overlap is irrelevant to the science. No explanatory 

generalizations type-identify the relevant perceptual processes. At no level of description does 

current science assimilate Nonvert’s colour perception and Invert’s colour perception.
17
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Current perceptual psychology individuates perceptual states by citing representational 

relations to specific environmental properties.
18

 Taxonomization through phenomenal content 

ignores these representational relations. I conclude that phenomenal content is an armchair 

construct with no grounding inside contemporary science. Readers must judge for themselves 

whether philosophical energy is better expended studying this armchair construct or analyzing 

our current best science of perception. 

 

The computational theory of mind 

I now want to consider the relation between Bayesian perceptual psychology and the popular 

philosophical view that mental activity involves computation over formal syntactic types in a 

language of thought (Field, 2001), (Fodor, 2008), (Stich, 1983). The paradigm here is a Turing 

machine manipulating formal syntactic items, such as stroke marks, inscribed in memory 

locations. A formal syntactic type may have a meaning. But it could have had a different 

meaning, just as the English word ‘cat’ could have denoted dogs. Depending on the perceiver’s 

causal or evolutionary history, a formal syntactic type that represents some distal property could 

just as easily have represented some other distal property. Formal syntactic manipulation is not 

sensitive to such changes in meaning. Transition rules governing mental computation allude 

solely to ‘local’ syntactic properties of mental states, without citing representational relations to 

the external environment. 

Field (2001) and Stich (1983) combine the formal syntactic picture with eliminativism. 

They urge scientific psychology to eschew any talk about representational content. Fodor (2008) 

combines the formal syntactic picture with intentional realism. In particular, he urges scientific 

psychology to delineate causal laws that cite representational content. He holds that intentional 
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laws are implemented by syntactic mechanisms. So Fodor assigns a central role to 

representational content in addition to formal syntactic manipulation. 

Egan (1992) argues that perceptual psychology postulates formal syntactic manipulation. 

She defends her conclusion by analyzing the writings of Marr (1982). I set aside whether Egan 

correctly describes Marr’s work, which was historically important but is now outdated.
19

 I claim 

that the formal syntactic picture finds no support within current perceptual psychology, as 

epitomized by Bayesian modelling. Current perceptual psychology individuates mental 

computations in representational rather than formal syntactic terms (Burge, 2010, 95–101). For 

instance, Bayesian models of shape perception describe a computation whereby the visual 

system reallocates probabilities over hypotheses about distal shape. Each hypothesis is 

individuated partly by its representational relation to a specific distal shape. Transition rules 

governing the computation derive from Bayesian norms. Of course, the transition rules 

characterize initial sensory inputs (such as retinal inputs) physiologically rather than 

representationally. Crucially, though, the rules use representational vocabulary to characterize 

the perceptual states caused by initial sensory inputs. The rules do not cite formal syntax when 

characterizing sensory inputs (which are described physiologically) or ensuing perceptual states 

(which are described representationally). Bayesian models do not cite formal syntactic items 

divested of representational import.
20

 

A complete science of perception must illuminate the neural mechanisms that implement 

Bayesian computation.
21

 Thus, a complete theory should include non-representational neural 

descriptions. But should it include non-representational syntactic descriptions? Syntax is 

supposed to be multiply realizable, in the sense that systems with wildly different intrinsic 

physical constitutions can satisfy the same syntactic description (Fodor, 2008, 91). Systems may 
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be homogeneous under syntactic description but heterogeneous under neural description. Should 

a good theory posit formal syntactic types that are multiply realizable and that underdetermine 

representational content? There may be many good reasons for positing formal syntactic types 

with these features. Yet no such types figure in current perceptual psychology. The science does 

not employ computational descriptions that prescind from both representational and neural 

details.  Eliminativist versions of the formal syntactic picture conflict with current perceptual 

psychology. Intentional realist versions of the formal syntactic picture are consistent with but 

unsupported by current perceptual psychology. 

A common rejoinder is that we can reinterpret intentional explanations in formal 

syntactic terms, without explanatory loss. In this vein, Field (2001, 72–82, 153–156) proposes a 

version of Bayesian modelling on which subjective probabilities attach to formal syntactic items 

individuated without regard to meaning or content. He claims that this framework can preserve 

any alleged explanatory benefits offered by intentional explanation. 

Field’s proposal is revisionary regarding contemporary psychology. Current science 

individuates perceptual states representationally. Field proposes an alternative scientific 

framework that individuates perceptual states in formal syntactic terms. Whether an alternative 

hypothesis subserves equally good explanations is not a question to be settled a priori. 

Proponents must first develop the alternative hypothesis in rigorous mathematical and empirical 

detail. Field must reconstruct current science, expunging any apparent reference to 

representation. Yet he does not indicate how to execute the needed reconstruction for a single 

real case study. He does not demonstrate through a single real example that his approach can 

replicate the explanatory benefits offered by intentional explanation within Bayesian psychology. 

Thus, Field’s proposal amounts to an unsupported conjecture that we can gut perceptual 
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psychology of a central theoretical construct without explanatory loss. We have no reason to 

believe this conjecture, absent detailed confirmation.
22

 Generally speaking, we cannot radically 

alter how a science individuates its subject matter while preserving the science’s explanatory 

shape. We should not expect that we can transfigure the taxonomic scheme employed by current 

Bayesian models while retaining the explanatory benefits provided by those models. 

In her later writings, Egan (2010) avoids talk about formal syntactic manipulation. 

Instead, she claims that computational models of perception offer “abstract mathematical 

descriptions” that ignore representational properties of perceptual states. This new account shares 

a crucial feature with the formal syntactic picture. Both accounts prioritize non-intentional, non-

neural computational descriptions. As I have argued, no such descriptions figure in Bayesian 

perceptual psychology. 

Philosophers motivate non-intentional computational modelling through various 

arguments. One popular argument emphasizes explanatory generality (Egan, 2010), (Stich, 1983, 

160–170). Following Egan (2010), consider a creature Visua whose perceptual states represent 

some environmental property (such as depth). Imagine a neurophysiological duplicate Twin 

Visua embedded in such a radically different environment that its corresponding perceptual 

states do not represent the same property.
23

 (AQ) A non-intentional computational description 

can type-identify the doppelgangers. We cannot type-identify the doppelgangers if we classify 

perceptual states through representational relations to the environment. Shouldn’t we prefer the 

more general theory? 

Assessing the merits of this argument is a large task that lies beyond our main focus. The 

key point for present purposes is that Bayesian perceptual psychology does not type-identify 

Egan’s putative neurophysiological twins. The science explains how perceptual systems of 
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terrestrial animals transit from sensory input to hypotheses that represent specific environmental 

properties. It studies terrestrial animals endowed with standing capacities to represent specific 

environmental properties. Its scope is not intergalactic. It does not seek to accommodate 

chimerical creatures imagined by philosophers. Whatever the putative explanatory benefits of 

non-intentional computational modelling, our actual best science of perception individuates 

perceptual states partly through representational relations to specific environmental properties. 

 

An abstract mathematical description? 

To bolster my assessment, I will now examine more carefully the role that probability theory 

plays within Bayesian modelling. Interested readers can consult any standard probability-theory 

textbook for the technical background to my discussion. 

Probability theory, as axiomatized by Kolmogorov, posits a sample space Ω whose 

elements are possible ‘outcomes’. Kolmogorov’s axioms place no restrictions on elements of Ω. 

If Ω is discrete, then we can assign probabilities directly to its elements. If Ω is continuous, then 

we instead assign probabilities to privileged subsets of Ω. We introduce a -algebra over Ω (i.e. 

a set of subsets of Ω that contains Ω and is closed under countable union and complementation in 

Ω). A probability measure assigns a probability (a real number) to each element of the -algebra. 

A random variable is a measurable function from Ω to the real numbers ℝ.24
 A 

probability measure and a random variable jointly induce a probability distribution: an 

assignment of probabilities to privileged subsets of ℝ. Intuitively, the random variable lets us 

transform a probability assignment involving Ω into a probability assignment involving ℝ.25
 The 

probability distribution exists entirely within the realm of abstract mathematical entities. By 

citing the random variable and the probability distribution, we vastly increase the elegance and 
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utility of our mathematical formalism. In particular, we can now apply real analysis to 

probabilistic modelling. 

When Ω is continuous, we can often introduce a probability density function (pdf), which 

carries each element of ℝ to a probability density (also drawn from ℝ). A famous example is the 

Normal (or Gaussian) distribution, whose associated probability density function is depicted in 

Figure 2. 

[COMP: INSERT FIGURE 2 HERE] 

The probability that a random variable attains a value within some region is found by integrating 

the pdf over that region. In other words, the probability assigned by the probability distribution 

to a region equals the integral of the pdf over that region.
26

 A pdf is a purely mathematical entity, 

just like a probability distribution. 

To apply probability theory to psychological modelling, we must specify the nature of the 

underlying sample space Ω. When we seek to model perception, we should construe Ω’s 

elements as perceptual estimates or hypotheses. For instance, if we are modelling depth 

perception, then we should construe each element of Ω as a perceptual estimate of some 

particular depth. One might gloss ‘perceptual estimates’ as mental representations, or Russellian 

propositions, or Fregean senses, or sets of possible worlds, and so on. The key point is that we 

individuate perceptual estimates at least partly through the environmental properties that the 

estimates represent. As I have argued, this is how the science typically individuates perceptual 

estimates. Once we have introduced an underlying sample space, we can also introduce 

appropriate random variables. To illustrate, suppose that Ω contains depth-estimates. Then we 

can introduce a random variable D that maps each depth-estimate h to a real number D(h). 

Depending on our choice of D, the real number D(h) might be the depth estimated by h as 

measured in metres, or as measured in feet, and so on. 
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In practice, Bayesian perceptual psychologists rarely highlight the underlying sample 

space Ω. Typical models, including all the models described in this paper, instead emphasize 

probability distributions or pdfs. For instance, Jacobs (1999) posits a pdf defined over a random 

variable corresponding to depth. A pdf is a purely mathematical entity. By specifying it, we do 

not specify a unique sample space Ω. The pdf is consistent with numerous sample spaces. 

At first blush, the scientific emphasis on probability distributions and pdfs may seem to 

undermine my representationalist interpretation of Bayesian perceptual psychology. Consider 

once again Visua, whose perceptual states represent depth, and doppelganger Twin Visua, whose 

corresponding states do not represent depth. According to Egan, explanatory generalizations of 

perceptual psychology should and do apply uniformly to Visua and Twin Visua. We can 

supplement the generalizations by specifying the environmental properties represented by Visua 

or Twin Visua. But the generalizations themselves ignore environmental representata. The 

generalizations constitute an ‘abstract mathematical description’ equally consistent with diverse 

distal interpretations (Egan, 2010, 256). Initially, Bayesian models may seem to offer precisely 

what Egan demands: ‘abstract mathematical descriptions’ that prescind from environmental 

representata. After all, Bayesian models emphasize pdfs, and a pdf is a purely mathematical 

entity: a function from real numbers to real numbers. Shouldn’t we conclude that Bayesian 

models of depth perception describe Twin Visua just as well as Visua? 

Any such conclusion would be mistaken. I concede that a Bayesian perceptual model has 

an abstract mathematical form. I concede that, in principle, this abstract form encompasses 

diverse chimerical creatures. Nevertheless, the model describes statistical inferences over 

perceptual hypotheses, which it individuates partly through representational relations to specific 

environmental properties. Bayesian perceptual psychology does not pursue explanatory 
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generalizations framed at an abstract mathematical level. Just as physics uses abstract 

mathematics to articulate generalizations over physical state-types, perceptual psychology uses 

abstract mathematics to articulate generalizations over representational mental state-types. 

The central issue here is the notion of random variable. A random variable is a function 

from a sample space Ω to the real numbers ℝ. Thus, a random variable is defined only given a 

sample space. Ultimately, any Bayesian perceptual model featuring a random variable 

presupposes an appropriate sample space Ω. Perceptual models cite random variables only so as 

to illuminate probability assignments to environmental state estimates. The goal is to describe a 

statistical inference over estimates about the perceiver’s environment. The random variable is a 

valuable device for describing this statistical inference. But it is simply a tool for formulating 

rigorous, elegant explanatory generalizations concerning perceptual estimates. 

As evidence for my position, I cite alternative measurement units. Our mapping from 

depth-estimates to real numbers depends upon our choice of units. The metric system yields one 

random variable. The British imperial system yields another. Our choice of random variable 

reflects our measurement units. Thus, the specific mathematical parameters enshrined by a 

random variable are mere artefacts of our measurement system. The parameters lack any 

explanatory significance for scientific psychology. We may use metric units to measure depth, 

but the perceptual system almost certainly does not. Psychological significance resides in the 

state estimate, not the mathematical entities through which we parameterize state estimates. Our 

ultimate concern is the probability measure over environmental state estimates, not the 

probability distribution over mathematical parameters. To privilege the latter over the former is 

to read our own idiosyncratic measurement system into the psychological phenomena. We must 
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not conflate our measurement units with the environmental states that we use the units to 

measure. 

I conclude that Bayesian perceptual psychology offers intentional generalizations 

governing probability assignments to environmental state estimates. We articulate the 

generalizations by citing probability distributions and pdfs over mathematical entities. But these 

purely mathematical functions are artefacts of our measurement units. They reflect our 

idiosyncratic measurement conventions, not the underlying psychological reality. They do not 

yield any explanatorily significant level of non-representational psychological description. They 

are tools for describing how the perceptual system allocates probabilities over a hypothesis space 

whose elements are individuated representationally. A Bayesian perceptual model has an abstract 

mathematical form, but this form does not secure explanatorily significant non-representational 

descriptions of perceptual states. 

What if we identify the privileged measurement units used by the perceptual system? 

Can’t we assign explanatory priority to a pdf defined over those units? And won’t the resulting 

theory be non-representational? 

One problem with this suggestion is that the perceptual system may not employ 

measurement units. In Peacocke’s (1992) terminology, perceptual representation may be ‘unit-

free’. As far as we know, for example, the visual system may form a depth-estimate without 

denominating that estimate in feet, metres, or any other measurement units (although we use 

units to describe the estimate’s accuracy-condition). Admittedly, we may eventually discover 

that the perceptual system employs measurement units. It is difficult to anticipate how such a 

discovery might impact perceptual psychology. At present, the matter is speculative. All we can 

say for sure is that current Bayesian models do not attribute measurement units to the perceptual 
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system. Current science posits probabilistic updating over perceptual hypotheses. It individuates 

the hypotheses partly through the specific environmental properties they represent. 

 

Open questions 

Bayesian perceptual psychology raises numerous further questions, many on the border between 

philosophy and science. A few examples: 

- What neural mechanisms implement, or approximately implement, the 

computations posited by Bayesian models? 

- Does the Bayesian paradigm generalize from perception to cognition? 

- Can Bayesian models illuminate the relation between normativity and 

intentionality? 

- Can Bayesian models illuminate what it is to represent the external world? 

Philosophers who pursue these questions will discover an imposing scientific literature that 

rewards intensive foundational analysis.
27
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Notes 

1
 Bayesian perceptual psychology generalizes signal detection theory, which was developed in 

the 1950s. For comparison of the two frameworks, see Kersten and Schrater (2002, 193–

199). 

2
 On the distinction between the perceiver and her perceptual system, see Burge (2010, 23–24; 

2011, 68–69). 

3
 When the hypothesis space is continuous, p(h) is a probability density function. See below for 

details. For ease of exposition, I often blur the distinction between probability and 

probability density. 

4
 There is an unfortunate tendency among scientists and even some philosophers to conflate 

Bayes’s Theorem and Bayes’s Rule. The former is an easily provable mathematical 

theorem. The latter is a prescriptive norm that dictates how to reallocate probabilities in 

light of new evidence. 

5
 The models described in this paragraph assume diffusely illuminated flat matte surfaces. To 

handle other viewing conditions, we must replace R(λ) with a more complicated surface 

reflectance property, such as a bidirectional reflectance distribution. 

6
 Current models describe perception of surface colour. As Matthen (2005, 176) emphasizes, 

colour perception also responds to transmitted colour (e.g. stained-glass windows) and coloured 

light sources. Thus, we should not identify colours with surface reflectance properties. Should we 

identify colours with other, possibly disjunctive, physical properties? Maybe. But the Bayesian 

models I am describing do not presuppose a physicalist reduction of colour. One might combine 

those models with various metaphysical views of colour, such as that colours are dispositions to 

cause sensations in normal human perceivers, or such as Matthen’s (2005) pluralistic realism. 
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Current Bayesian models assume no particular metaphysics of colour. They simply assume that 

human surface colour perception involves estimation of surface reflectance, as informed by an 

estimate of background illumination. 

7
 Cf. Burge’s ‘Proximality Principle’ (2005). 

8
 Motor efference copy figures most prominently in Bayesian models of sensorimotor control 

(Wolpert, 2007). 

9
 There are exceptions, such as Knill (2007). 

10
 In some cases, the priors reflect non-obvious statistical regularities about the environment 

(Geisler, 2008). In other cases, a satisfying explanation awaits discovery. An example: 

somewhat mysteriously, the perceptual system assumes that the light source is located 

overhead and slightly to the left (Mamassian, Landy, and Maloney, 2002). One question 

in this area concerns informational encapsulation: to what extent can cognition influence 

the priors? 

11
 Cue combination provides another good illustration. The perceptual system typically receives 

multiple cues, often through different sensory modalities, regarding a single 

environmental variable. Bayesian perceptual psychology offers a unified framework for 

explaining diverse cases of intermodal and intramodal sensory fusion: visual and auditory 

cues to location; visual and proprioceptive cues to limb position; conflicting visual cues 

to depth; and so on. See Trommershäuser, Körding, and Landy (2011) for an overview. 

12
 More technically: the prior likelihood p(e | h), considered as a function of h for fixed e, has 

higher variance when the retinal image e has lower contrast. 
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13

 Burge discusses several Bayesian perceptual models, but he does not discuss their specifically 

Bayesian features. Bradley (2008) defends representationalism by citing Bayesian models 

of colour perception. 

14
 For a survey of philosophical approaches to perceptual content, see Siegel (2011). 

15
 There are additional phenomena in a similar vein that favour realism towards prior 

probabilities and likelihoods (Seydell, Knill, and Trommershäuser, 2011; Beierholm, 

Quartz, and Shams, 2009). Realism towards the utility function seems well-supported for 

Bayesian models of bodily motion (Maloney and Mamassian, 2009). I am less sure about 

the utility functions that figure in Bayesian models of perception. Moderate 

instrumentalism may be more promising for that case. 

16
 Clark (forthcoming) raises the same worry. 

17
 As noted in above, one might hold that the final percept represents colour but not reflectance. 

However, this suggestion provides no support for phenomenal content. If one perceives a 

surface as a specific colour, then one’s percept is veridical only if the surface has that 

colour. Since Invert’s percept is veridical, and since the perceived surface is green, Invert 

does not perceive the surface as red. So Nonvert perceives a surface as red, while Invert 

does not perceive a surface as red. There is no basis here for type-identifying the relevant 

percepts. 

18
 One can individuate perceptual states through the environmental properties they represent 

without individuating them through the environmental particulars they represent. Burge 

(2010) introduces an individuative scheme for perceptual content along these lines. To 

illustrate, suppose that a percept attributes convexity to object O. According to Burge, 

any percept expressing the same content must also represent convexity. But a percept 
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might express that same content while attributing convexity to a distinct object O*. Or a 

percept expressing that same content may involve a referential illusion, in which case it 

does not successfully attribute convexity to any object. 

19
 Silverberg (2006) argues that Egan misinterprets Marr. Egan (2009) discusses Bayesian 

models of perception but does not discuss how they bear upon her views regarding non-

intentional computational modelling. 

20
 Rescorla (2012) relates these points to the computational models employed within CS and AI. 

21
 For discussion of possible neural mechanisms, see Clark (forthcoming) and Knill and Pouget 

(2004). 

22
 The details of Field’s discussion raise further doubts about the conjecture. He claims that there 

is no viable interpersonal notion of type-identity for mental representation tokens (2001, 

75, fn. 3). In other words, Field’s favoured taxonomic scheme cannot type-identify the 

mental states of distinct creatures. This result is incompatible with current perceptual 

psychology, which routinely type-identifies the perceptual states of distinct creatures. 

How could any serious science of perception do otherwise? 

23
 Not everyone accepts that there exist creatures Visua and Twin-Visua satisfying these 

assumptions. In particular, Segal (1991) denies that perceptual states of 

neurophysiological twins can represent different environmental properties. For the sake 

of argument, I grant Egan’s description of the thought experiment. 

24
 A function X: Ωℝ is measurable just in case, for every Borel set Bℝ, X

-1
(B) belongs to the 

-algebra. One can generalize the definition of random variable to include functions 

from Ω to mathematical structures besides the real numbers. For ease of exposition, I 
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focus on real-valued random variables. Consideration of generalized random variables 

would not alter my main conclusions. 

25
 Let P be a probability measure, let X: Ωℝ be a random variable, and let Bℝ be a Borel set. 

Then we define a probability distribution PX by PX(B) = P(X
-1

(B)). 

26
 If P is a probability distribution, and if ρ(x) is an associated pdf, then P([a, b]) = 

b

a
dxx)( . 

27
 I am indebted to Mohan Matthen and Susanna Siegel for comments that vastly improved this 

entry. I have also benefited from discussion of these issues with Tyler Burge, John 

Campbell, Kevin Falvey, Ian Nance, Christopher Peacocke, and Tamar Weber. 

 

Captions 

Fig. 1 A template for Bayesian models of perception (AQ) 

Fig. 2 The probability density function for a Normal distribution  


